Historical Trends in Mean and Extreme Runoff and Streamflow Based on Observations and Climate Models
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Hydrological Model (WBM) Performance Evaluation
3.2. Runoff and Streamflow Trends 1971–2001 (GCMs versus Observations)
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Mann-Kendall Trend Test
Appendix B. Sen’s Slope Estimator
References
- Allen, M.R.; Ingram, W.J. Constraints on future changes in climate and the hydrologic cycle. Nature 2002, 419, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Held, I.M.; Soden, B.J. Robust responses of the hydrological cycle to global warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Wentz, F.J.; Ricciardulli, L.; Hilburn, K.; Mears, C. How much more rain will global warming bring? Science 2007, 317, 233–235. [Google Scholar] [CrossRef] [PubMed]
- Trenberth, K.E. Conceptual framework for changes of extremes of the hydrological cycle with climate change. Clim. Chang. 1999, 42, 327–339. [Google Scholar] [CrossRef]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef]
- Dankers, R.; Arnell, N.W.; Clark, D.B.; Falloon, P.D.; Fekete, B.M.; Gosling, S.N.; Heinke, J.; Kim, H.; Masaki, Y.; Satoh, Y.; et al. First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble. Proc. Natl. Acad. Sci. USA 2013, 111, 3257–3261. [Google Scholar] [CrossRef] [PubMed]
- Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 2003, 84, 1205–1217. [Google Scholar] [CrossRef]
- O’Gorman, P.A.; Schneider, T. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 14773–14777. [Google Scholar] [CrossRef] [PubMed]
- Min, S.-K.; Zhang, X.; Zwiers, F.W.; Hegerl, G.C. Human contribution to more-intense precipitation extremes. Nature 2011, 470, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Field, C.B. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Solomon, S.; Qin, D.; Manning, M.; Marquis, M.; Averyt, K.; Tignor, M.M.B.; Miller, H.L.; Chen, Z. Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Karl, T.R.; Melillo, J.M.; Peterson, T.C. Global Climate Change Impacts in the United States; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Hansen, J.; Sato, M.; Ruedy, R.; Lo, K.; Lea, D.W.; Medina-elizade, M. Global temperature change. Proc. Natl. Acad. Sci. USA 2006, 103, 14288–14293. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global surface temperature change. Rev. Geophys. 2010, 48, RG4004. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change-Abstract for Decision-Makers; C/O World Meteorological Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Trenberth, K.E.; Fasullo, J.; Smith, L. Trends and variability in column-integrated atmospheric water vapor. Clim. Dyn. 2005, 24, 741–758. [Google Scholar] [CrossRef]
- Pall, P.; Allen, M.R.; Stone, D.A. Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Clim. Dyn. 2006, 28, 351–363. [Google Scholar] [CrossRef]
- Allan, R.P.; Soden, B.J. Atmospheric warming and the amplification of precipitation extremes. Science 2008, 321, 1481–1484. [Google Scholar] [CrossRef] [PubMed]
- Lambert, F.H.; Stine, A.R.; Krakauer, N.Y.; Chiang, J.C.H. How much will precipitation increase with global warming? Eos 2008, 89, 193–200. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 2006, 111, D05109. [Google Scholar] [CrossRef]
- Westra, S.; Alexander, L.V.; Zwiers, F.W. Global increasing trends in annual maximum daily precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar] [CrossRef]
- Asadieh, B.; Krakauer, N.Y. Global trends in extreme precipitation: Climate models versus observations. Hydrol. Earth Syst. Sci. 2015, 19, 877–891. [Google Scholar] [CrossRef]
