Implications of Extracellular Polymeric Substance Matrices of Microbial Habitats Associated with Coastal Aquaculture Systems
Abstract
:1. Introduction
2. Biofilm and Aggregates Dominate Microbial Habitats in Coastal Zones
3. Extracellular Polymeric Substances (EPS) as Key Components of Biofilms and Microbial Aggregates
4. Microbial EPS Interacting with Coastal Aquaculture Systems: Practical Implications
4.1. Control of Biofouling
4.2. Enhancement of Colonization of Aquaculturally Valuable Larvae by EPS
4.3. EPS-Based Flocculation with Potential in Waste Treatment Processes of Coastal Aquaculture
4.4. Interactions of EPS-Contaminants in Coastal Aquaculture Systems
4.5. EPS Associated with Phytoplankton Blooms Influence Coastal Aquaculture
4.6. EPS-Based Products for Aquaculture Applications
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
EPS | Extracellular polymeric substances |
TEP | Transparent exopolymer particles |
OA | Ocean acidification |
DOM | Dissolved organic matter |
SML | Sea-surface microlayer |
WSPs | Waste-stabilization ponds |
NOM | Natural organic matter |
BFT | Biofloc technology |
HABs | Harmful algal blooms |
References
- Martínez, M.L.; Intralawan, A.; Vazquez, G.; Pérez-Maqueo, O.; Sutton, P.; Landgrave, R. The coasts of our world: Ecological, economic and social importance. Ecol. Econ. 2007, 63, 254–272. [Google Scholar] [CrossRef]
- Schwartz, M.L. (Ed.) Encyclopedia of Coastal Science; Springer-Verlag: Houten, The Netherlands, 2005.
- Ortega-Morales, B.O.; Chan-Bacab, M.J.; De La Rosa-García, S.; Camacho-Chab, J.C. Valuable processes and products from marine intertidal microbial communities. Curr. Opin. Biotechnol. 2010, 21, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Naeem, S.; Limburg, K.; Paruelo, J.; O’Neill, R.V.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Naylor, R.; Goldburg, R.; Primavera, J.; Kautsky, N.; Beveridge, M.; Clay, J.; Folke, C.; Lubchenco, J.; Mooney, H.; Troell, M. Effect of aquaculture on world fish supplies. Nature 2000, 405, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture: Opportunities and Challenges; FAO: Rome, Italy, 2014. [Google Scholar]
- Lucas, J.; Southgate, P. (Eds.) Aquaculture: Farming Aquatic Animals and Plants, 2nd ed.; Wiley-Blackwell: Oxford, UK, 2012.
- Halliday, E.; Gast, R. Bacteria in beach sands: An emerging challenge in protecting coastal water quality and bather health. Environ. Sci. Technol. 2011, 45, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Munn, C. Marine Microbiology. Ecology and Applications, 2nd ed.; Garland Science-Taylor & Francis Group: New York, NY, USA, 2012. [Google Scholar]
- Martínez-Córdoba, L.R.; Emerenciano, M.; Miranda-Baeza, A.; Martínez-Porchas, M. Microbial-based systems for aquaculture of fish and shrimp: An updated review. Rev. Aquac. 2014, 6, 1–18. [Google Scholar]
- Decho, A.W. Microbial biofilms in intertidal systems: An overview. Cont. Shelf Res. 2000, 20, 1257–1273. [Google Scholar] [CrossRef]
- Flemming, H.C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Franklin, M.; McDonald, I.; Bourne, D.; Owens, N.; Upstill-Goddard, D.; Colin, J. Bacterial diversity in the bacterioneuston (Sea surface microlayer): The bacterioneuston through the looking glass. Environ. Microbiol. 2005, 7, 723–736. [Google Scholar] [CrossRef] [PubMed]
- Rooney-Varga, J.N.; Giewat, M.; Savin, M.C.; Sood, S.; LeGresley, M.; Martin, J.L. Links between phytoplankton and bacterial community dynamics in a coastal marine environment. Microb. Ecol. 2005, 49, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Wahl, M.; Goecke, F.; Labes, A.; Dobretsov, S.; Weingberger, F. The second skin: Ecological role of epibiotic biofilms on marine organisms. Front. Microbiol. 2012, 3, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bar-Zeev, E.; Berman-Frank, I.; Girshevitz, O.; Berman, T. Revised paradigm of aquatic biofilm formation facilitated by microgel transparent exopolymer particles. Proc. Natl. Acad. Sci. USA 2012, 109, 9119–9124. [Google Scholar] [CrossRef] [PubMed]
- Passow, U. Production of transparent exopolymers particles (TEP) by phyto-and bacterioplankton. Mar. Ecol. Prog. 2002, 236, 1–12. [Google Scholar] [CrossRef]
- Passow, U. Transparent exopolymers particles (TEP) in aquatic environment. Prog. Oceanogr. 2002, 55, 287–333. [Google Scholar] [CrossRef]
- Bhaskar, P.V.; Grossart, H.P.; Bhosle, N.B.; Simon, M. Production of macroaggregates from dissolver exopolymeric substances (EPS) of bacterial and diatom origin. FEMS Microbiol. Ecol. 2005, 53, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Joyce, A.; Utting, S. The role of exopolymers in hatcheries: An overlooked factor in hatchery hygiene and feed quality. Aquaculture 2015, 446, 122–131. [Google Scholar] [CrossRef]
