The Method of Linear Determining Equations to Evolution System and Application for Reaction-Diffusion System with Power Diffusivities
Abstract
:1. Introduction
2. Preliminaries
3. Linear Determining Equations for the DC (3) and CLBS (5) of Two-Component Second-Order Evolution System (4)
4. DCs (3) and CLBSs (5) of RD system (9)
5. Reductions of RD System (9)
- For ,
- For ,
- For ,
- For ,
- For ,
- For ,
- For ,
- For ,
- For ,
- For ,
- For ,
- For ,
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Yanenko, N.N. Theory of consistency and methods of integrating systems of nonlinear partial differential equations. In Proceedings of the 4th All-Union Mathematical Congress; Nauka: Leningrad, USSR, 1964; pp. 247–259. (In Russian)[Google Scholar]
- Sidorov, A.F.; Shapeev, V.P.; Yanenko, N.N. Method of Differential Constraints and Its Application to Gas Dynamics; Nauka: Novosibirsk, Russia, 1984. [Google Scholar]
- Olver, P.J.; Rosenau, P. The construction of special solutions to partial differential equations. Phys. Lett. A 1986, 144, 107–112. [Google Scholar] [CrossRef]
- Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer: New York, NY, USA, 1989. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations, 2nd ed.; Springer: New York, NY, USA, 1993. [Google Scholar]
- Bluman, G.W.; Cole, J.D. The general similarity solution of the heat equation. J. Math. Mech. 1969, 18, 1025–1042. [Google Scholar]
- Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Pucci, E.; Saccomandi, G. Evolution equations, invariant surface conditions and functional separation of variables. Phys. D 2000, 139, 28–47. [Google Scholar] [CrossRef]
- Clarkson, P.; Kruskal, M. New similarity reductions of the Boussinesq equation. J. Math. Phys. 1989, 30, 2201–2213. [Google Scholar] [CrossRef]
- Miller, W., Jr. Mechanism for variable separation in partial differential equations and their relationship to group theory. In Symmetries and Nonlinear Phenomena; Levi, D., Winternitz, P., Eds.; World Scientific: London, UK, 1989. [Google Scholar]
- Galaktionov, V.A. On new exact blow-up solutions for nonlinear heat conduction equations with source and applications. Differ. Integral Equ. 1990, 3, 863–874. [Google Scholar]
- Olver, P.J.; Vorob’ev, E.M. Nonclassical and conditional symmetries. In CRC Handbook of Lie Group Analysis; Ibragiminov, N.H., Ed.; CRC Press: Boca Raton, FL, USA, 1994; Volume 3. [Google Scholar]
- Olver, P.J.; Rosenau, P. Group invariant solutions of differential equations. SIAM J. Appl. Math. 1987, 47, 263–278. [Google Scholar] [CrossRef]
- Cherniha, R. A constructive method for construction of new exact solutions of nonlinear evolution equations. Rep. Math. Phys. 1996, 38, 301–312. [Google Scholar] [CrossRef]
- Cherniha, R. New non-Lie ansatze and exact solutions of nonlinear reaction-diffusion-convection equations. J. Phys. A Math. Gen. 1998, 31, 8179–8198. [Google Scholar] [CrossRef]
- Cherniha, R.; King, J.R. Non-linear reaction-diffusion systems with variable diffusivities: Lie symmetries, ansatze and exact solutions. J. Math. Anal. Appl. 2005, 308, 11–35. [Google Scholar] [CrossRef]
- Cherniha, R.; Myroniuk, L. New exact solutions of a nonlinear cross-diffusion system. J. Phys. A Math. Theor. 2008, 41, 395204. [Google Scholar] [CrossRef]
- Galaktionov, V.A.; Svirshchevskii, S.R. Exact Solutions and Invariant Subapaces of Nonlinear Partial Differential Equations in Mechanics and Physics; Chapman and Hall: London, UK, 2007. [Google Scholar]