- Lehmann, J.; Coumou, D.; Frieler, K. Increased record-breaking precipitation events under global warming. Clim. Chang. 2015, 132, 501–515. [Google Scholar] [CrossRef]
- Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim. Chang. 2013, 119, 345–357. [Google Scholar] [CrossRef]
- Toreti, A.; Naveau, P.; Zampieri, M.; Schindler, A.; Scoccimarro, E.; Xoplaki, E.; Dijkstra, H.A.; Gualdi, S.; Luterbacher, J. Projections of global changes in precipitation extremes from Coupled Model Intercomparison Project Phase 5 models. Geophys. Res. Lett. 2013, 40, 4887–4892. [Google Scholar] [CrossRef] [Green Version]
- Scoccimarro, E.; Gualdi, S.; Bellucci, A.; Zampieri, M.; Navarra, A. Heavy precipitation events in a warmer climate: Results from CMIP5 models. J. Clim. 2013, 26, 7902–7911. [Google Scholar] [CrossRef]
- Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Hegerl, G.C. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Clim. 2007, 20, 1419–1444. [Google Scholar] [CrossRef]
- Zhang, X.; Zwiers, F.W.; Hegerl, G.C.; Lambert, F.H.; Gillett, N.P.; Solomon, S.; Stott, P.A.; Nozawa, T. Detection of human influence on twentieth-century precipitation trends. Nature 2007, 448, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.; Neelin, J. Mechanisms of global warming impacts on regional tropical precipitation. J. Clim. 2004, 17, 2688–2701. [Google Scholar] [CrossRef]
- Greve, P.; Orlowsky, B.; Mueller, B.; Sheffield, J.; Reichstein, M.; Seneviratne, S.I. Global assessment of trends in wetting and drying over land. Nat. Geosci. 2014, 7, 716–721. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Kanae, S.; Emori, S.; Oki, T.; Kimoto, M. Global projections of changing risks of floods and droughts in a changing climate. Hydrol. Sci. J. 2008, 53, 754–772. [Google Scholar] [CrossRef]
- Dankers, R.; Feyen, L. Climate change impact on flood hazard in Europe: An assessment based on high-resolution climate simulations. J. Geophys. Res. 2008, 113, D19105. [Google Scholar] [CrossRef]
- Dankers, R.; Feyen, L. Flood hazard in Europe in an ensemble of regional climate scenarios. J. Geophys. Res. 2009, 114, D16108. [Google Scholar] [CrossRef]
- Okazaki, A.; Yeh, P.J.-F.; Yoshimura, K.; Watanabe, M.; Kimoto, M.; Oki, T. Changes in flood risk under global warming estimated using MIROC5 and the discharge probability index. J. Meteorol. Soc. Jpn. Ser. II 2012, 90, 509–524. [Google Scholar] [CrossRef]
- Te Linde, A.H.; Aerts, J.C.J.H.; Bakker, A.M.R.; Kwadijk, J.C.J. Simulating low probability peak discharges for the Rhine basin using resampled climate modeling data. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Veijalainen, N.; Lotsari, E.; Alho, P.; Vehviläinen, B.; Käyhkö, J. National scale assessment of climate change impacts on flooding in Finland. J. Hydrol. 2010, 391, 333–350. [Google Scholar] [CrossRef]
- Kay, A.L.; Jones, D.A. Transient changes in flood frequency and timing in Britain under potential projections of climate change. Int. J. Climatol. 2012, 32, 489–502. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Hattermann, F.F.; Krysanova, V.; Bronstert, A. Projections of climate change impacts on river flood conditions in Germany by combining three different RCMs with a regional eco-hydrological model. Clim. Chang. 2012, 116, 631–663. [Google Scholar] [CrossRef]
- Hagemann, S.; Chen, C.; Clark, D.B.; Folwell, S.; Gosling, S.N.; Haddeland, I.; Hanasaki, N.; Heinke, J.; Ludwig, F.; Voss, F.; et al. Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth Syst. Dyn. 2013, 4, 129–144. [Google Scholar] [CrossRef]