- Watnick, P.; Kolte, R. Biofilm, city of microbes. J. Bacteriol. 2000, 182, 2675–2679. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Geesey, G.G.; Cheng, K.J. How bacteria stick. Sci. Am. 1978, 238, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Wingender, J. Relevance of microbial extracellular polymeric substances (EPSs)-Part I: Structural and ecological aspects. Water Sci. Technol. 2001, 43, 1–8. [Google Scholar] [PubMed]
- Donlan, R.M. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis. 2002, 8, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.W.; Fragkopoulos, A.; Marquez, S.; Kim, H.; Angelini, T.E.; Fernández-Nieves, A. Biofilm formation in geometries with different surface curvature and oxygen availability. New J. Phys. 2015, 17. [Google Scholar] [CrossRef]
- De Beer, D.; Stoodley, P. Microbial biofilms. In The Prokaryotes, 1st ed.; Rosenberg, E., Ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 2013; pp. 343–372. [Google Scholar]
- Ivanov, V. Monitoring the bacterial neuston. Rapid Methods Anal. Biol. Mater. Environ. 2000, 30, 67–72. [Google Scholar]
- Pisman, T.I.; Galayda, Y.V.; Loginova, N.S. Population dynamics of an algal-bacterial cenosis in closed ecological system. Adv. Space Res. 2005, 35, 1579–1583. [Google Scholar] [CrossRef] [PubMed]
- Wurl, O.; Holmes, M. The gelatinous nature of the sea-surface microlayer. Mar. Chem. 2008, 110, 89–97. [Google Scholar] [CrossRef]
- Wahl, M. Marine epibiosis. I. Fouling and antifouling: Some basic aspects. Mar. Ecol. Prog. Ser. 1989, 58, 175–189. [Google Scholar] [CrossRef]
- Larned, S. A prospectus for periphyton: Recent and future ecological research. J. N. Am. Benthol. Soc. 2010, 29, 182–206. [Google Scholar] [CrossRef]
- Arnon, S.; Packman, A.I.; Peterson, C.G.; Gray, K. Effects of overlying velocity on periphyton structure and denitrification. J. Geophys. Res. Atmos. 2007, 112, 1–10. [Google Scholar] [CrossRef]
- Richard, M.; Maurice, J.T.; Anginot, A.; Paticat, F.; Verdegem, M.C.; Hussenot, J.M. Influence of periphyton substrates and rearing density on Liza aurata growth and production in marine nursery ponds. Aquaculture 2010, 310, 106–111. [Google Scholar] [CrossRef]
- Michael, T.S.; Shin, H.W.; Hanna, R.; Spafford, D.C. A review of epiphyte community development: Surface interactions and settlement on seagrass. J. Environ. Biol. 2008, 29, 629–638. [Google Scholar] [PubMed]
- Egan, S.; Harder, T.; Burke, C.; Steinberg, P.; Kjelleberg, S.; Thomas, T. The seaweed holobiont: Understanding seaweed-bacteria interactions. FEMS Microbiol. Rev. 2013, 37, 462–476. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.L.; Mayer-Pinto, M.; Johnston, E.L.; Dafforn, K. Differences in intertidal microbial assemblages on urban structures and natural rocky reef. Front. Microbiol. 2015, 6, 1276. [Google Scholar] [CrossRef] [PubMed]
- Graba, M.; Sauvage, S.; Majdi, N.; Mialet, B.; Moulin, F.; Urrea, G.; Buffan-Dubau, E.; Tackx, M.; Sabater, S.; Sanchez-Pérez, J. Modelling epilithic biofilms combining hydrodynamics invertebrate grazing and algal traits. Freshw. Biol. 2014, 59, 1213–1228. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Morales, B.O.; Santiago-García, J.L.; López-Cortés, A. Biomass and taxonomic richness of epilithic cyanobacteria in a tropical intertidal rocky hábitat. Bot. Mar. 2005, 48, 116–121. [Google Scholar] [CrossRef]
- De Schryver, P.; Crab, R.; Defoirdt, T.; Boon, N.; Verstraete, W. The basics of bio-flocs technology: The added value for aquaculture. Aquaculture 2008, 277, 125–137. [Google Scholar] [CrossRef]
- Drudge, C.; Warren, L. Diurnal floc generation from neuston biofilms in two contrasting freshwater lakes. Environ. Sci. Technol. 2014, 48, 10107–10115. [Google Scholar] [CrossRef] [PubMed]
- Kazemipour, F.; Méléder, V.; Launeau, P. Optical properties of microphytobenthic biofilms (MPBOM): Biomass retrieval implication. J. Quant. Spectrosc. Radiat. Transf. 2010, 112, 131–142. [Google Scholar] [CrossRef]
- Carpintero de Moraes, P.; Castillo, D.; Helena, V.; Gomes, P. Effect of plankton-derived organic matter on the microbial community of coastal marine sediments. J. Exp. Mar. Biol. Ecol. 2014, 461, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Camps, M.; Barani, A.; Gregori, G.; Bouchez, A.; Le Berre, B.; Bressy, C.; Blache, Y.; Briand, J. Antifouling coatings influence both abundance and community structure of colonizing biofilms: A case study in the Northwestern Mediterranean Sea. Appl. Environ. Microbiol. 2014, 80, 4821–4831. [Google Scholar] [CrossRef] [PubMed]
- Salta, M.; Wharton, J.; Blache, Y.; Stokes, K.; Stokes, K. Marine biofilms on artificial surfaces: Structure and dynamics. Environ. Microbiol. 2013, 15, 2879–2893. [Google Scholar] [CrossRef] [PubMed]
- Zardus, J.D.; Nedved, B.T.; Huang, Y.; Tran, C.; Hadfield, M. Microbial biofilms facilitate adhesion in biofouling invertebrates. Biol. Bull. 2008, 214, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Hadfiel, M. Why and how marine-invertebrate larvae metamorphose so fast. Cell Dev. Biol. 2000, 11, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, S.; Ojeda, P.; Inestrosa, N. Settlement of benthic marine invertebrates. Mar. Ecol. Prog. Ser. 1993, 97, 193–207. [Google Scholar] [CrossRef]
- Dobretsov, S.; Dahms, H.U.; Qian, P.Y. Inhibition of biofouling by marine microorganisms and their metabolites. Biofouling 2006, 22, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Bloecher, N.; Olsen, Y.; Guenther, J. Variability of biofouling communities on fish cage nets: A 1-year field study at a Norwegian salmon farm. Aquaculture 2013, 416–417, 302–309. [Google Scholar] [CrossRef]
- Laspidou, C.S.; Rittmann, B.E. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res. 2002, 36, 2711–2720. [Google Scholar] [CrossRef]
- Sheng, G.P.; Yu, H.Q.; Li, X.Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnol. Adv. 2010, 28, 882–894. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Neu, T.R.; Wozniak, D. The EPS Matrix: The “House of Biofilm Cells”. J. Bacteriol. 2007, 189, 7945–7947. [Google Scholar] [CrossRef] [PubMed]
- Li, W.W.; Yu, H.Q. Insight into the roles of microbial extracellular polymer substances in metal biosorption. Bioresour. Technol. 2014, 160, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Mari, X.; Burd, A. Seasonal size spectra of transparent exopolymeric particles (TEP) in a coastal sea and comparison with those predicted using coagulation theory. Mar. Ecol. Prog. Ser. 1998, 163, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Vu, B.; Chen, M.; Crawford, R.; Ivanova, E.P. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 2009, 14, 2535–2554. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Lewandowski, Z.; Caldwell, D.; Korber, D.; Lappin-Scott, H.M. Microbial biofilms. Ann. Rev. Microbiol. 1995, 49, 711–745. [Google Scholar] [CrossRef] [PubMed]
- Tsuneda, S.; Aikawa, H.; Hayashi, H.; Yuasa, A.; Hirata, A. Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiol. Lett. 2003, 223, 287–292. [Google Scholar] [CrossRef]
- O’Toole, G.A.; Kaplan, H.; Kolter, R. Biofilm formation as microbial development. Ann. Rev. Microbiol. 2000, 54, 49–79. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W. Overview of microbial biofilms. J. Ind. Microbiol. Biotechnol. 1995, 15, 137–140. [Google Scholar] [CrossRef]
- Hinojosa-Garro, D.; Mason, C.F.; Underwood, G. Influence of macrophyte spatial architecture on periphyton and macroinvertebrate community structure in shallow water bodies under contrasting land management. Fundam. Appl. Limnol. 2010, 177, 19–37. [Google Scholar] [CrossRef]
- Abarzua, S.; Jakubowski, S.; Eckert, S.; Fuchs, P. Biotechnological investigation for the prevention of marine biofouling II. Blue-green algae as potential producers of biogenic agents for the growth inhibition of microfouling organisms. Bot. Mar. 1999, 42, 459–465. [Google Scholar] [CrossRef]
- Guardiola, F.A.; Cuesta, A.; Meseguer, J.; Esteban, M.A. Risks of using antifouling biocides in aquaculture. Int. J. Mol. Sci. 2012, 13, 1541–1560. [Google Scholar] [CrossRef] [PubMed]
- Silina, A.V. Tumor-like formations on the shells of Japanese scallops Patinopecten yessoensis. Mar. Biol. 2006, 148, 833–840. [Google Scholar] [CrossRef]
- Simon, C.A.; Ludford, A.; Wynne, S. Spionid polychaetes infesting cultured abalone Haliotis midae in South Africa. Afr. J. Mar. Sci. 2006, 28, 167–171. [Google Scholar] [CrossRef]
- Sá, F.; Nalesso, R.; Paresque, K. Fouling organisms on Perna Perna mussels: Is it worth removing them? Braz. J. Oceanogr. 2007, 55, 155–161. [Google Scholar] [CrossRef]
- Lodeiros, C.; Pico, D.; Prieto, A.; Narvaez, N.; Guerra, A. Growth and survival of the Pearl oyster Pinctada imbricata (Roding 1758) in suspended and bottom culture in the Golfo de Cariaco, Venezuela. Aquac. Int. 2002, 10, 327–338. [Google Scholar] [CrossRef]
- Ross, K.A.; Thorpe, J.P.; Norton, T.A.; Brand, A.R. Fouling in scallop cultivation: Help or hindrance? J. Shellfish Res. 2002, 21, 539–547. [Google Scholar]
- Le Blanc, A.R.; Landry, T.; Miron, G. Fouling organisms of the blue mussel Mytilus edulis: Their effect on nutrient uptake and reléase. J. Shellfish. Res. 2003, 22, 633–638. [Google Scholar]
- Jensen, Ø.; Dempster, T.; Thorstad, E.; Uglem, I.; Fredheim, A. Escapes of fish from Norwegian sea-cage aquaculture: Causes, consequences and prevention. Aquac. Environ. Interact. 2010, 1, 71–83. [Google Scholar] [CrossRef]
- Guenther, J.; Carl, C.; Sunde, L.M. The effects of colour and copper on the settlement of the hydroid Ectopleura larynx on aquaculture nets in Norway. Aquaculture 2009, 292, 252–255. [Google Scholar] [CrossRef]
- Lane, A.; Willemsem, P.R. Collaborative effort looks into biofouling. Fish Farming International, September 2004; 34–35. [Google Scholar]
- Fitridge, I.; Dempster, T.; Guenther, J.; de Nys, R. The impact and control of biofouling in marine aquaculture: A review. Biofouling J. Bioadhesion Biofilm Res. 2012, 28, 649–669. [Google Scholar] [CrossRef] [PubMed]
- Willis, J.E.; Stewart-Clark, S.; Greenwood, S.J.; Davidson, J.; Quijon, P.A. A PCR-based assay to facilitate early detection of Diplosoma listerianum in Atlantic Canada. Aquat. Invasions 2011, 6, 7–16. [Google Scholar] [CrossRef]
- Forrest, B.M.; Blakemore, K.A. Evaluation of treatments to reduce the spread of a marine plant pest with aquaculture transfers. Aquaculture 2006, 257, 333–345. [Google Scholar] [CrossRef]
- Bond, P.R.; Brown, M.T.; Moate, R.M.; Gledhill, M.; Hill, S.J.; Nimmo, M. Arrested development in Fucus spiralis (Phaeophyceae) germlings exposed to copper. Eur. J. Phycol. 1999, 34, 513–521. [Google Scholar] [CrossRef]
- Swain, G.; Shinjo, N. Comparing biofouling control treatments for use on aquaculture nets. Int. J. Mol. Sci. 2014, 15, 22142–22154. [Google Scholar] [CrossRef] [PubMed]
- Hodson, S.; Burke, C.; Bisset, A. Biofouling of fish-cage netting: The efficacy of a silicone coating and the effect of netting colour. Aquaculture 2000, 184, 277–290. [Google Scholar] [CrossRef]
- Bell, G.M.; Chadwick, J. Regulatory controls on biocides in the United Kingdom and restrictions on the use of triorganotin-contaaining antifouling products. Int. Biodeterior. Biodegrad. 1994, 34, 375–386. [Google Scholar] [CrossRef]
- Bingaman, W.W.; Willingham, G.L. The changing regulatory environment: EPA registration of a new marine antifoulant active ingredient. Int. Biodeterior. Biodegrad. 1994, 34, 387–399. [Google Scholar] [CrossRef]
- Guezennec, J.; Herry, J.M.; Kouzayha, A.; Bachere, E.; Mittelman, M.W.; Bellon, M.N. Exopolysaccharides from unusual marine environments inhibit early stages of biofouling. Int. Biodeterior. Biodegrad. 2012, 66, 1–7. [Google Scholar] [CrossRef]
- Kavita, K.; Kumar-Singh, V.; Mishra, A.; Jha, B. Characterisation and anti-biofilm activity of extracellular polymeric substances from Oceanobacillus iheyensis. Carbohydr. Polym. 2014, 101, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Michaud, L.; Lo Giudice, A.; Troussellier, M.; Smedile, F.; Bruni, V.; Blancheton, J.P. Phylogenetic characterization of the heterotrophic bacterial communities inhabiting a marine recirculating aquaculture system. J. Appl. Microbiol. 2009, 107, 1935–1946. [Google Scholar] [CrossRef] [PubMed]
- Kumar-Sardar, R.; Kavita, K.; Jha, B. Lipopolysaccharide of Marinobacter litoralis inhibits swarming motility and biofilm formation in Pseudomonas aeruginosa PA01. Carbohydr. Polym. 2015, 123, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Dobretsov, S.; Xiong, H.; Xu, Y.; Levin, L.A.; Qian, P.Y. Novel antifoulants: Inhibition of larval attachment by proteases. Mar. Biotechnol. 2007, 9, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Hadfield, M.G. Biofilms and marine invertebrate larvae: What bacteria produce that larvae use to choose settlement sites. Annu. Rev. Mar. Sci. 2011, 3, 453–470. [Google Scholar] [CrossRef] [PubMed]
- Mos, B.; Cowden, K.; Nielsen, S.; Dworjanyn, S. Do cues matter? Highly inductive settlement cues don´t ensure high post-settlement survival in sea urchin aquaculture. PLoS ONE 2011, 6, e28054. [Google Scholar] [CrossRef] [PubMed]
- Huggett, M.; Williamson, J.; de Nys, R.; Kjelleberg, S.; Steinberg, P. Larval settlement of the common Australian sea urchin Heliocidaris erythrogramma in response to bacteria from the surface of coralline algae. Oecologia 2006, 149, 604–619. [Google Scholar] [CrossRef] [PubMed]
- Dahms, H.U.; Dobretsov, S.; Qian, P.Y. The effect of bacterial and diatom biofilms on the settlement of the bryozoan Bugula neritina. J. Exp. Mar. Biol. Ecol. 2004, 313, 191–209. [Google Scholar] [CrossRef]
- Maitrayee, A.; Alfaro, A.; Brooks, J.; Higgins, C. The role of bacterial biofilms and exudates on the settlement of mussel (Perna canaliculus) larvae. Aquaculture 2010, 306, 388–392. [Google Scholar]
- Leyton, Y.; Riquelme, C. Use of specific bacterial-microalgal biofilms for improving the larval settlement of Argopecten purpuratus (Lamarck, 1819) on three types of artificial spat-collecting materials. Aquaculture 2008, 276, 78–82. [Google Scholar] [CrossRef]
- Yu, X.; He, W.; Li, H.; Yan, Y.; Lin, C. Larval settlement and metamorphosis of the pearl oyster Pinctada fucata in response to biofilms. Aquaculture 2010, 306, 334–337. [Google Scholar] [CrossRef]
- Yang, J.L.; Li, X.; Liang, X.; Bao, W.Y.; Shen, H.D.; Li, J.L. Effects on natural biofilms on settlement of plantigrades of the mussel Mytilus coruscus. Aquaculture 2014, 424, 228–233. [Google Scholar] [CrossRef]
- Radjasa, O.; Vaske, Y.; Navarro, G.; Vervoort, H.; Tenney, K.; Linington, R.; Crews, P. Highlights of marine invertebrate-derived biosynthetic products: Their biomedical potential and possible production by microbial associations. Bioorg. Med. Chem. 2011, 19, 6658–6674. [Google Scholar] [CrossRef] [PubMed]
- Mendola, D. Aquaculture of three phyla of marine invertebrates to yield bioactive metabolites: Process developments and economics. Biomol. Eng. 2003, 20, 441–458. [Google Scholar] [CrossRef]
- Pal-Singh, R.; Shukla, M.K.; Mishra, A.; Reddy, C.R.; Jha, B. Bacterial extracellular polymeric substances and their effect on settlement of zoospore of Ulva fasciata. Colloids Surf. B Biointerfaces 2013, 103, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Saleh, N.; Shalaby, S.M.; Sakr, E.M.; Abd-Elmonem, A.I.; Michael, F. Effect of dietary inclusion of Ulva fasciata on red hybrid tilapia growth and carcass composition. J. Appl. Aquac. 2014, 26, 197–207. [Google Scholar] [CrossRef]
- Patil, J.; Anil, A.C. Influence of diatom exopolymers and biofilms on metamorphosis in the barnacle Balanus amphitrite. Mar. Ecol. Prog. Ser. 2005, 301, 231–245. [Google Scholar] [CrossRef]
- Chen, Z.F.; Zhang, H.; Wang, H.; Matsumura, K.; Wong, Y.H. Quantitative proteomics study of larval settlement in the barnacle Balanus amphitrite. PLoS ONE 2014, 9, e88744. [Google Scholar] [CrossRef] [PubMed]
- Whalan, S.; Webster, N.S. Sponge larval settlement cues: The role of microbial biofilms in a warming ocean. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef]
- Louden, D.; Whalan, S.; Evans-Illidge, E.; Wolff, C.; de Nys, R. An assessment of the aquaculture potential of the tropical sponges Rhopaloeides odorabile and Coscinoderma sp. Aquaculture 2007, 270, 57–67. [Google Scholar] [CrossRef]
- Webster, N.; Uthicke, S.; Botté, E.; Flores, F.; Negri, A. Ocean acidification reduces induction of coral settlement by crustose coralline algae. Glob. Chang. Biol. 2013, 19, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Caldeira, K.; Wickett, M.E. Oceanography: Anthropogenic carbon and ocean pH. Nature 2003, 425. [Google Scholar] [CrossRef] [PubMed]
- Ross, P.; Parker, L.; O’Connor, W.; Bailey, E. The impact of ocean acidification on reproduction, early development and settlement of marine organisms. Water 2011, 3, 1005–1030. [Google Scholar] [CrossRef]
- Meron, D.; Atias, E.; Lasur Kruh, L.; Elifantz, H.; Minz, D.; Fine, M.; Banin, E. The impact of reduced pH on the microbial community of the coral Acropora eurystoma. ISME J. 2011, 5, 5–60. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Mangwani, N. Ocean acidification and marine microorganisms: Responses and consequences. Oceanologia 2015, 57, 349–361. [Google Scholar] [CrossRef]
- Qian, P.Y.; Lau, S.; Dahms, H.U.; Dobretsov, S.; Harder, T. Marine biofilms as mediators of colonization by marine microorganisms: Implications for antifouling and aquaculture. Mar. Biotechnol. 2007, 9, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Totti, C.; Cucchiari, E.; De Stefano, M.; Pennesi, C.; Romagnoli, T.; Bavestrello, G. Seasonal variations of epilithic diatoms on different hard substrates, in the northen Adriatic Sea. J. Mar. Biol. Assoc. UK 2007, 87, 649–658. [Google Scholar] [CrossRef]
- Braissant, O.; Decho, A.; Dupraz, C.; Glunk, C.; Przekop, K.; Visscher, P. Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 2007, 5, 401–411. [Google Scholar] [CrossRef]
- Liu, J.; Weinbauer, M.; Maier, C.; Daii, M.; Gatusso, J. Effect of ocean acidification on microbial diversity, and on microbe-driven biogeochemistry and ecosystem functioning. Aquat. Microb. Ecol. 2010, 61, 291–305. [Google Scholar] [CrossRef]
- Witt, V.; Wild, C.; Anthony, K.; Díaz-Pulido, G.; Uthicke, S. Effects of ocean acidification on microbial community composition of, and oxygen fluxes through, biofilms from the Great Barrier Reef. Environ. Microbiol. 2011, 13, 2976–2989. [Google Scholar] [CrossRef] [PubMed]
- Primavera, J.H. Overcoming the impacts of aquaculture on the coastal zone. Ocean Coast. Manag. 2006, 49, 531–545. [Google Scholar] [CrossRef]
- McCausland, W.D.; Mente, E.; Pierce, G.J.; Theodossiou, I. A simulation model of sustainability of coastal communities: Aquaculture, fishing, environment and labour markets. Ecol. Model. 2006, 193, 271–294. [Google Scholar] [CrossRef]
- Rabalais, N. Eutrophication of estuarine and coastal ecosystems. In Environmental Microbiology, 2nd ed.; Mitchell, R., Gu, J.D., Eds.; Wiley-Blackwell: New York, NY, USA, 2010; pp. 115–135. [Google Scholar]
- Dafforn, K.A.; Glasby, T.M.; Airoldi, L.; Rivero, N.K.; Mayer-Pinto, M.; Johnston, E.L. Marine urbanization: An ecological framework for designing multifunctional artificial structures. Front. Ecol. Environ. 2015, 13, 82–90. [Google Scholar] [CrossRef]
- Mendiguchía, C.; Moreno, C.; Mánuel-Vez, M.; García-Vargas, M. Preliminary investigation on the enrichment of heavy metals in marine sediments originated from intensive aquaculture effluents. Aquaculture 2006, 254, 317–325. [Google Scholar] [CrossRef]
- Shahidul-Islam, M.D.; Tanaka, M. Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: A review and synthesis. Mar. Pollut. Bull. 2004, 48, 624–649. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.T.; Alazba, A.A.; Manzoor, U. A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv. Mater. Sci. Eng. 2014. [Google Scholar] [CrossRef]
- Lekang, O.I. Aquaculture Engineering, 2nd ed.; Wiley-Blackwell: Oxford, UK, 2013; Volume 6, pp. 50–64. [Google Scholar]
- Manahan, S.E. Environmental Chemistry, 9th ed.; CRC Press: Boca Raton, FL, USA, 2010; Volume 5, pp. 103–124. [Google Scholar]
- Koohestanian, A.; Hosseini, M.; Abbasian, Z. The separation method for removing of colloidal particles from raw water. Am. Eurasian J. Agric. Environ. Sci. 2008, 4, 266–273. [Google Scholar]
- Castine, S.; McKinnon, A.D.; Paul, N.; Trott, L.; de Nys, R. Wastewater treatment for land-based aquaculture: Improvements and value-adding alternatives in model systems from Australia. Aquac. Environ. Interact. 2013, 4, 285–300. [Google Scholar] [CrossRef]
- Turcios, A.E.; Papenbrock, J. Sustainable treatment of aquaculture effluents-what can we learn from the past for the future? Sustainability 2014, 6, 836–856. [Google Scholar] [CrossRef] [Green Version]
- Mirzoyan, N.; Tal, Y.; Gross, A. Anaerobic digestion of sludge from intensive recirculating aquaculture systems: Review. Aquaculture 2010, 306, 1–6. [Google Scholar] [CrossRef]
- Li, X.Y.; Yang, S.F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Res. 2007, 41, 1022–1030. [Google Scholar] [CrossRef] [PubMed]
- Neyens, E.; Baeyens, J.; Dewil, R.; de Heyder, B. Advanced sludge treatment affects extracellular polymeric substantes to improve activated sludge dewateing. J. Hazard. Mater. 2004, 106, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Robinson, J. A review on application of flocculants in wastewater treatment. Process Saf. Environ. Prot. 2014, 92, 489–508. [Google Scholar] [CrossRef]
- Sharma, B.R.; Dhuldhoya, N.C.; Merchant, U.C. Flocculants-an ecofriendly approach. J. Polym. Environ. 2006, 14, 195–202. [Google Scholar] [CrossRef]
- Bolto, B.; Gregory, J. Organic polyelectrolytes in water. Water Res. 2007, 42, 2301–2324. [Google Scholar] [CrossRef] [PubMed]
- Özacar, M.; Şengil, I.A. Evaluation of tannin biopolymer as a coagulant aid for coagulation of colloidal particles. Colloids Surf. A Physicochem. Eng. Asp. 2003, 229, 85–96. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, H. Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge. Crit. Rev. Environ. Sci. Technol. 2003, 33, 237–273. [Google Scholar] [CrossRef]
- Han, X.; Gu, J.D. Sorption and transformation of toxic metals by microorganisms. In Environmental Microbiology, 2nd ed.; Mitchell, R., Gu, J.D., Eds.; Wiley-Blackwell: New York, NY, USA, 2010; pp. 153–176. [Google Scholar]
- Bhaskar, P.V.; Bhosle, N. Bacterial extracellular polymeric substance (EPS): A carrier of heavy metals in the marine food-chain. Environ. Int. 2006, 32, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, K.; Krusor, C.; Mazzillo, F.; Conrad, P.; Largier, J.; Mazet, J.; Silver, M. Aquatic polymers can drive pathogen transmission in coastal ecosystems. Proc. R. Soc. B 2014, 281. [Google Scholar] [CrossRef] [PubMed]
- Ikem, A.; Egiebor, N.O. Assessment of trace elements in canned fishes (mackerel, tuna, salmon, sardines and herrings) marketed in Georgia and Alabama (United States of America). J. Food Compos. Anal. 2005, 18, 771–787. [Google Scholar] [CrossRef]
- Wang, Z.; Hessler, C.; Xue, Z.; Seo, Y. The role of extracellular polymeric substances on the sorption of natural organic matter. Water Res. 2012, 46, 1052–1060. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Lázaro, C.; Navarrete-Mier, F.; Marín, A. Biofilm responses to marine fish farm wastes. Environ. Pollut. 2011, 159, 825–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amara, R.; Filipuci, I.; Vincent, D.; Goulard, F.; Breton, E. Do transparent exopolymeric particles (TEP) derived from Phaeocytis globose bloom impact the physiological performances of European sea bass juveniles. Aquaculture 2013, 414–415, 149–154. [Google Scholar] [CrossRef]
- Treasurer, J.; Hannah, F.; Cox, D. Impact of a phytoplankton bloom on mortalities and feeding response of farmed Atlantic salmon, Salmo salar, in west Scotland. Aquaculture 2003, 218, 103–113. [Google Scholar] [CrossRef]
- Shumway, S. A review of the effects of algal blooms on shellfish and aquaculture. J. World Aquac. Soc. 1990, 21, 65–104. [Google Scholar] [CrossRef]
- Rodríguez, G.; Villasante, S.; García-Negro, M. Are red tides affecting economically the commercialization of the Galician (NW Spain) mussel farming? Mar. Policy 2011, 35, 252–257. [Google Scholar] [CrossRef]
- Lu, D.; Huang, W. Phaeocytis bloom in southeast China coastal water 1997. Harmful Algal News 1999, 19, 9. [Google Scholar]
- Sellner, K.; Doucette, G.; Kirkpatrick, G. Harmful algal blooms: Causes, impacts and detection. J. Ind. Microb. Biotechnol. 2003, 30, 383–406. [Google Scholar] [CrossRef] [PubMed]
- Kumar-Mandal, S.; Pal-Singh, R.; Patel, V. Isolation and characterization of exopolysaccharide secreted by a toxic dinoflagellate, Amphidinium carterae Hulburt 1957 and its probable role in harmful algal blooms (HABs). Microb. Ecol. 2011, 62, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, Y.; Shikata, T.; Nukata, A.; Ichiki, S.; Nagasoe, S.; Matsubara, T.; Shimasaki, Y.; Nakao, M.; Yamaguchi, K.; Oshima, Y.; et al. Extracellullar polysaccharide-protein complexes of a harmful alga mediate the allelopathic control it exerts within the phytoplankton community. ISME J. 2009, 3, 808–817. [Google Scholar] [CrossRef] [PubMed]
- Passow, U.; Alldredge, A.L. Do transparent exopolymers particles (TEP) inhibit grazing by the euphausiid Euphausia superba? J. Plankton Res. 1999, 21, 2203–2217. [Google Scholar] [CrossRef]
- Kumar, A.S.; Mody, K.; Bhavanath, J. Bacterial exopolysaccharides—A perception. J. Basic Microbiol. 2007, 47, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Freitas, F.; Alves, V.; Reis, M.A. Advances in bacterial exopolysaccharides: From production to biotechnological applications. Trends Biotechnol. 2011, 29, 388–398. [Google Scholar] [CrossRef] [PubMed]
- More, T.T.; Yadav, J.S.; Yan, S.; Tyagi, R.D.; Surampalli, R. Extracellular polymeric substances of bacteria and their potential environmental applications. J. Environ. Manag. 2014, 144, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Nácher-Vázquez, M.; Ballesteros, N.; Canales, A.; Saint-Jean, S.; Pérez-Prieto, S.; Prieto, A.; Aznar, R.; López, P. Dextrans produced by lactic acid bacteria exhibit antiviral and immunomodulatory activity against salmonid viruses. Carbohydr. Polym. 2015, 124, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Zhao, X.Q.; Guo, S.L.; Alam, A.; Bai, F.W. Bioflocculant production from Solibacillus silvestris W01 and its application in cost-effective harvest of marine microalga Nannochloropsis oceanica by flocculation. Bioresour. Technol. 2013, 135, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Farmaki, E.; Thomaidis, N.; Pasias, I.; Baulard, C.; Papaharisis, L.; Efstathiou, C. Environmental impact of intensive aquaculture: Investigation on the accumulation of metals and nutrients in marine sediments of Greece. Sci. Total Environ. 2014, 485, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Ferry, J.L.; Craig, P.; Hexel, C.; Sisco, P.; Frey, R.; Pennington, P.; Fulton, M.; Scott, I.G.; Decho, A.W.; Kashiwada, S.; et al. Transfer of gold nanoparticles from the water column to the estuarine food web. Nat. Nanotechnol. 2009, 4, 441–444. [Google Scholar] [CrossRef] [PubMed]
- Andalecio, M.N.; Napata, R.P.; Garibay, S.S. Aquaculture response and recovery from the effects of M/T Solar 1 oil spill. J. Aquac. Mar. Biol. 2014, 1. [Google Scholar] [CrossRef]
- Ortega-Morales, B.O.; Santiago-García, J.L.; Chan-Bacab, M.J.; Moppert, X.; Miranda-Tello, E.; Fardeau, M.L.; Carrero, J.C.; Bartolo-Pérez, P.; Valadéz-González, A.; Guezennec, J. Characterization of extracelular polymers synthesized by tropical intertidal biofilm bacteria. J. Appl. Microbiol. 2006, 102, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Chab, J.C.; Guézennec, J.; Chan-Bacab, M.J.; Ríos-Leal, E.; Sinquin, C.; Muñiz-Salazar, R.; De la Rosa-García, S.; Reyes-Estebanez, M.; Ortega-Morales, B.O. Emulsifying activity and stability of a non-toxic bioemulsifier syntheszed by Microbacterium sp. MC3B-10. Int. J. Mol. Sci. 2013, 14, 18959–18972. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, T.; Mully, B.; Black, K.; Green, D.H. Glycoprotein emulsifiers from two marine Halomonas species: Chemical and physical characterization. J. Appl. Microbiol. 2007, 103, 1716–1727. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, T.; Biller, D.V.; Shimield, T.; Green, D.H. Metal binding properties of the EPS produced by Halomonas sp. TG39 and its potential in enhancing trace element bioavailability to eukaryotic phytoplankton. Biometals 2012, 25, 1185–1194. [Google Scholar] [CrossRef] [PubMed]
- García, N.; López-Elías, J.; Miranda, A.; Martínez-Porchas, M.; Huerta, N.; García, A. Effect of a salinity on growth and chemical composition of the diatom Thalassiosira weissflogii at three culture phases. Lat. Am. J. Aquat. Res. 2012, 40, 435–440. [Google Scholar] [CrossRef]
- Hassler, C.; Alasonati, E.; Mancuso-Nichols, C.; Slaveykova, V. Exopolysaccharides produced by bacteria isolated from the pelagic Southern Ocean—Role in Fe binding, chemical reactivity, and bioavailability. Mar. Chem. 2011, 123, 88–98. [Google Scholar] [CrossRef]
- Ndikubwimana, T.; Chang, J.; Xiao, Z.; Shao, W.; Zeng, X.; Ng, I.-S.; Lu, Y. Flotation: A promising microalgae harvesting and dewatering technology for biofuels production. Biotechnol. J. 2016, 11, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Salim, S.; Bosma, R.; Vermuë, M.; Wijffels, R. Harvesting of microalgae by bio-flocculation. J. Appl. Phycol. 2011, 23, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Lei, W.; Chen, Y.; Shao, Z.; Chen, Z.; Li, Y.; Zhu, H.; Zhang, J.; Zheng, W.; Zheng, T. Effective harvesting of the microalgae Chlorella vulgaris via flocculation-flotation with bioflocculant. Bioresour. Technol. 2015, 198, 922–925. [Google Scholar] [CrossRef] [PubMed]