- Olver, P.J. Direct reduction and differential constraints. Proc. Math. Phys. Sci. 1994, 444, 509–523. [Google Scholar] [CrossRef]
- Kunzinger, M.; Popovych, R.O. Generalized conditional symmetries of evolution equaitons. J. Math. Anal. Appl. 2011, 379, 444–460. [Google Scholar] [CrossRef]
- Wang, J.P.; Ji, L.N. Conditional Lie–Bäcklund symmetry, second-order differential constraint and direct reduction of diffusion systems. J. Math. Anal. Appl. 2015, 427, 1101–1118. [Google Scholar] [CrossRef]
- Zhdanov, R.Z. Conditional Lie–Bäcklund symmetry and reduction of evolution equation. J. Phys. A Math. Gen. 1995, 28, 3841–3850. [Google Scholar] [CrossRef]
- Fokas, A.S.; Liu, Q.M. Nonlinear interaction of traveling waves of nonintegrable equations. Phys. Rev. Lett. 1994, 72, 3293–3296. [Google Scholar] [CrossRef] [PubMed]
- Fokas, A.S.; Liu, Q.M. Generalized conditional symmetries and exact solutions of non-integrable equations. Theor. Math. Phys. 1994, 99, 571–582. [Google Scholar] [CrossRef]
- Liu, Q.M.; Fokas, A.S. Exact interaction of solitary waves for certain non-integrable equations. J. Math. Phys. 1996, 37, 324–345. [Google Scholar] [CrossRef]
- Liu, Q.M. Exact solutions to nonlinear equations with quadratic nonlinearity. J. Phys. A Math. Gen. 2000, 34, 5083–5088. [Google Scholar] [CrossRef]
- Sergyeyev, A. Constructing conditionally integrable evolution systems in (1 + 1)-dimensions: A generalization of invariant modules approach. J. Phys. A Math. Gen. 2002, 35, 7563–7660. [Google Scholar] [CrossRef]
- Ji, L.N.; Qu, C.Z.; Shen, S.F. Conditional Lie–Bäcklund symmetry of evolution system and application for reaction-diffusion system. Stud. Appl. Math. 2014, 133, 118–149. [Google Scholar] [CrossRef]
- Qu, C.Z. Exact solutions to nonlinear diffusion equations obtained by generalized conditional symmetry. IMA J. Appl. Math. 1999, 62, 283–302. [Google Scholar]
- Qu, C.Z. Group classification and generalized conditional symmetry reduction of the nonlinear diffusion-convection equation with a nonlinear source. Stud. Appl. Math. 1997, 99, 107–136. [Google Scholar] [CrossRef]
- Qu, C.Z.; Ji, L.N.; Wang, L.Z. Conditional Lie–Bäcklund symmetries and sign-invarints to quasi-linear diffusion equations. Stud. Appl. Math. 2007, 119, 355–391. [Google Scholar] [CrossRef]
- Ji, L.N.; Qu, C.Z. Conditional Lie–Bäcklund symmetries and solutions to (n + 1)-dimensional nonlinear diffusion equations. J. Math. Phys. 2007, 484, 103509. [Google Scholar] [CrossRef]
- Ji, L.N.; Qu, C.Z.; Ye, Y.J. Solutions and symmetry reductions of the n-dimensional nonlinear convection-diffusion equations. IMA J. Appl. Math. 2010, 75, 17–55. [Google Scholar] [CrossRef]
- Qu, C.Z.; Zhang, S.L.; Liu, R.C. Separation of vairables and exact solutions to quasilinear diffusion equations with nonlinear source. Phys. D 2000, 144, 97–123. [Google Scholar] [CrossRef]
- Ji, L.N.; Qu, C.Z. Conditional Lie–Bäcklund symmetries and invariant subspaces to nonlinear diffusion equations. IMA J. Appl. Math. 2011, 76, 610–632. [Google Scholar] [CrossRef]
- Ji, L.N.; Qu, C.Z. Conditional Lie–Bäcklund symmetries and invariant subspaces to nonlinear diffusion equaitons with convection and source. Stud. Appl. Math. 2013, 131, 266–301. [Google Scholar]
- Qu, C.Z.; Ji, L.N. Invariant subspaces and condtioanl Lie–Bäcklund symmetries of inhomogeneous nonlinear diffusion equations. Sci. China Math. 2013, 56, 2187–2203. [Google Scholar] [CrossRef]
