Effect of Temperature Rising on the Stygobitic Crustacean Species Diacyclops belgicus: Does Global Warming Affect Groundwater Populations?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Collection and Rearing
2.2. Measurement of Oxygen Consumption
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gamvroudis, C.; Dokou, Z.; Nikolaidis, N.P.; Karatzas, G.P. Impacts of surface and groundwater variability response to future climate change scenarios in a large Mediterranean watershed. Environ. Earth Sci. 2017, 76. [Google Scholar] [CrossRef]
- Dettinger, M.D.; Earman, S. Western Ground Water and Climate Change—Pivotal to Supply Sustainability or Vulnerable in Its Own Right? Ground Water 2007, 4. Available online: http://tenaya.ucsd.edu/~dettinge/agwse07.pdf (accessed on 23 October 2017).
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nat. Clim. Chang. 2007, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). The physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Kundzewicz, Z.W.; Mata, L.J.; Arnell, N.W.; Doll, P.; Kabat, P.; Jimenez, B.; Miller, K.A.; Oki, T.; Sen, Z.; Shiklomanov, I.A. Freshwater resources and their management. In Climate Change 2007: Impacts, Adaptation and Vulnerability; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 173–210. [Google Scholar]
- Green, T.R.; Taniguchi, M.; Kooi, H.; Gurdakd, J.J.; Allen, D.M.; Hiscock, K.M.; Treidel, H.; Aurelig, A. Beneath the surface of global change: Impacts of climate change on groundwater. J. Hydrol. 2011, 405, 532–560. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change (IPCC). Climate Change 2013: The physical science basis. In Contribution of Working Group I to the fifth Assessment Report of the Intergovernmental Panel On Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Menberg, K.; Blum, P.; Kurylyk, B.L.; Bayer, P. Observed groundwater temperature response to recent climate change. Hydrol. Earth Syst. Sci. 2014, 18, 4453–4466. [Google Scholar] [CrossRef]
- Figura, S.; Livingstone, D.M.; Hoehn, E.; Kipfer, R. Regime shift in groundwater temperature triggered by the Arctic Oscillation. Geophys. Res. Lett. 2011, 38, L23401. [Google Scholar] [CrossRef]
- Taylor, A.C.; Stefan, H.G. Shallow groundwater temperature response to climate change and urbanization. J. Hydrol. 2009, 375, 601–612. [Google Scholar] [CrossRef]
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1979; p. 604. [Google Scholar]
- Galassi, D.M.P.; Stoch, F.; Fiasca, B.; Di Lorenzo, T.; Gattone, E. Groundwater biodiversity patterns in the Lessinian Massif of northern Italy. Freshwat. Biol. 2009, 54, 830–847. [Google Scholar] [CrossRef]
- Di Lorenzo, T.; Brilli, M.; Del Tosto, D.; Galassi, D.M.P.; Petitta, M. Nitrate source and fate at the catchment scale of the Vibrata River and aquifer (central Italy): An analysis by integrating component approaches and nitrogen isotopes. Environ. Earth Sci. 2012. [Google Scholar] [CrossRef]
- Di Lorenzo, T.; Cifoni, M.; Lombardo, P.; Fiasca, B.; Galassi, D.M.P. Ammonium threshold value for groundwater quality in the EU may not protect groundwater fauna: Evidence from an alluvial aquifer in Italy. Hydrobiologia 2015, 743, 139–150. [Google Scholar] [CrossRef]
- Di Lorenzo, T.; Galassi, D.M.P. Agricultural impact on Mediterranean alluvial aquifers: Do groundwater communities respond? Fundam. Appl. Limnol. 2013, 182, 271–282. [Google Scholar] [CrossRef]
