Mineralogical and Geochemical Characteristics of Lithium and Rare Earth Elements in High-Sulfur Coal from the Donggou Mine, Chongqing, Southwestern China
Abstract
:1. Introduction
2. Geological Setting
3. Sampling and Analytical Methods
4. Results and Discussions
4.1. Coal Chemistry
4.2. Mineralogical Compositions
4.3. Elemental Concentrations
4.4. Modes of Occurrence of Li and REY
4.5. Controlling Geological Origin
4.5.1. Indications of Al2O3/TiO2
4.5.2. Redistribution of Li and REY by Leaching
4.6. Prelimiary Economic Evaluation of REY and Li
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gil-Alana, L.A.; Monge, M. Lithium: Production and estimated consumption. Evidence of persistence. Resour. Policy 2019, 60, 198–202. [Google Scholar] [CrossRef]
- Helbig, C.; Bradshaw, A.M.; Wietschel, L.; Thorenz, A.; Tuma, A. Supply risks associated with lithium-ion battery materials. J. Clean Prod. 2018, 172, 274–286. [Google Scholar] [CrossRef]
- Balaram, V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 2019, 10, 1285–1303. [Google Scholar] [CrossRef]
- Per, K.; Erika, M. Examining the rare—Earth elements (REE) supply—Demand balance for future global wind power scenarios. Geol. Surv. Den. Greenl. 2018, 41, 87–90. [Google Scholar]
- U.S. Geological Survey. Mineral Commodity Summaries 2019; U.S. Geological Survey: Reston, VA, USA, 2019.
- Seredin, V.V.; Dai, S. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S.; Sun, Y.; Chekryzhov, I.Y. Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Appl. Geochem. 2013, 31, 1–11. [Google Scholar] [CrossRef]
- Dai, S.; Finkelman, R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2018, 186, 155–164. [Google Scholar] [CrossRef]
- Franus, W.; Wiatros-Motyka, M.M.; Wdowin, M. Coal fly ash as a resource for rare earth elements. Environ. Sci. Pollut. Res. Int. 2015, 22, 9464–9474. [Google Scholar] [CrossRef] [Green Version]
- Folgueras, M.B.; Alonso, M.; Fernández, F.J. Coal and sewage sludge ashes as sources of rare earth elements. Fuel 2017, 192, 128–139. [Google Scholar] [CrossRef]
- Qin, S.; Zhao, C.; Li, Y.; Zhang, Y. Review of coal as a promising source of lithium. Int. J. Oil Gas Coal Technol. 2015, 9, 215. [Google Scholar] [CrossRef]
- Dai, S.; Li, D.; Chou, C.-L.; Zhao, L.; Zhang, Y.; Ren, D.; Ma, Y.; Sun, Y. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. Int. J. Coal Geol. 2008, 74, 185–202. [Google Scholar] [CrossRef]
- Dai, S.; Jiang, Y.; Ward, C.R.; Gu, L.; Seredin, V.V.; Liu, H.; Zhou, D.; Sun, X.; Zou, J.; Ren, D. Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. Int. J. Coal Geol. 2012, 98, 10–40. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, X.; Yuan, W.; Liu, B.; Querol, X.; Font, O.; Moreno, N.; Li, J.; Gang, T.; Liang, G. Mineral composition and geochemical characteristics of the Li-Ga-rich coals in the Buertaohai-Tianjiashipan mining district, Jungar Coalfield, Inner Mongolia. Int. J. Coal Geol. 2016, 167, 157–175. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, C.; Zhang, J.; Yang, J.; Zhang, Y.; Yuan, Y.; Xu, J.; Duan, D. Concentrations of valuable elements of the coals from the Pingshuo Mining District, Ningwu Coalfield, northern China. Energ. Explor. Exploit. 2013, 31, 727–744. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, S.; Nechaev, V.P.; Nechaeva, E.V.; Graham, I.T.; French, D. Enrichment origin of critical elements (Li and rare earth elements) and a Mo-U-Se-Re assemblage in Pennsylvanian anthracite from the Jincheng Coalfield, southeastern Qinshui Basin, northern China. Ore Geol. Rev. 2019, 115, 103184. [Google Scholar] [CrossRef]
- Zhao, L.; Ward, C.R.; French, D.; Graham, I.T.; Dai, S.; Yang, C.; Xie, P.; Zhang, S. Origin of a kaolinite-NH4-illite-pyrophyllite-chlorite assemblage in a marine-influenced anthracite and associated strata from the Jincheng Coalfield, Qinshui Basin, Northern China. Int. J. Coal Geol. 2018, 185, 61–78. [Google Scholar] [CrossRef]
- Lin, R.; Soong, Y.; Granite, E.J. Evaluation of trace elements in U.S. coals using the USGS COALQUAL database version 3.0. Part II: Non-REY critical elements. Int. J. Coal Geol. 2018, 192, 39–50. [Google Scholar] [CrossRef]
- Ma, Z.; Shan, X.; Cheng, F. Distribution Characteristics of Valuable Elements, Al, Li, and Ga, and Rare Earth Elements in Feed Coal, Fly Ash, and Bottom Ash from a 300 MW Circulating Fluidized Bed Boiler. ACS Omega 2019, 4, 6854–6863. [Google Scholar] [CrossRef]
- Hu, P.; Hou, X.; Zhang, J.; