Identifying Employment Subcenters: The Method of Exponentially Declining Cutoffs
Abstract
:1. Introduction
2. Identifying Employment Subcenters
The Method of Exponentially Declining Cutoffs
3. The Method of Exponentially Declining Cutoffs
D | employment density |
E | total employment |
α | cutoff gradient |
x | (Euclidean) distance from the metropolitan center |
z | zonal index |
set of candidate zones | |
set of candidate subcenters |
- Determine the cutoff level of employment density for each zone.
- Determine the set of candidate zones.A candidate zone is a zone whose actual employment density, , exceeds the cutoff employment density for that zone. Denoting by the set of candidate zones,In other words, a zone is a candidate zone if and only if its employment density exceeds its cutoff employment density based on distance from the metropolitan center.
- Group zones into candidate subcenters.A candidate subcenter is a set of candidate zones that form a contiguous set and are contiguous to no other candidate zones. By definition, candidate subcenters are mutually exclusive (i.e., a candidate zone cannot be in more than one candidate subcenter). Let s index the candidate subcenters and denote the set of candidate subcenters. By definition .
- Determine the cutoff level of total employment for each candidate subcenter.
- Determine the set of subcenters.Where S is the set of (proper) subcenters and is the total employment of candidate subcenter s,In other words, a candidate subcenter is a (proper) subcenter if and only if its total employment exceeds its total employment cutoff based on distance from the metropolitan center.
4. A Refinement of the Procedure
4.1. Calgary
4.2. Paris
5. Discussion
5.1. Technical Issues
5.2. Extensions and Applications
6. Concluding Comments
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A.
Statistic | N | Mean | Median | SD | Min | Max | Units |
---|---|---|---|---|---|---|---|
Panel A: Los Angeles Metropolitan Area (TAZ). | |||||||
Employment | 3999 | 1870 | 949.0 | 2828 | 0 | 45,295 | |
Density | 3999 | 15.31 | 6.281 | 56.39 | 0.000 | 2107 | employees/hectare |
Area | 3999 | 2202 | 167.6 | 23,455 | 10.54 | 717,928 | hectares |
Distance to CBD | 3999 | 57.88 | 44.70 | 47.68 | 0.000 | 381.4 | kilometers |
Panel B: Calgary Metropolitan Area (TAZ). | |||||||
Employment | 1869 | 355.4 | 88.00 | 923.3 | 0.000 | 16,236 | |
Density | 1869 | 19.47 | 1.235 | 118.1 | 0.000 | 2823 | employees/hectare |
Area | 1869 | 740.0 | 65.56 | 3000 | 0.230 | 73,478 | hectares |
Distance to CBD | 1869 | 16.00 | 12.30 | 14.22 | 0.000 | 100.4 | kilometers |
Panel C: Paris metropolitan area (Communes). | |||||||
Employment | 1299 | 4126 | 358.0 | 13,354 | 5.000 | 200,697 | |
Density | 1299 | 8.974 | 0.4420 | 38.97 | 0.009400 | 632.2 | employees/hectare |
Area | 1299 | 929.1 | 765.7 | 775.2 | 7.977 | 17,205 | hectares |
Distance to CBD | 1299 | 41.14 | 39.76 | 20.60 | 0.000 | 92.57 | kilometers |
ID | Density | Employment | Area | Distance to CBD | # Zones |
---|---|---|---|---|---|
Panel A (Figure 3): EDC(49.42, 20, 0.01077) | |||||
i | 489.4 | 47,463 | 96.98 | 0.2660 | 4 |
ii | 125.8 | 149,665 | 1189 | 4.964 | 19 |
iii | 123.3 | 378,392 | 3067 | 17.75 | 58 |
iv | 118.0 | 45,609 | 386.4 | 19.19 | 4 |