- Eckert, R.; Randall, D.; Burggren, W.; French, K. Animal Physiology: Mechanisms and Adaptations; Freeman and Company: New York, NY, USA, 1979; p. 120. ISBN 10:0716738635. [Google Scholar]
- Peck, L.S.; Webb, K.E.; Bailey, D.M. Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct. Ecol. 2004, 18, 625–630. [Google Scholar] [CrossRef]
- Huey, R.B.; Kingsolver, J.G. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 1989, 4, 131–135. [Google Scholar] [CrossRef]
- Issartel, J.; Renault, D.; Voituron, Y.; Bouchereau, A.; Vernon, P.; Hervant, F. Metabolic responses to cold in subterranean crustaceans. J. Exp. Biol. 2005, 208, 2923–2929. [Google Scholar] [CrossRef] [PubMed]
- Issartel, J.; Hervant, F.; Voituron, Y.; Renault, D.; Vernon, P. Behavioural, ventilatory and respiratory responses of epigean and hypogean crustaceans to different temperatures. Comp. Biochem. Physiol. 2005, 141, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Colson-Proch, C.; Renault, D.; Gravot, A.; Douady, C.J.; Hervant, F. Do current environmental conditions explain physiological and metabolic responses of subterranean crustaceans to cold? J. Exp. Biol. 2009, 212, 1859–1868. [Google Scholar] [CrossRef] [PubMed]
- Colson-Proch, C.; Morales, A.; Hervant, F.; Konecny, L.; Moulin, C.; Douady, C.J. First cellular approach of the effects of global warming on groundwater organisms: A study of the HSP70 gene expression. Cell Stress Chaperon. 2010, 15, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Mermillod-Blondin, F.; Lefour, C.; Lalouette, L.; Renault, D.; Malard, F.; Simon, L.; Douady, C.J. Thermal tolerance breadths among groundwater crustaceans living in a thermally constant environment. J. Exp. Biol. 2013, 216, 1683–1694. [Google Scholar] [CrossRef] [PubMed]
- Pesce, L. The genus Diacyclops Kiefer in Italy: A taxonomic, ecological and biogeographical up-to-date review (Crustacea Copepoda Cyclopidae). Arthropoda Sel. 1994, 3, 13–19. [Google Scholar]
- Cifoni, M.; Galassi, D.M.P.; Faraloni, C.; Di Lorenzo, T. Test procedures for measuring the (sub)chronic effects of chemicals on the freshwater cyclopoid Eucyclops serrulatus. Chemosphere 2017, 173, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, T.; Di Marzio, W.D.; Spigoli, D.; Baratti, M.; Messana, G.; Cannicci, S.; Galassi, D.M.P. Metabolic rates of a hypogean and an epigean species of copepod in an alluvial aquifer. Freshw. Biol. 2015, 60, 426–435. [Google Scholar] [CrossRef]
- Di Lorenzo, T.; Cannicci, S.; Spigoli, D.; Cifoni, M.; Baratti, M.; Galassi, D.M.P. Bioenergetic cost of living in polluted freshwater bodies: Respiration rates of the cyclopoid Eucyclops serrulatus under ammonia-N exposures. Fundam. Appl. Limnol. 2016, 188, 147–156. [Google Scholar] [CrossRef]
- Szela, T.L.; Marsh, A.G. Microtiter plate, optode respirometry, and inter-individual variance in metabolic rates among nauplii of Artemia sp. Mar. Ecol. Prog. Ser. 2005, 296, 281–289. [Google Scholar] [CrossRef]
- Yashchenko, V.; Fossen, E.I.; Kielland, Ø.N.; Einum, S. Negative relationships between population density and metabolic rates are not general. J. Anim. Ecol. 2016, 85, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Svetlichny, L.S.; Khanaychenko, A.; Hubareva, E.; Aganesova, L. Partitioning of respiratory energy and environmental tolerance in the copepods Calanipeda aquaedulcis and Arctodiaptomus salinus. Estuar. Coast. Shelf. Sci. 2012, 114, 199–207. [Google Scholar] [CrossRef]