- Tang, Q.; Lettenmaier, D.P. 21st century runoff sensitivities of major global river basins. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Hempel, S.; Frieler, K.; Warszawski, L.; Schewe, J.; Piontek, F. A trend-preserving bias correction—The ISI-MIP approach. Earth Syst. Dyn. 2013, 4, 219–236. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Fekete, B.M. Are climate model simulations useful for forecasting precipitation trends? Hindcast and synthetic-data experiments. Environ. Res. Lett. 2014, 9, 024009. [Google Scholar] [CrossRef]
- Ehret, U.; Zehe, E.; Wulfmeyer, V.; Warrach-Sagi, K.; Liebert, J. HESS Opinions “should we apply bias correction to global and regional climate model data?”. Hydrol. Earth Syst. Sci. 2012, 16, 3391–3404. [Google Scholar] [CrossRef]
- Hagemann, S.; Chen, C.; Haerter, J.O.; Heinke, J.; Gerten, D.; Piani, C. Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. J. Hydrometeorol. 2011, 12, 556–578. [Google Scholar] [CrossRef]
- Warszawski, L.; Frieler, K.; Huber, V.; Piontek, F.; Serdeczny, O.; Schewe, J. The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): Project framework. Proc. Natl. Acad. Sci. USA 2013, 111, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.M.; Colón-González, F.J.; et al. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3245–3250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Brekke, L.D.; Maurer, E.P.; Anderson, J.D.; Dettinger, M.D.; Townsley, E.S.; Harrison, A.; Pruitt, T. Assessing reservoir operations risk under climate change. Water Resour. Res. 2009, 45, 1–16. [Google Scholar] [CrossRef]
- Arnell, N.W. Climate change and global water resources: SRES emissions and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 31–52. [Google Scholar] [CrossRef]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsson, L.; Seneviratne, S.I. Towards observation-based gridded runoff estimates for Europe. Hydrol. Earth Syst. Sci. 2015, 19, 2859–2879. [Google Scholar] [CrossRef]
- Wisser, D.; Fekete, B.; Vorosmarty, C.J.; Schumann, A.H. Reconstructing 20th century global hydrography: A contribution to the Global Terrestrial Network-Hydrology (GTN-H). Hydrol. Earth Syst. Sci. 2010, 14, 1–24. [Google Scholar] [CrossRef]
- Weedon, G.P.; Gomes, S.; Viterbo, P.; Shuttleworth, W.J.; Blyth, E.; Österle, H.; Adam, J.C.; Bellouin, N.; Boucher, O.; Best, M. Creation of the WATCH Forcing Data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J. Hydrometeorol. 2011, 12, 823–848. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charless Griffin: London, UK, 1975. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Chang. 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; John Wiley & Sons: New York, NY, USA, 1987. [Google Scholar]
- Hollander, M.; Wolfe, D.A. Nonparametric Statistical Methods; John Wiley & Sons: New York, NY, USA, 1973. [Google Scholar]
Discharge Ave (Q) (m3·s−1) | Slope of Change (b) (m3·s−1·year−1) | Relative Change (b/Q) (%·year−1) | ||||
---|---|---|---|---|---|---|
Obs. | WBM | Obs. | WBM | Obs. | WBM | |
Grids Ave. | 106.4 | 217.7 | −0.16 | −0.64 | −0.01 | −0.35 |
Grids Min. | 0.0 | 0.0 | −7.81 | −26.19 | −6.48 | −12.01 |
Grids Max. | 1776.2 | 11332.9 | 7.66 | 23.74 | 6.87 | 11.81 |
Grids Med. | 42.6 | 35.1 | −0.04 | −0.07 | −0.28 | −0.33 |
Grids St. Dev. | 199.5 | 810.3 | 1.40 | 3.13 | 1.69 | 2.40 |
Runoff Ave (R) (mm·day−1) | Slope of Change (b) (mm·day−1·year−1) | Relative Change (b/R) (%·year−1) | Qmed (mm·day−1·year−1) | Z Score (-) | |
---|---|---|---|---|---|
Global | 0.23 | −0.00038 | −0.042 | −0.00035 | −0.05 |
North America | 0.88 | −0.00211 | −0.307 | −0.00216 | −0.37 |