v | 103.1 | 60,041 | 582.6 | 29.88 | 6 |
vi | 98.59 | 99,894 | 1013 | 4.296 | 14 |
vii | 96.23 | 37,892 | 393.8 | 40.20 | 5 |
viii | 87.69 | 35,234 | 401.8 | 20.30 | 6 |
ix | 80.86 | 20,890 | 258.4 | 13.32 | 2 |
x | 78.80 | 20,425 | 261.6 | 52.61 | 1 |
Panel B (Figure 4a): DGC(49.42, 20, 1; 0.02173) | |||||
i | 489.4 | 47,463 | 96.98 | 0.2660 | 4 |
ii | 121.9 | 152,216 | 1249 | 5.007 | 20 |
iii | 107.5 | 47,423 | 441.1 | 19.23 | 5 |
iv | 98.59 | 99,894 | 1013 | 4.296 | 14 |
v | 98.37 | 439,633 | 4469 | 18.13 | 80 |
vi | 96.23 | 37,892 | 393.8 | 40.20 | 5 |
vii | 96.01 | 14,576 | 151.8 | 14.65 | 3 |
viii | 85.36 | 65,090 | 762.6 | 29.73 | 7 |
ix | 82.77 | 36,697 | 443.4 | 20.30 | 7 |
x | 78.08 | 20,425 | 261.6 | 52.61 | 1 |
Panel C (Figure 4b): DGC(49.42, 20, 0.5; 0.02173) | |||||
i | 489.4 | 47,463 | 96.98 | 0.2660 | 4 |
ii | 125.8 | 149,665 | 1189 | 4.964 | 19 |
iii | 123.3 | 378,392 | 3067 | 17.75 | 58 |
iv | 118.0 | 45,609 | 386.4 | 19.19 | 4 |
v | 103.1 | 60,041 | 582.6 | 29.88 | 6 |
vi | 98.59 | 99,894 | 1013 | 4.296 | 14 |
vii | 96.23 | 37,892 | 393.8 | 40.20 | 5 |
viii | 87.69 | 35,234 | 401.8 | 20.30 | 6 |
ix | 80.86 | 20,890 | 258.4 | 13.32 | 2 |
x | 78.08 | 20,425 | 261.6 | 52.61 | 1 |
ID | Density | Employment | Area | Distance to CBD | # Zones |
---|---|---|---|---|---|
Panel A (Figure 5a): DGC(49.42, 20, 0; 0.1139) | |||||
i | 274.2 | 164,787 | 601.0 | 0.6860 | 46 |
ii | 74.13 | 25,006 | 337.3 | 6.225 | 15 |
Panel B (Figure 5b): DGC(49.42, 20, 1; 0.1139) | |||||
i | 244.1 | 169,117 | 692.8 | 0.7170 | 50 |
ii | 192.2 | 12,161 | 63.28 | 5.064 | 2 |
iii | 60.15 | 43,042 | 715.5 | 6.691 | 30 |
iv | 58.26 | 13,155 | 225.8 | 5.776 | 4 |
v | 49.07 | 63,340 | 1290 | 6.173 | 48 |
vi | 46.83 | 4734 | 101.1 | 12.90 | 5 |
vii | 28.60 | 11,121 | 388.9 | 14.97 | 17 |
viii | 27.47 | 16,589 | 604.0 | 8.898 | 12 |
ix | 21.44 | 6606 | 308.2 | 10.67 | 1 |
x | 7.346 | 8999 | 1225 | 27.62 | 8 |
Panel C (Figure 5c): DGC(49.42, 20, 0.5; 0.1139) | |||||
i | 255.6 | 167,386 | 654.9 | 0.7080 | 48 |
ii | 65.24 | 29,712 | 455.5 | 6.258 | 20 |
iii | 62.67 | 41,328 | 659.4 | 6.713 | 28 |
iv | 43.81 | 13,751 | 313.9 | 6.647 | 8 |
v | 14.09 | 5530 | 392.6 | 27.84 | 2 |
vi | 11.49 | 3271 | 284.7 | 31.98 | 2 |
vii | 10.91 | 3856 | 353.5 | 46.06 | 1 |
viii | 0.116 | 6098 | 997.0 | 53.64 | 3 |
ix | 3.610 | 985 | 272.9 | 90.92 | 2 |
x | 1.739 | 343 | 197.2 | 76.10 | 1 |
ID | Density | Employment | Area | Distance to CBD | # Zones |
---|---|---|---|---|---|
Panel A (Figure 6a): DGC(49.42, 20, 0; 0.08041) | |||||
i | 126.5 | 2,502,365 | 19,775 | 4.665 | 46 |
Panel B (Figure 6b): DGC(49.42, 20, 1; 0.08041) | |||||
i | 48.05 | 3,649,419 | 75,957 | 7.871 | 137 |
ii | 44.22 | 12,731 | 287.9 | 7.771 | 1 |
iii | 19.09 | 24,442 | 1280 | 14.08 | 2 |
iv | 19.06 | 146,555 | 7690 | 19.74 | 6 |
v | 18.29 | 15,358 | 839.6 | 13.88 | 1 |
vi | 14.79 | 90,421 | 6115 | 26.79 | 7 |
vii | 14.26 | 20,729 | 1453 | 21.71 | 3 |
viii | 14.04 | 17,870 | 1273 | 23.84 | 1 |
ix | 14.02 | 45.021 | 3211 | 22.84 | 4 |
x | 9.684 | 2516 | 259.8 | 31.76 | 1 |
Panel C (Figure 6c): DGC(49.42, 20, 0.5; 0.08041) | |||||
i | 104.4 | 2,746,070 | 26,302 | 5.088 | 57 |
ii | 39.11 | 41,596 | 1063 | 14.01 | 2 |
iii | 35.48 | 31,950 | 900.5 | 14.20 | 1 |
iv | 30.45 | 44,650 | 1466 | 19.82 | 1 |