- McKinnon, A.D.; Duggan, S. Summer copepod production in subtropical waters adjacent to Australia’s North West Cape. Mar. Biol. 2003, 143, 897–907. [Google Scholar] [CrossRef]
- Reiss, J.; Schmid-Araya, J.M. Feeding response of a benthic copepod to ciliate prey type, prey concentration and habitat complexity. Freshw. Biol. 2011, 56, 1519–1530. [Google Scholar] [CrossRef]
- Hochachka, P.; Somero, G. Biochemical Adaptation, Mechanism and Physiological Evolution; Oxford University Press: New York, NY, USA, 2002; p. 480. ISBN 9780195117035. [Google Scholar]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA + for PRIMER: Guide to Software and Statistical Methods; PRIMER-E Ltd.: Plymouth, UK, 2008. [Google Scholar]
- Galassi, D.M.P.; Lombardo, P.; Fiasca, B.; Di Cioccio, A.; Di Lorenzo, T.; Petitta, M.; Di Carlo, P. Earthquakes trigger the loss of groundwater biodiversity. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galassi, D.M.P.; Fiasca, B.; Di Lorenzo, T.; Montanari, A.; Porfirio, S.; Fattorini, S. Groundwater biodiversity in a chemoautotrophic cave ecosystem: How geochemistry regulates microcrustacean community structure. Aquat. Ecol. 2017, 51, 75–90. [Google Scholar] [CrossRef]
- Di Lorenzo, T.; Stoch, F.; Galassi, D.M.P. Incorporating the hyporheic zone within the river discontinuum: Longitudinal patterns of subsurface copepod assemblages in an Alpine stream. Limnologica 2013, 43, 288–296. [Google Scholar] [CrossRef]
- Stoch, F.; Barbara, F.; Di Lorenzo, T.; Porfirio, S.; Petitta, M.; Galassi, D.M.P. Exploring copepod distribution patterns at three nested spatial scales in a spring system: Habitat partitioning and potential for hydrological bioindication. J. Limnol. 2016, 75, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Iepure, S.; Rasines-Ladero, R.; Meffe, R.; Carreno, F.; Mostaza, D.; Sundberg, A.; Di Lorenzo, T.; Barroso, J.L. The role of groundwater crustaceans in disentangling aquifer type features—A case study of the Upper Tagus Basin, central Spain. Ecohydrology 2017, 10, e1876. [Google Scholar] [CrossRef]
- Hervant, F.; Mathieu, J.; Messana, G. Locomotory, ventilatory and metabolic responses of the subterranean Stenasellus virei (Crustacea, Isopoda) to severe hypoxia and subsequent recovery. C. R. Acad. Sci. 1997, 320, 139–148. [Google Scholar] [CrossRef]
- Hervant, F.; Renault, D. Long-term fasting and realimentation in hypogean and epigean isopods: A proposed adaptive strategy for groundwater organisms. J. Exp. Biol. 2002, 205, 2079–2087. [Google Scholar] [PubMed]
- Simčič, T.; Lukančič, S.; Brancelj, A. Comparative study of electron transport system activity and oxygen consumption of amphipods from caves and surface habitats. Freshw. Biol. 2005, 50, 494–501. [Google Scholar] [CrossRef]
- Simčič, T.; Pajk, F.; Brancelj, A. Electron transport system activity and oxygen consumption of two amphibious isopods, epigean Ligia italic Fabricius and hypogean Titanethes albus (Koch), in air and water. Mar. Freshw. Behav. Physiol. 2010, 43, 149–156. [Google Scholar] [CrossRef]
