Use of Hydrochemistry, Stable Isotope, Radiocarbon, 222Rn and Terrigenic 4He to Study the Geochemical Processes and the Mode of Vertical Leakage to the Gambier Basin Tertiary Confined Sand Aquifer, South Australia
Abstract
:1. Introduction
2. Hydrogeological Setting of the Recharge Zone and the Gambier Basin
3. Methods
3.1. Field Measurement and Laboratory Analysis
3.2. Method of Data Analysis
4. Results and Discussion
4.1. δ2H and δ18O Variation in the TCSA Recharge Zone
4.2. Water Chemistry of the Recharge Zone
4.3. EC, 14C and 18O Profiles at the Study Sites
4.4. Depth-Distribution of 222Rn and Terrigenic 4He in the Profile
4.5. Influence of GNN Recharge Zone on Regional Groundwater Flow in the TCSA
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Love, A.J. Groundwater Flow Systems: Past and Present, Gambier Embayment, Otway Basin, South Australia. Master’s Thesis, Flinders University of South Australia, Adelaide, Australia, October 1991; p. 261. [Google Scholar]
- Banwell, G.M.; Parizek, R.R. Helium 4 and Radon 222 concentrations in groundwater and soil gas indicators of zones of fracture concentrations in unexposed rock. J. Geophys. Res. 1988, 91, 355–366. [Google Scholar]
- Sukhija, B.S.; Reddy, D.V.; Nagabhushanam, P.; Hussain, S.; Giri, V.Y.; Patil, D.J. Environmental and injected tracers methodology to estimate direct precipitation recharge to a confined aquifer. J. Hydrol. 1996, 177, 77–97. [Google Scholar] [CrossRef]
- Agarwal, M.; Gupta, S.K.; Deshpande, R.D.; Yadava, M.G. Helium, radon and radiocarbon studies on a regional aquifer system of the North Gujarat-Cambay region, India. Chem. Geol. 2006, 228, 209–232. [Google Scholar] [CrossRef]
- Gardner, W.P.; Harrington, G.A.; Solomon, D.K.; Cook, P.G. Using terrigenic 4He to identify and quantify regional groundwater discharge to streams. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Choi, B.Y.; Yun, S.K.; Mayer, B.; Chae, G.T.; Kim, K.H.; Kim, K.; Koh, Y.K. Identification of groundwater recharge sources and processes in a heterogeneous alluvial aquifer: Results from multi-level monitoring of hydrochemistry and environmental isotopes in a riverside agricultural area in Korea. Hydrol. Process. 2010, 24, 317–330. [Google Scholar] [CrossRef]
- Gumm, L.P.; Bense, V.F.; Dennis, P.F.; Hiscock, K.M.; Cremer, N.; Simon, S. Dissolved noble gases and stable isotopes as tracers of preferential fluid flow along faults in the Lower Rhine Embayment, Germany. Hydrogeol. J. 2016, 24, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Wood, C.; Cook, P.G.; Harrington, G.A. Vertical carbon-14 profiles for resolving spatial variability in recharge in arid environments. J. Hydrol. 2015, 520, 134–142. [Google Scholar] [CrossRef]
- Holmes, J.W.; Colville, J.S. Grassland hydrology in a karstic region of South Australia. J. Hydrol. 1970, 10, 38–58. [Google Scholar] [CrossRef]
- Colville, J.S.; Holmes, J.W. Water table fluctuations under forest and pasture in a karstic region of Southern Australia. J. Hydrol. 1972, 17, 61–80. [Google Scholar] [CrossRef]
- Allison, G.B.; Hughes, M.W. The use of environmental chloride and tritium to estimate total recharge to an unconfined aquifer. Aust. J. Soil Res. 1978, 16, 181–195. [Google Scholar] [CrossRef]
- Leaney, F.W.; Herczeg, A.L. Regional recharge to a karst aquifer estimated from chemical and isotopic composition of diffuse and localised recharge, South Australia. J. Hydrol. 1995, 164, 363–387. [Google Scholar] [CrossRef]
- Harrington, G.A.; Walker, G.R.; Love, A.J.; Narayan, K.A. A compartmental mixing-cell approach for the quantitative assessment of groundwater dynamics in the Otway Basin, South Australia. J. Hydrol. 1999, 214, 49–63. [Google Scholar] [CrossRef]
- Brown, K.G.; Love, A.J.; Harrington, G.A. Vertical Groundwater Recharge to the Tertiary Confined Sand Aquifer, South East, South Australia; Report DWR 2001/002; Department for Water Resources: Adelaide, Australia, 2001.
- Holmes, J.W.; Waterhouse, J.D. Hydrogeology. In Natural History of the South East; Tyler, M.J., Twidale, I.R., Ling, J.K., Holmes, J.W., Eds.; Adelaide Royal Society of South Australia: Adelaide, Australia, 1983; pp. 48–59. [Google Scholar]
- Drexel, J.F.; Preiss, W.V. (Eds.) The Geology of South Australia; The Phanerozoic: Adelaide, Australia, 1995; Volume 2.
- Harrington, N.M.; Chambers, K.; Lawson, J. Primary Production to Mitigate Water Quality Threats Project, Zone 1A Numerical Modelling Study: Conceptual Model Development; DWLBC Report 2008/12; Government of South Australia through Department of Water, Land and Biodiversity Conservation: Adelaide, Australia, 2007.
- Li, Q.; McGowran, B.; White, M.R. Sequences and biofacies packages in Mid-Cenozoic Gambier Limestone, South Australia; repraisal of foraminiferal evidence. Aust. J. Earth Sci. 2000, 47, 955–970. [Google Scholar] [CrossRef]
- Waterhouse, J.D. The Hydrogeology of the Mount Gambier Area; Report of Investigation; Geological Survey of South Australia: Adelaide, Australia, 1977; p. 48.
- Mustafa, S.; Lawson, J. South Australia-Victoria Border Zone Groundwater Investigation: Results of the Pumping Test Program; DFW Technical Report 2011/23; Government of South Australia, through Department for Water: Adelaide, Australia, 2011.
- Sinclair Knight Merz (SKM). SA-Vic Border Zone Groundwater Investigation. Interaction between the TLA and TCSA; SKM: Melbourne, Australia, 2012. [Google Scholar]
- Vail, J. Groundwater Sampling; SESDRPROC-301-R3; U.S. Environmental Protection Agency, Science and Ecosystem Support Division: Athens, GA, USA, 2011.
- Australia/New Zealand Standard. Water Quality Sampling-Guidance on the Design of Sampling Programs, Sampling Techniques and the Preservation and Handling of Samples; AS/NZS 5667.5; Australia/New Zealand Standard: Homebush, Australia, 1998. [Google Scholar]
- American Public Health Association. APHA/AWWA/WEF Method 3120B. In Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1999. [Google Scholar]
- American Public Health Association. APHA/AWWA/WEF Method 4500. In Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- American Public Health Association. APHA/AWWA/WEF Method 2320. In Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Epstein, S.; Mayeda, T.K. Variation of the 18O/16O ratio in natural waters. Geochim. Cosmochim. Acta 1953, 4, 213–224. [Google Scholar] [CrossRef]
- PDZ Europa Ltd. 20-20 ANCA-GSL User Manual, version 4.0; PDZ Europa Ltd.: Sandbach, UK, 2001; p. 8. [Google Scholar]
- Fallon, S.J.; Fified, L.K.; Chappel, J.M. The Next Chapter in Radiocarbon Dating at the Australian National University: Status Report on the Single Stage AMS; Nuclear Instruments and Methods in Physics Research B268898-901; Australian National University: Canberra, Australia, 2010; pp. 898–901. [Google Scholar]
- Gardner, P.; Solomon, D.K. An advanced passive diffusion sampler for the determination of dissolved gas concentration. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Leaney, F.W.; Herczeg, A.L. A rapid field extraction method for determination of radon-222 in natural waters by liquid scintillation counting. Limnol. Oceanogr. Methods 2006, 4, 254–259. [Google Scholar] [CrossRef]
- Poole, J.C.; McNeill, G.W.; Langman, S.R.; Dennis, F. Analysis of noble gases in water using a quadrupole mass spectrometer in static mode. Appl. Geochem. 1997, 12, 707–714. [Google Scholar] [CrossRef]
- Heaton, T.H.E.; Vogel, J.C. “Excess air” in groundwater. J. Hydrol. 1981, 50, 201–216. [Google Scholar] [CrossRef]
- Kipfer, R.; Aeschbach-Hertig, W.; Peeters, F.; Stute, M. Noble gas in Lakes and Groundwaters. Rev. Miner. Geochem. 2002, 47, 615–700. [Google Scholar] [CrossRef]
- YSI Incorporated. Environmental Monitoring Systems Operations Manual. Available online: http://wenku.baidu.com/view/d785b92058fb770bf78a55ca.html (accessed on 3 September 2014).