v | 29.50 | 12,525 | 424.6 | 16.26 | 1 |
vi | 25.69 | 14,479 | 563.7 | 23.81 | 1 |
vii | 24.33 | 34,849 | 1432 | 28.66 | 1 |
viii | 23.13 | 24,568 | 1062 | 24.95 | 1 |
ix | 18.15 | 15,445 | 851.0 | 27.54 | 1 |
x | 14.85 | 20,380 | 1372 | 42.59 | 2 |
Appendix B. Subcenter Identification Algorithm (R Script)
############################################################################################ ##################################################################################### ##### SUBCENTER IDENTIFICATION ALGORITHM companion to: #### Ban, Arnott, Macdonald ### "Identifying Employment Subcenters: The Method of Exponentially ## Declining Cutoffs" # # # R Code which reads in a shapefile of a metropolitan area with employment data for each # geography (i.e. Census Tract; TAZ). This data is used in identifying employment subcenters # based on the accompanying paper’s Density Gradient Cutoff (DGC) methodology. Special cases # of this function determine subcenters based on the Giuliano--Small (GS) or Exponentially # Declining Cutoff (EDC) methodologies. # # INPUTS: # [shapefile] -- SpatialPolygonsDataFrame # ".shp" file of metropolitan area with employment by zone # [output] -- character (default: working directory) # Output folder location where to save files # [employment] -- character # Name of the employment variable # [location] -- character (vector) # Vector of the names of ID, County, or Location variables that should be kept with the # shapefile (additional variables are then deleted) # [D] -- numeric # User specified cutoff employment density threshold at metropolitan center. # Should be specified in the same units as the algorithm (if units=="metric" then D # should be specified as employees/hectare; if units=="imperial" then D should be # specified as employees/acre) # [E] -- numeric # User specified cutoff total employment threshold at metropolitan center. # [type] -- ("DGC" (default) or "EDC") # If =="EDC" then employs the method of Exponentially Declining Cutoff (EDC) # If =="DGC" then employs the method of Density Gradient Cutoff (DGC) # [alpha] -- numeric (default: ln2/40) # Used only under the "EDC" method. User specified value of the cutoff gradient. # [theta] -- numeric in [0,1] # Weight used in absolute and relative density and employment cutoffs (theta==0 => all # weight on absolute density; equivalent to G.S. methodology) # [gamma] -- numeric (optional) # Used only under the "DGC" method and can be manually specified. # Default calculates employment density gradient estimated by: ln(D_z) = c - gamma∗x_z # Where "D" and "x" are zone level employment densities and distance to CBD. # [units] -- ("metric" (default) or "imperial") # If "metric" then analysis is done with distance in kilometers and area in hectares. # If "imperial then analysis done with distance in miles and area in acres. # [generate] -- TRUE | FALSE (default: TRUE) # Set to FALSE if the output files should not be saved - subcenter results will only be # available in the R environment. # # OUTPUTS: # subcenters[[1]] # ".shp" file with variable "subcenter" which identifies candidate subcenters (= 1) # and full subcenters (= 2) # subcenters[[2]] # ".csv" file labeling each subcenter starting from the highest subcenter density # with respective employment, area, density and zone information. # subcenters[[3]] # Value of the density cutoff gradient ([alpha] or [gamma]). x <- c("sp", "spdep", "rgdal", "geosphere", "rgeos", "maptools") uninstalled <- x[!