- Di Lorenzo, T.; Di Marzio, W.D.; Sáenz, M.E.; Baratti, M.; Dedonno, A.A.; Iannucci, A.; Cannicci, S.; Messana, G.; Galassi, D.M.P. Sensitivity of hypogean and epigean freshwater copepods to agricultural pollutants. Environ. Sci. Pollut. Res. 2014, 21, 4643–4655. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, T.; Di Marzio, W.D.; Cifoni, M.; Fiasca, B.; Baratti, M.; Sáenz, M.E.; Galassi, D.M.P. Temperature effect on the sensitivity of the copepod Eucyclops serrulatus (Crustacea, Copepoda, Cyclopoida) to agricultural pollutants in the hyporheic zone. Curr. Zool. 2015, 61, 629–640. [Google Scholar] [CrossRef]
- Angilletta, M.J.; Niewiarowski, P.H.; Navas, C.A. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 2002, 27, 249–268. [Google Scholar] [CrossRef]
- Holmstrup, M.; Costanzo, J.P.; Lee, R.E., Jr. Cryoprotective and osmotic responses to cold acclimation and freezing in freeze-tolerant and freeze-intolerant earthworms. J. Comp. Physiol. 1999, 169, 207–214. [Google Scholar] [CrossRef]
- Bale, J.S.; Block, W.; Worland, M.R. Thermal tolerance and acclimation response of larvae of the sub-Antarctic beetle Hydromedion sparsutum (Coleoptera: Perimylopidae). Polar Biol. 2000, 23, 77–84. [Google Scholar] [CrossRef]
- Renault, D.; Vernon, P.; Nedved, O.; Hervant, F. The importance of fluctuating thermal regimes for repairing chill injuries in the tropical beetle Alphitobius diaperinus (Coleoptera: Tenebrionidae) during exposure to low temperature. Physiol. Entomol. 2004, 29, 139–145. [Google Scholar] [CrossRef]
- Simčič, T.; Brancelj, A. Electron transport system (ETS) activity in five Daphnia species at different temperatures. Hydrobiologia 1997, 360, 117–125. [Google Scholar] [CrossRef]
- Simčič, T.; Pajk, F.; Vrezec, A.; Brancelj, A. Size scaling of whole-body metabolic activity in the noble crayfish (Astacus astacus) estimated from measurements on a single leg. Freshw. Biol. 2012, 57, 39–48. [Google Scholar] [CrossRef]
- Tanaka, K.; Udagawa, T. Cold adaptation of the terrestrial isopod, Porcellio scaber, to subnivean environments. J. Comp. Physiol. 1993, 163, 439–444. [Google Scholar]
- Mulkiewicz, E.; Zietara, M.S.; Stachowiak, K.; Skorkowski, E.F. Properties of lactate dehydrogenase from the isopod, Saduria entomon. Comp. Biochem. Physiol. 2000, 126, 337–346. [Google Scholar] [CrossRef]
- Paul, R.J.; Lamkemeyer, T.; Maurer, J.; Pinkhaus, O.; Pirow, R.; Seidl, M.; Zeis, B. Thermal acclimation in the microcrustacean Daphnia: A survey of behavioural, physiological and biochemical mechanisms. J. Therm. Biol. 2004, 29, 655–662. [Google Scholar] [CrossRef]
- Gutierrez, F.M.; Gagneten, A.M.; Paggi, J.C. Copper and chromium alter life cycle variables and the equiproportional development of the freshwater copepod Notodiaptomus conifer (SARS). Water Air Soil Pollut. 2010, 213, 275–286. [Google Scholar] [CrossRef]
- Pörtner, H.-O. Climate variations and the physiological basis of temperature dependent biogeography: Systemic to molecular hierarchy of thermal tolerance in animals. Comp. Biochem. Physiol. 2002, 132, 739–761. [Google Scholar] [CrossRef]
- Dowd, W.W.; King, F.A.; Denny, M.W. Thermal variation, thermal extremes and the physiological performance of individuals. J. Exp. Biol. 2015, 218, 1956–1967. [Google Scholar] [CrossRef] [PubMed]
- Eme, D.; Malard, F.; Colson-Proch, C.; Jean, P.; Calvignac, S.; Konecny-Dupr, L.; Hervant, F.; Douady, C.J. Integrating phylogeography, physiology and habitat modelling to explore species range determinants. J. Biogeogr. 2014, 41, 687–699. [Google Scholar] [CrossRef]
Microwell | T (°C) | L (mm) | W (mm) | DM (mg) | SRR (μg O2/ind. ×h) |