- Van Den Hende, S.; Vervaeren, H.; Desmet, S.; Boon, N. Bioflocculation of microalgae and bacteria combined with flue gas to improve sewage treatment. New Biotechnol. Recent Adv. Environ. Biotechnol. 2011, 29, 23–31. [Google Scholar] [CrossRef]
- Van Den Hende, S.; Beelen, V.; Bore, G.; Boon, N.; Vervaeren, H. Up-scaling aquaculure wastewater treatment by microalgal bacterial flocs: From lab reactors to an outdoor raceway pond. Bioresour. Technol. 2014, 159, 342–354. [Google Scholar] [CrossRef] [PubMed]
- Kasan, N.; Said, S.; Ghazali, N.; Che, N.; Ibrahim, Z.; Amin, N. Application of biofloc in aquaculture: An evaluation of flocculating activity of selected bacteria from biofloc. In Beneficial Microorganisms in Agriculture, Aquaculture and Other Areas; Liong, M.T., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 165–182. [Google Scholar]
- Rairakhwada, D.; Pal, A.K.; Bhathena, Z.P.; Sahu, N.P.; Jha, A.; Mukherjee, S.C. Dietary microbial levan enhances cellular non-specific immunity and survival of common carp (Cyprinus carpio) juveniles. Fish Shellfish Immunol. 2007, 22, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Simon-Colin, C.; Gueguen, Y.; Bachere, E.; Kouzayha, A.; Saulnier, D.; Gayet, N.; Guezennec, J. Use of natural antimicrobial peptides and bacterial biopolymers for cultured pearl production. Mar. Drugs 2015, 13, 3732–3744. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Das, P.; Singh, S.; Akhtar, M.; Meena, D.; Mandal, S. Microbial levan, an ideal prebiotic and immunonutrient in aquaculture. World Aquac. 2011, 42, 61. [Google Scholar] [CrossRef]
- Gupta, S.K.; Pal, A.; Sahu, N.; Saharan, N.; Mandal, S.; Prakash, C.; Akhtar, M.; Prusty, A. Dietary microbial levan ameliorates stress and augments immunity in Cyprinus carpio fry (Linnaeus 1758) exposed to sublethal toxicity of fipronil. Aquac. Res. 2014, 45, 893–906. [Google Scholar] [CrossRef]
- Gupta, S.K.; Pal, A.K.; Sahu, N.P.; Dalvi, R.; Kumar, V.; Mukherjee, S.C. Microbial levan in the diet of Labeo rohita Hamilton juveniles: Effect on non-specific immunity and histopathological changes after challenge with Aeromonas hydrophila. J. Fish Dis. 2008, 31, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.K.; Hong, J.H.; Park, S.C.; Park, B.K.; Nam, D.H.; Kim, S.D. Production and physicochemical characterization of β-glucan produced by Paenibacillus polymyxa JB115. Biotechnol. Bioprocess Eng. 2007, 12, 713–719. [Google Scholar] [CrossRef]
- Kiran, G.; Lipton, A.; Priyadharshini, S.; Anitha, K.; Cruz-Suárez, L.; Valan, M.; Choi, K.; Selvin, J. Antiadhesive activity of poly-hydroxy butyrate biopolymer from a marine Brevibacterium casei MS104 against shrimp pathogenic vibrios. Microb. Cell Fact. 2014, 13, 114–126. [Google Scholar] [CrossRef] [PubMed]
EPS | Microorganism | Application | Reference |
---|---|---|---|
Dextran | Lactobacillus sakei MN1 | Antiviral and immunomodulatory activity against salmonid viruses | [149] |
Levan | Bacillus megaterium 1 | Immunostimulant for Cyprinus carpio juveniles | [168] |
Levan | Bacillus megaterium 1 | Immunomodulatory in Cyprinus carpio fry (Linnaeus 1758) exposed to fipronil | [169] |
Levan | Aerobacter sp. | Immunostimulant for Labeo rohita Hamilton juveniles | [170] |
Glucan | Paenibacillus polymyxa JB115 | Feed additive immunomodulator | [171] |
EPS | Solibacillus silvestris W01 | Bioflocculant for harvesting of marine microalga Nannochloropsis oceanica | [150] |
Polyhydroxybutyrate | Brevibacterium casei MSI04 | Antiadhesive against shrimp pathogenic vibrios | [172] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camacho-Chab, J.C.; Lango-Reynoso, F.; Castañeda-Chávez, M.D.R.; Galaviz-Villa, I.; Hinojosa-Garro, D.; Ortega-Morales, B.O. Implications of Extracellular Polymeric Substance Matrices of Microbial Habitats Associated with Coastal Aquaculture Systems. Water 2016, 8, 369. https://doi.org/10.3390/w8090369
Camacho-Chab JC, Lango-Reynoso F, Castañeda-Chávez MDR, Galaviz-Villa I, Hinojosa-Garro D, Ortega-Morales BO. Implications of Extracellular Polymeric Substance Matrices of Microbial Habitats Associated with Coastal Aquaculture Systems. Water. 2016; 8(9):369. https://doi.org/10.3390/w8090369
Chicago/Turabian StyleCamacho-Chab, Juan Carlos, Fabiola Lango-Reynoso, María Del Refugio Castañeda-Chávez, Itzel Galaviz-Villa, Demian Hinojosa-Garro, and Benjamín Otto Ortega-Morales. 2016. "Implications of Extracellular Polymeric Substance Matrices of Microbial Habitats Associated with Coastal Aquaculture Systems" Water 8, no. 9: 369. https://doi.org/10.3390/w8090369
APA StyleCamacho-Chab, J. C., Lango-Reynoso, F., Castañeda-Chávez, M. D. R., Galaviz-Villa, I., Hinojosa-Garro, D., & Ortega-Morales, B. O. (2016). Implications of Extracellular Polymeric Substance Matrices of Microbial Habitats Associated with Coastal Aquaculture Systems. Water, 8(9), 369. https://doi.org/10.3390/w8090369