(x %in% installed.packages()[,"Package"])] if(length(uninstalled)) install.packages(uninstalled) lapply(x, library, character.only = TRUE) rm(x, uninstalled) ############################################################################################ ############################################################################################ subcenters <- function(shapefile, output=getwd(), employment, location, type="DGC", D, E, alpha, theta, gamma=NULL, units="metric", generate=TRUE){ SESSION <- paste0(unlist(strsplit(as.character(Sys.Date()), "[-]"))[[3]], paste0(unlist(strsplit(as.character(Sys.Date()), "[-]"))[[2]], substr(unlist(strsplit(as.character(Sys.Date()), "[-]"))[[1]], 3, 4))) # RETREIVE INTERNAL POLYGON ID shapefile@data$IDpg <- as.factor(sapply(slot(shapefile, "polygons"), function(x) slot(x, "ID"))) # CHANGE THE NAME OF THE VARIABLE THE USER IDENTIFIES AS EMPLOYMENT names(shapefile@data)[names(shapefile@data)==employment] <- "employment" shapefile@data$area <- rep(0, length(shapefile@data[,1])) for(i in 1:length(shapefile@data[,1])){ shapefile@data$area[i] <- areaPolygon(lapply(slot(shapefile, "polygons"), function(x) lapply(slot(x, "Polygons"), function(y) slot(y, "coords")))[[i]][[1]]) } if(units=="metric"){ shapefile@data$area <- shapefile@data$area∗0.0001 } else if(units=="imperial"){ shapefile@data$area <- shapefile@data$area∗0.000247105 } else { shapefile@data$area <- NA } # CALCULATE EMPLOYMENT DENSITY USED TO DETERMINE THE CBD shapefile@data$density <- shapefile@data$employment/shapefile@data$area shapefile@data$density <- ifelse(is.na(shapefile@data$density), 0, shapefile@data$density) # CBD IS DEFINED AS THE CENSUS TRACT WITH THE MAXIMUM EMPLOYMENT DENSITY # DISTANCE IS CALCULATED BETWEEN CENSUS CENTROIDS AND CALCULATED IN MILES shapefile@data$distance <- 3963.0∗acos(sin(coordinates(shapefile[shapefile@data$density== max(shapefile@data$density),])[2]/57.2958)∗sin(coordinates(shapefile)[,2]/57.2958) + cos(coordinates(shapefile[shapefile@data$density== max(shapefile@data$density),])[2]/57.2958)∗cos(coordinates(shapefile)[,2]/57.2958)∗ cos(coordinates(shapefile)[,1]/57.2958 - coordinates(shapefile[shapefile@data$density==max(shapefile@data$density),])[1]/57.2958)) if(units=="metric"){ shapefile@data$distance <- shapefile@data$distance∗1.60934 } else if(units=="imperial"){ shapefile@data$distance <- shapefile@data$distance } else { shapefile@data$distance <- NA } # GAMMA IS EITHER LOG(2)/40 IN THE NEG. EXPONENTIAL MODEL OR THE EMPLOYMENT GRADIENT IN DGC # MODELS if(type=="EDC") { gradient <- alpha theta <- 1 } else if(type=="DGC" & !is.null(gamma)) { gradient <- gamma } else if(type=="DGC" & is.null(gamma)) { gradient <- abs(as.numeric(as.character(lm(log(ifelse(shapefile@data$density > 0, shapefile@data$density, 0.5)) ~ shapefile@data$distance)$coefficients[2]))) } # KEEP ONLY THE VARIABLES NEEDED FOR SC IDENTIFICATION AND IMPORTANT LOCATION AND # IDENTIFYING VARIABLES keeps <- c("IDpg", "employment","area", "distance", "density", location) shapefile <- shapefile[ , (colnames(shapefile@data) %in% keeps)] rm(keeps) shapefile@data$longitude <- coordinates(shapefile)[,1] shapefile@data$latitude <- coordinates(shapefile)[,2] # FOR EACH INDIVIDUAL CENSUS TRACT DETERMINE WHETHER THE DENSITY MEETS THE EXPONENTIALLY # DECREASING DENSITY THRESHOLD. IF YES THEN IT CAN BE CONSIDERED A CANDIDATE SUBCENTER (==1) shapefile@data$Dcutoff <- D∗exp(-theta∗gradient∗shapefile@data$distance) shapefile@data$subcenter <- ifelse(shapefile@data$density > shapefile@data$Dcutoff, 1, 0) # THE TOTAL EMPLOYMENT CUTOFF MUST BE APPLIED TO CONTIGUOUS TRACTS OF CANDIDATE SUBCENTERS # TO IDENTIFY CONTIGUOUS TRACTS, WE FIRST DEFINE THE ADJACENCY MATRIX WHICH DETERMINES WHAT # CENSUS TRACTS ARE ADJACENT TO EACH OTHER AND FURTHER DEFINES ALL CONTIGUOUS BLOCKS OF # CANDIDATE SUBCENTERS. candidates <- shapefile[shapefile@data$subcenter==1,] adjacency <- gTouches(candidates, returnDense=TRUE, byid=TRUE) adjacency[adjacency == FALSE] <- 0 adjacency[adjacency ==TRUE] <- 1 colnames(adjacency) <- rownames(adjacency) n = nrow(adjacency) amat <- matrix(0,nrow=n,ncol=n) amat[row(amat)==col(amat)] <- 1 colnames(amat) <- colnames(adjacency) rownames(amat) <- rownames(adjacency) bmat <- adjacency wmat1 <- adjacency newnum = sum(bmat) cnt = 1 while (newnum > 0) { amat <- amat+bmat wmat2 <- wmat1%∗%adjacency bmat <- ifelse(wmat2 > 0 & amat==0, 1, 0) wmat1 <- wmat2 newnum = sum(bmat) cnt = cnt+1 } Ez <- amat%∗%diag(candidates@data$employment) Xz <- amat%∗%diag(candidates@data$distance) Az <- amat%∗%diag(candidates@data$area) EzXz <- Ez∗Xz IDz <- amat∗as.numeric(colnames(amat)) IDz[IDz==0] <- 999999999999999999 IDz <- apply(cbind(apply(IDz, 1, min), apply(IDz, 2, min)), 1, min) # FOR EACH CANDIDATE SUBCENTER WE CALCULATE THE TOTAL EMPLOYMENT, DISTANCE WEIGHTED # EMPLOYMENT AND AREA FROM THE RESPECTIVE BROADER CONTIGUOUS GROUP OF SUBCENTERS. candidates@data$SCemployment <- rowSums(Ez, na.rm = FALSE, dims = 1) candidates@data$SCdistance <- rowSums(EzXz, na.rm = FALSE, dims = 1)/candidates@data$SCemployment candidates@data$SCarea <- rowSums(Az, na.rm = FALSE, dims = 1) candidates@data$SCdensity <- candidates@data$SCemployment/candidates@data$SCarea # EACH CANDIDATE SUBSCENTER IS COMPARED AGAINSED THE TOTAL EMPLOYMENT CUTOFF FOR THE BROADER # GROUP OF CONTIGUOUS TRACTS. candidates@data$Ecutoff <- E∗exp(-theta∗gradient∗candidates@data$SCdistance) candidates@data$subcenter <- ifelse(candidates@data$SCemployment > candidates@data$Ecutoff, candidates@data$subcenter + 1, candidates@data$subcenter) candidates@data$SCidz <- IDz SCs <- candidates@data[,c("subcenter", "SCemployment", "SCdistance", "SCarea", "SCdensity", "SCidz")] SCs <- merge(SCs, as.data.frame(table(SCs$SCidz)), by.x="SCidz", by.y="Var1", all.x=T) colnames(SCs)[colnames(SCs)=="Freq"] <- "Nzones" SCs <- SCs[SCs$subcenter==2,] SCs <- unique(SCs) SCs <- as.data.frame(SCs[order(SCs$SCdensity, decreasing=T),]) rownames(SCs) <- NULL SCs$subcenter <- NULL SCs <- as.data.frame(cbind(SCs, tolower(as.roman(1:length(SCs[,1]))))) colnames(SCs) <- c("SCidz", "Employment", "DistanceCBD", "Area", "Density", "Nzones", "SCID") candidates@data <- merge(candidates@data, SCs[,c("SCidz", "SCID")], by.x="SCidz", by="SCidz", all.x=T, sort=F) SCs$SCidz <- NULL keeps <- c("IDpg", "subcenter","SCemployment", "SCdistance", "SCarea", "SCdensity", "Ecutoff", "SCID") candidates <- candidates[ , (colnames(candidates@data) %in% keeps)] rm(keeps) shapefile@data$subcenter <- NULL shapefile <- sp::merge(shapefile, candidates, by.x="IDpg", by.y="IDpg", all.x=T, sort=F) rownames(shapefile) <- rownames(shapefile) shapefile@data$subcenter[is.na(shapefile@data$subcenter)] <- 0 SCs <- SCs[,c("SCID", "Density", "Employment", "Area", "DistanceCBD", "Nzones")] # IF GENERATE=TRUE THEN BOTH A SHAPEFILE AND CSV FILE ARE EXPORTED TO THE OUTPUT LOCATION if(generate){ suppressWarnings(writeOGR(shapefile, dsn = output, layer = paste0("subcenter", type, ifelse(type=="EDC", strsplit(as.character(as.character(round(alpha, 3))), "[.]")[[1]][2], gsub(".", "", as.character(theta), fixed=T)), "_", SESSION), driver="ESRI Shapefile", check_exists=TRUE, overwrite_layer=TRUE)) write.csv(SCs, paste0(output, "/subcenter", type, ifelse(type=="EDC", strsplit(as.character(as.character(round(alpha, 3))), "[.]")[[1]][2], gsub(".", "", as.character(theta), fixed=T)), "_", SESSION, ".csv")) } # THERE ARE THREE OUTPUTS WHICH ARE SAVED IN R: THE SHAPEFILE WITH CANDIDATE SUBCENTERS == 1 # AND FULL SUBCENTERS == 2; A TABLE WITH EACH FULL SUBCENTER IDENTIFIED BY ROMAN NUMERAL WITH # RESPECTIVE DATA ON TOTAL EMPLOYMENT, DENSITY AND AREA; THE VALUE OF THE GRADIENT ESTIMATED out <- list(shapefile, SCs, gradient) names(out) <- c("SHAPEFILE", "CSV", "Gradient") return(out) }
References
- Giuliano, G.; Small, K. Subcenters in the Los Angeles region. Reg. Sci. Urban Econ. 1991, 21, 163–182. [Google Scholar] [CrossRef]
- Alonso, W. Location and Land Use; Harvard University Press: Cambridge, MA, USA, 1964. [Google Scholar]
- Mills, E. Studies in the Structure of the Urban Economy; Johns Hopkins University Press: Baltimore, MD, USA, 1972. [Google Scholar]
- Muth, R. Cities and Housing: The Spatial Pattern of Urban Residential Land Use; University of Chicago Press: Chicago, IL, USA, 1969. [Google Scholar]
- Redfearn, C. The topography of metropolitan employment: Identifying centers of employment in a polycentric urban area. J. Urban Econ. 2007, 61, 519–541. [Google Scholar] [CrossRef]
- Kemper, P.; Schmenner, R. The density gradient for manufacturing industry. J. Urban Econ. 1974, 1, 410–427. [Google Scholar] [CrossRef]
- Clark, C. Urban Population Densities. J. R. Stat. Soc. Ser. A (Gen.) 1951, 114, 490–496. [Google Scholar] [CrossRef]
- Niedercorn, J. A negative exponential model of urban land use densities and its implications for metropolitan development. J. Reg. Sci. 1971, 11, 317–326. [Google Scholar] [CrossRef]
- Cladera, J.; Duarte, C.; Moix, M. Urban structure and polycentricism: Towards a redefinition of the sub-centre concept. Urban Stud. 2009, 46, 2841–2868. [Google Scholar] [CrossRef]
- Craig, S.; Ng, P. Using quantile smoothing splines to identify employment subcenters in a multicentric urban area. J. Urban Econ. 2001, 49, 100–120. [Google Scholar] [CrossRef]
- Gilli, F. The dynamics of employment deconcentration and industrial transformation in Greater Paris. Urban Stud. 2009, 46, 1385–1420. [Google Scholar] [CrossRef]
- Giuliano, G.; Redfearn, C.; Agarwal, A.; Li, C.; Zhuang, D. Employment concentrations in Los Angeles, 1980–2000. Environ. Plan. A 2007, 39, 2935–2957. [Google Scholar] [CrossRef]