- Craig, H. Isotopic variation in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, O.A.E. Groundwater recharge/discharge in semi-arid regions interpreted from isotope and chloride concentrations in north White Nile Rift, Sudan. Hydrogeol. J. 2009, 17, 679–692. [Google Scholar] [CrossRef]
- Van der Akker, J. The Use of Stable Isotopes and Chloride to Assess Evaporation and Transpiration Impacts from Flood Irrigation. Master’s Thesis, School of Environment, Flinders University, Adelaide, Australia, 10 September 2010. [Google Scholar]
- Custodio, E. Hydrogeochemistry and tracers. In Groundwater Problems in Coastal Areas (Studies and Reports in Hydrology); Custodio, E., Brugeman, G.A., Eds.; United Nations Educational, Scientific and Cultural Organization: Paris, France, 1987; pp. 213–269. [Google Scholar]
- Liu, F.; Song, X.; Yang, L.; Zhang, Y.; Ma, Y.; Bu, H. Identifying the origin and geochemical evolution of groundwater using hydrochemistry and stable isotopes in the Subei Lake basin, Ordos energy base, Northwestern China. Hydrol. Earth Syst. Sci. 2015, 19, 551–565. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanism controlling world water chemistry. Sciences 1970, 170, 795–840. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.E.; Rodoni, D.P. Regional isotope effects and application to hydrologic investigations in southwestern California. Water Resour. Res. 1997, 37, 1721–1729. [Google Scholar] [CrossRef]
- Atkinson, A.P.; Cartwright, I.; Gilfedder, D.I.; Unland, N.P.; Hofmann, H. Using 14C and 3H to understand groundwater flow and recharge in an aquifer window. Hydrol. Earth Syst. Sci. 2014, 18, 4951–964. [Google Scholar] [CrossRef]
- Karnath, K.B. Groundwater Assessment, Development and Management; McGraw-Hill Publishers: New Delhi, India, 1997. [Google Scholar]
- Bhatt, K.B.; Salakani, S. Hydrogeochemistry of the upper Ganges River, India. J. Geol. Soc. India 1996, 48, 171–182. [Google Scholar]
- Chae, G.T.; Yun, S.K.; Kim, K.; Mayer, B. Hydrochemistry of sodium-bicarbonate type bedrock groundwater in the Pochen spa area, South Korea: Water-rock interaction and hydrologic mixing. J. Hydrol. 2006, 321, 326–343. [Google Scholar] [CrossRef]
- Krishnaraj, S.; Murugesan, V.; Vijayaraghavan, K.; Sabarathnam, C.; Paluchamy, A.; Ramachandran, M. Use of hydrochemistry and stable isotopes as tools for groundwater evolution and contamination investigations. Geosciences 2011, 1, 16–25. [Google Scholar] [CrossRef]
- McLean, W.; Jankowski, J.; Lavitt, N. Groundwater quality and sustainability in an alluvial aquifer, Australia. In Groundwater: Past Achievements and Future Challenges; Sililo, O., Ed.; A Balkema: Rotterdam, The Netherlands, 2000; pp. 567–573. [Google Scholar]
- Stallard, R.F.; Edmond, J.M. Geochemistry of the Amazon 2. The influence of geology and weathering environment on the dissolved load. J. Geophys. Res. 1983, 88, 9671–9688. [Google Scholar] [CrossRef]
- Zaidi, F.K.; Nazzai, Y.; Jafri, M.K.; Ahmed, I. Reverse ion exchange as a major process controlling the groundwater chemistry in an arid environment: A case study from northwestern Saudi Arabia. Environ Monit. Asses. 2015, 187. [Google Scholar] [CrossRef] [PubMed]
- BETA Radiocarbon Dating. Radiocarbon Dating of Groundwater-Practical Applications. Beta Analytic Inc.: Miami, FL, USA. Available online: http://www.radiocarbon.com/PDF/Groundwater%20Radiocarbon%20Dating%20Practical%20Applications.pdf (accessed on 1 March 2016).
- Tamers, M.A. Validity of radiocarbon dates on groundwater. Geophys. Surv. 1975, 2, 217–239. [Google Scholar] [CrossRef]
- Wassenar, L.; Aravena, R.; Hendry, J.; Fritz, P. Radiocarbon in dissolved organic carbon, a poosible groundwater dating method: Case studies from Western Canada. Water Resour. Res. 1991, 27, 1975–1986. [Google Scholar] [CrossRef]
- Harrington, G.A. Bool Lagoon Wellfield Investigation, Groundwater Chemistry Assessment; A Report Prepared for SA Water Corporation; Innovative Groundwater Solution: Blackwood, Australia, 2015. [Google Scholar]
- Love, A.J.; Herczeg, A.L.; Leaney, F.W.; Stadter, M.F.; Dighton, J.C.; Armstrong, D. Groundwater residence time and palaeohydrology in the Otway Basin, South Australia: 2H, 18O and 14C data. J. Hydr. 1994, 153, 157–187. [Google Scholar] [CrossRef]
- Lawson, J. A Stratigraphic and Hydrogeological Investigation of an Area between Nangwarry and Naracoorte, South Australia; Technical Report; South Australian Department of Environment, Water and Natural Resources: Adelaide, Australia, 2015; p. 47.