South America | 1.95 | −0.00572 | −0.355 | −0.00560 | −0.42 |
Europe | 0.74 | 0.00104 | 0.211 | 0.00125 | 0.23 |
Oceania | 0.42 | −0.00150 | −0.597 | −0.00071 | −0.27 |
Africa | 0.89 | −0.00077 | 0.009 | −0.00069 | −0.11 |
Asia | 0.96 | −0.00086 | −0.186 | −0.00085 | −0.25 |
India | 1.26 | −0.00351 | −0.758 | −0.00290 | −0.31 |
Runoff Ave (R) (mm·day−1) | Slope of Change (b) (mm·day−1·year−1) | Relative Change (b/R) (%·year−1) | Qmed (mm·day−1·year−1) | Z Score (-) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean Runoff | Max. 1d Runoff | Mean Runoff | Max. 1d Runoff | Mean Runoff | Max. 1d Runoff | Mean Runoff | Max. 1d Runoff | Mean Runoff | Max. 1d Runoff | |
WFD | 0.23 | - | −0.00038 | - | −0.042 | - | −0.00035 | - | −0.05 | - |
ISI-MIP Ave. | 0.22 | 2.95 | 0.00005 | 0.00399 | 0.031 | 0.035 | 0.00000 | 0.00211 | 0.011 | 0.019 |
ISI-MIP Min. | 0.21 | 2.69 | −0.00013 | 0.00006 | −0.012 | −0.010 | −0.00019 | −0.00070 | −0.007 | 0.003 |
ISI-MIP Max. | 0.22 | 3.24 | 0.00025 | 0.00727 | 0.061 | 0.062 | 0.00015 | 0.00419 | 0.038 | 0.039 |
ISI-MIP Med. | 0.21 | 2.95 | −0.00001 | 0.00465 | 0.036 | 0.036 | −0.00005 | 0.00205 | 0.004 | 0.015 |
ISI-MIP St. Dev. | 0.00 | 0.21 | 0.00016 | 0.00283 | 0.026 | 0.029 | 0.00015 | 0.00181 | 0.019 | 0.016 |
Discharge Ave (Q) (m3·s−1) | Slope of Change (b) (m3.s−1·year−1) | Relative Change (b/Q) (%·year−1) | Qmed (m3·s−1·year−1) | Z Score (-) | ||
---|---|---|---|---|---|---|
Global | 116.50 | −0.28 | −0.041 | −0.29 | −0.06 | |
North America | 262.53 | −0.86 | −0.281 | −0.89 | −0.41 | |
South America | 1574.78 | −6.38 | −0.371 | −6.65 | −0.51 | |
Europe | 194.21 | 0.25 | 0.159 | 0.28 | 0.21 | |
Oceania | 44.29 | −0.33 | −0.304 | −0.07 | −0.27 | |
Africa | 633.57 | −0.04 | −0.112 | −0.13 | −0.11 | |
Asia | 316.13 | −0.40 | −0.151 | −0.36 | −0.25 | |
India | 420.07 | −2.30 | −0.704 | −2.40 | −0.46 |
Discharge Ave (Q) (m3·s−1) | Slope of Change (b) (m3·s−1·year−1) | Relative Change (b/Q) (%·year−1) | Qmed (m3·s−1·year−1) | Z Score (-) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean Disch. | Max. 1d Disch. | Mean Disch. | Max. 1d Disch. | Mean Disch. | Max. 1d Disch. | Mean Disch. | Max. 1d Disch. | Mean Disch. | Max. 1d Disch. | |
WFD | 116.50 | - | −0.28 | - | −0.041 | - | −0.29 | - | −0.06 | - |
ISI-MIP Ave. | 132.0 | 570.3 | −0.02 | 0.41 | 0.028 | 0.032 | −0.04 | 0.19 | 0.01 | 0.02 |
ISI-MIP Min | 128.3 | 531.6 | −0.21 | −0.46 | −0.015 | −0.015 | −0.21 | −0.52 | −0.01 | 0.00 |
ISI-MIP Max | 138.7 | 620.9 | 0.14 | 1.13 | 0.059 | 0.058 | 0.15 | 0.59 | 0.03 | 0.04 |
ISI-MIP Med. | 130.6 | 568.2 | 0.02 | 0.66 | 0.033 | 0.031 | −0.02 | 0.31 | 0.00 | 0.01 |
ISI-MIP St. Dev. | 4.0 | 33.1 | 0.15 | 0.64 | 0.027 | 0.029 | 0.14 | 0.43 | 0.02 | 0.02 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asadieh, B.; Krakauer, N.Y.; Fekete, B.M. Historical Trends in Mean and Extreme Runoff and Streamflow Based on Observations and Climate Models. Water 2016, 8, 189. https://doi.org/10.3390/w8050189
Asadieh B, Krakauer NY, Fekete BM. Historical Trends in Mean and Extreme Runoff and Streamflow Based on Observations and Climate Models. Water. 2016; 8(5):189. https://doi.org/10.3390/w8050189
Chicago/Turabian StyleAsadieh, Behzad, Nir Y. Krakauer, and Balázs M. Fekete. 2016. "Historical Trends in Mean and Extreme Runoff and Streamflow Based on Observations and Climate Models" Water 8, no. 5: 189. https://doi.org/10.3390/w8050189
APA StyleAsadieh, B., Krakauer, N. Y., & Fekete, B. M. (2016). Historical Trends in Mean and Extreme Runoff and Streamflow Based on Observations and Climate Models. Water, 8(5), 189. https://doi.org/10.3390/w8050189