- McMillen, D. Nonparametric employment subcenter identification. J. Urban Econ. 2001, 50, 448–473. [Google Scholar] [CrossRef]
- McMillen, D. Employment densities, spatial autocorrelation, and subcenters in large metropolitan areas. J. Reg. Sci. 2004, 44, 225–243. [Google Scholar] [CrossRef]
- Marmolejo, C.; Aguirre, C.; Roca, J. Revisiting employment density as a means to detect metropolitan subcentres: An analysis for Barcelona and Madrid. Archit. City Environ. 2013, 8, 33–64. [Google Scholar]
- Christaller, W. Central Places in Southern Germany; Prentice-Hall: Englewood Cliffs, NJ, USA, 1960. [Google Scholar]
- Lösch, A. The Economics of Location; Yale University Press: New Haven, CT, USA, 1960. [Google Scholar]
- Cronon, W. Nature’s Metropolis: Chicago and the Great West; Norton: New York, NY, USA, 1961. [Google Scholar]
- Fujita, M.; Krugman, P.; Mori, T. On the evolution of urban systems. Eur. Econ. Rev. 1999, 43, 209–251. [Google Scholar] [CrossRef]
- Mills, E.; Pan, J.P. A comparison of urban population density gradients in developed and developing countries. Urban Stud. 1980, 17, 313–321. [Google Scholar] [CrossRef]
- Glaeser, E.; Kahn, M. Decentralized employment and the transformation of the American City; NBER Working Paper; NBER: Cambridge, MA, USA, 2001; p. 8117. [Google Scholar]
- Garreau, J. Edge City: Life on the New Frontier; Anchor Books: New York, NY, USA, 1992. [Google Scholar]
- Veneri, P. The identification of sub-centers in two Italian metropolitan areas: A functional approach. Cities 2013, 31, 177–185. [Google Scholar] [CrossRef]
- Modarres, A. Polycentricity and transit service. Transp. Res. A 2003, 37, 841–864. [Google Scholar] [CrossRef]
- Anas, A.; Liu, Y. A regional economy, land use, and transportation model (RELU-TRAN): Formulation, algorithm design, and testing. J. Reg. Sci. 2007, 47, 415–455. [Google Scholar] [CrossRef]
- Li, W.; Goodchild, M.; Church, R.L. An efficient measure of compactness for 2d shapes and its application in regionalization problems. Int. J. Geogr. Inf. Sci. 2013, 27, 1227–1250. [Google Scholar] [CrossRef]
- Anas, A.; Arnott, R.; Small, K. Urban spatial structure. J. Econ. Lit. 1998, 36, 1426–1464. [Google Scholar]
- Virtual Co-laboratory for Policy Analysis in Greater Los Angeles. Available online: http://www.webcitation.org/6ocGO8T67 (accessed on 28 February 2017).
- City of Calgary Transportation Forecasting Toolbox. Available online: http://www.webcitation.org/6ocH218HM (accessed on 28 February 2017).
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ban, J.; Arnott, R.; Macdonald, J.L. Identifying Employment Subcenters: The Method of Exponentially Declining Cutoffs. Land 2017, 6, 17. https://doi.org/10.3390/land6010017
Ban J, Arnott R, Macdonald JL. Identifying Employment Subcenters: The Method of Exponentially Declining Cutoffs. Land. 2017; 6(1):17. https://doi.org/10.3390/land6010017
Chicago/Turabian StyleBan, Jifei, Richard Arnott, and Jacob L. Macdonald. 2017. "Identifying Employment Subcenters: The Method of Exponentially Declining Cutoffs" Land 6, no. 1: 17. https://doi.org/10.3390/land6010017
APA StyleBan, J., Arnott, R., & Macdonald, J. L. (2017). Identifying Employment Subcenters: The Method of Exponentially Declining Cutoffs. Land, 6(1), 17. https://doi.org/10.3390/land6010017