- Lawson, J.; Mustafa, S.; Wood, C. Field Investigations into the Influence of Faulting on the Groundwater Flow and Recharge of the Tertiary Limestone Aquifer, Lower South East, South Australia; Draft Report; South Australian Department of Water, Land and Biodiversity Conservation: Adelaide, Australia, 2009.
- Lawson, J.; Howles, S. Investigative Drilling, Aquifer and Groundwater Salinity Testing-Naracoorte Water Supply; Technical Report 2015/03; Bool Lagoon Investigation Department of Environment, Water and Natural Resources: Adelaide, Australia, 2015; p. 108.
Site | Formation | Well Depth (m) | Production Zone (m) |
---|---|---|---|
SA 1 | TLA | 16 | 5–14 |
Mepunga | 25 | 17–23 | |
Dilwyn aquitard | 31 | 20–29 | |
TCSA | 47 | 30–45 | |
SA 2 | TLA | 19 | 5–17 |
Mepunga | 24 | 19–22 | |
Dilwyn aquitard | 27 | 24.5–25 | |
TCSA | 39 | 29–37 | |
SA 3 | TLA | 32 | 28–30 |
Mepunga | 40 | 36–38 | |
Dilwyn aquitard | 57.6 | 53.6–55.6 | |
TCSA | 66.5 | 61.5–64.5 | |
SA 4 | TLA | 18.5 | 15–16.5 |
Mepunga | 25.6 | 21.6–23.6 | |
Dilwyn aquitard | 28.9 | 24.9–26.9 | |
TCSA | 63 | 58–61 | |
VIC 1 | TLA | 27 | 11–25 |
Mepunga | 33 | 27–31 | |
Dilwyn aquitard | 45 | 33–43 | |
TCSA | 66 | 53–64 | |
VIC 2 | TLA | 22 | 5–20 |
Mepunga | 29 | 22–27 | |
Dilwyn aquitard | 38 | 30–36 | |
TCSA | 54 | 39–52 | |
VIC 3 | TLA | 16 | 9–14 |
Mepunga | 19 | 15.5–17 | |
Dilwyn aquitard | 41 | 30–39 | |
TCSA | 42 | 30–40 | |
VIC 4 | TLA | 20 | 12–18 |
Mepunga | 40 | 33–38 | |
Dilwyn aquitard | 50 | 45–48 | |
TCSA | 55 | 49–53 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Somaratne, N.; Mustafa, S.; Lawson, J. Use of Hydrochemistry, Stable Isotope, Radiocarbon, 222Rn and Terrigenic 4He to Study the Geochemical Processes and the Mode of Vertical Leakage to the Gambier Basin Tertiary Confined Sand Aquifer, South Australia. Water 2016, 8, 180. https://doi.org/10.3390/w8050180
Somaratne N, Mustafa S, Lawson J. Use of Hydrochemistry, Stable Isotope, Radiocarbon, 222Rn and Terrigenic 4He to Study the Geochemical Processes and the Mode of Vertical Leakage to the Gambier Basin Tertiary Confined Sand Aquifer, South Australia. Water. 2016; 8(5):180. https://doi.org/10.3390/w8050180
Chicago/Turabian StyleSomaratne, Nara, Saad Mustafa, and Jeff Lawson. 2016. "Use of Hydrochemistry, Stable Isotope, Radiocarbon, 222Rn and Terrigenic 4He to Study the Geochemical Processes and the Mode of Vertical Leakage to the Gambier Basin Tertiary Confined Sand Aquifer, South Australia" Water 8, no. 5: 180. https://doi.org/10.3390/w8050180
APA StyleSomaratne, N., Mustafa, S., & Lawson, J. (2016). Use of Hydrochemistry, Stable Isotope, Radiocarbon, 222Rn and Terrigenic 4He to Study the Geochemical Processes and the Mode of Vertical Leakage to the Gambier Basin Tertiary Confined Sand Aquifer, South Australia. Water, 8(5), 180. https://doi.org/10.3390/w8050180