- Qu, C.Z.; Zhu, C.R. Classification of coupled systems with two-component nonlinear diffusion equations by the invariant subspace method. J. Phys. A Math. Theor. 2009, 42, 475201. [Google Scholar] [CrossRef]
- Zhu, C.R.; Qu, C.Z. Maximal dimension of invariant subspaces admitted by nonlinear vector differential operators. J. Math. Phys. 2011, 52, 043507. [Google Scholar] [CrossRef]
- Kaptsov, O.V. Linear determining equations for differential constraints. Sb. Math. 1998, 189, 1839–1854. [Google Scholar] [CrossRef]
- Kaptsov, O.V.; Verevkin, I.V. Differential constraints and exact solutions of nonlinear diffusion equations. J. Phys. A Math. Gen. 2003, 36, 1401–1414. [Google Scholar] [CrossRef]
- Ji, L.N. Conditional Lie–Bäcklund symmetries and differential constraints for inhomogeneous nonlinear diffusion equations due to linear determining equations. J. Math. Anal. Appl. 2016, 440, 286–299. [Google Scholar] [CrossRef]
- Cherniha, R.; Pliukhin, O. New conditional symmetries and exact solutions of reaction-diffusion systems with power diffusivities. J. Phys. A Math. Theor. 2008, 41, 185208. [Google Scholar] [CrossRef]
- Cherniha, R. Conditional symmetries for systems of PDEs: New definitions and their applications for reaction-diffusion systems. J. Phys. A Math. Theor. 2010, 43, 405207. [Google Scholar] [CrossRef]
- Cherniha, R.; Davydovych, V. Conditional symmetries and exact solutions of nonlinear reaction-diffusion systems with non-constant diffusibities. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 3177–3188. [Google Scholar] [CrossRef]
- Cherniha, R.; Davydovych, V. Nonlinear reaction-diffusion systems with a non-constant diffusivities: Conditional symmetries in no-go case. Appl. Math. Comput. 2015, 268, 23–34. [Google Scholar] [CrossRef]
- Andreev, V.K.; Kaptsov, O.V.; Pukhnachev, V.V.; Rodionov, A.A. Applications of Group-Theoretic Methods in Hydrodynamics; Kluwer: Dordrecht, The Netherlands, 1998. [Google Scholar]
- King, J.R. Exact results for the nonlinear diffusion equations ut = (u−4/3ux)x and ut = (u−2/3ux)x. J. Phys. A Math. Gen. 1991, 24, 5721–5745. [Google Scholar] [CrossRef]
- King, J.R. Exact polynomial solutions to some nonlinear diffusion equations. Phys. D 1993, 64, 35–65. [Google Scholar] [CrossRef]
- King, J.R. Exact multidimensional solutions to some nonlinear diffusion equations. Q. J. Mech. Appl. Math. 1993, 46, 419–436. [Google Scholar] [CrossRef]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, L. The Method of Linear Determining Equations to Evolution System and Application for Reaction-Diffusion System with Power Diffusivities. Symmetry 2016, 8, 157. https://doi.org/10.3390/sym8120157
Ji L. The Method of Linear Determining Equations to Evolution System and Application for Reaction-Diffusion System with Power Diffusivities. Symmetry. 2016; 8(12):157. https://doi.org/10.3390/sym8120157
Chicago/Turabian StyleJi, Lina. 2016. "The Method of Linear Determining Equations to Evolution System and Application for Reaction-Diffusion System with Power Diffusivities" Symmetry 8, no. 12: 157. https://doi.org/10.3390/sym8120157
APA StyleJi, L. (2016). The Method of Linear Determining Equations to Evolution System and Application for Reaction-Diffusion System with Power Diffusivities. Symmetry, 8(12), 157. https://doi.org/10.3390/sym8120157