---|---|---|---|---|---|
W1 | 14 | 0.2521 | 0.1123 | 0.0006 | 0.0030 |
W2 | 14 | 0.2356 | 0.1151 | 0.0006 | 0.0030 |
W3 | 14 | 0.2630 | 0.0959 | 0.0004 | 0.0148 |
W4 | 14 | 0.2356 | 0.0877 | 0.0003 | 0.0131 |
W5 | 14 | 0.2795 | 0.0904 | 0.0004 | 0.0059 |
W6 | 14 | 0.3069 | 0.1206 | 0.0008 | 0.0089 |
W7 | 14 | 0.2274 | 0.1014 | 0.0004 | 0.0148 |
W8 | 14 | 0.2795 | 0.0959 | 0.0005 | 0.0059 |
W9 | 14 | 0.3206 | 0.1452 | 0.0012 | 0.0119 |
W10 | 14 | 0.2411 | 0.1123 | 0.0005 | 0.0163 |
W11 | 14 | 0.2795 | 0.0904 | 0.0004 | 0.0074 |
W12 | 14 | 0.2713 | 0.0795 | 0.0003 | 0.0074 |
W13 | 14 | 0.2384 | 0.0932 | 0.0004 | 0.0074 |
W14 | 14 | 0.2987 | 0.0849 | 0.0004 | 0.0074 |
W15 | 14 | 0.2356 | 0.1151 | 0.0006 | 0.0030 |
W16 | 14 | 0.2795 | 0.0904 | 0.0004 | 0.0059 |
W17 | 14 | 0.3206 | 0.1452 | 0.0012 | 0.0119 |
W18 | 14 | 0.2411 | 0.1123 | 0.0005 | 0.0163 |
W19 | 14 | 0.2713 | 0.0795 | 0.0003 | 0.0074 |
W20 | 14 | 0.2987 | 0.0849 | 0.0004 | 0.0074 |
W1 | 17 | 0.2411 | 0.1233 | 0.0006 | 0.0037 |
W2 | 17 | 0.2521 | 0.1206 | 0.0006 | 0.0120 |
W3 | 17 | 0.2630 | 0.1178 | 0.0006 | 0.0037 |
W4 | 17 | 0.2411 | 0.1096 | 0.0005 | 0.0037 |
W5 | 17 | 0.2630 | 0.1151 | 0.0006 | 0.0232 |
W6 | 17 | 0.2658 | 0.1233 | 0.0007 | 0.0037 |
W7 | 17 | 0.2302 | 0.1069 | 0.0005 | 0.0037 |
W8 | 17 | 0.2795 | 0.1233 | 0.0007 | 0.0042 |
W9 | 17 | 0.2822 | 0.0986 | 0.0005 | 0.0014 |
W10 | 17 | 0.2576 | 0.0986 | 0.0004 | 0.0014 |
W11 | 17 | 0.2576 | 0.1014 | 0.0005 | 0.0014 |
W12 | 17 | 0.2685 | 0.1014 | 0.0005 | 0.0065 |
W13 | 17 | 0.2822 | 0.0904 | 0.0004 | 0.0037 |
W14 | 17 | 0.2548 | 0.1069 | 0.0005 | 0.0148 |
W15 | 17 | 0.2493 | 0.0932 | 0.0004 | 0.0148 |
W16 | 17 | 0.3014 | 0.1233 | 0.0008 | 0.0148 |
W17 | 17 | 0.2767 | 0.1041 | 0.0005 | 0.0037 |
W18 | 17 | 0.2740 | 0.0986 | 0.0005 | 0.0093 |
W19 | 17 | 0.2439 | 0.0932 | 0.0004 | 0.0037 |
W20 | 17 | 0.2192 | 0.0740 | 0.0002 | 0.0015 |
Statistics | T (°C) | L (mm) | W (mm) | DM (mg) | SRR (μg O2/ind. ×h) |
Mean | 14 | 0.2688 | 0.1026 | 0.0005 | 0.0090 |
Mean | 17 | 0.2602 | 0.1062 | 0.0005 | 0.0067 |
SD | 14 | 0.0298 | 0.0193 | 0.0003 | 0.0044 |
SD | 17 | 0.0198 | 0.0135 | 0.0001 | 0.0060 |
Max | 14 | 0.3206 | 0.1452 | 0.0012 | 0.0163 |
Max | 17 | 0.3014 | 0.1233 | 0.0008 | 0.0232 |
Min | 14 | 0.2274 | 0.0795 | 0.0003 | 0.0030 |
Min | 17 | 0.2192 | 0.0740 | 0.0002 | 0.0014 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Lorenzo, T.; Galassi, D.M.P. Effect of Temperature Rising on the Stygobitic Crustacean Species Diacyclops belgicus: Does Global Warming Affect Groundwater Populations? Water 2017, 9, 951. https://doi.org/10.3390/w9120951
Di Lorenzo T, Galassi DMP. Effect of Temperature Rising on the Stygobitic Crustacean Species Diacyclops belgicus: Does Global Warming Affect Groundwater Populations? Water. 2017; 9(12):951. https://doi.org/10.3390/w9120951
Chicago/Turabian StyleDi Lorenzo, Tiziana, and Diana Maria Paola Galassi. 2017. "Effect of Temperature Rising on the Stygobitic Crustacean Species Diacyclops belgicus: Does Global Warming Affect Groundwater Populations?" Water 9, no. 12: 951. https://doi.org/10.3390/w9120951
APA StyleDi Lorenzo, T., & Galassi, D. M. P. (2017). Effect of Temperature Rising on the Stygobitic Crustacean Species Diacyclops belgicus: Does Global Warming Affect Groundwater Populations? Water, 9(12), 951. https://doi.org/10.3390/w9120951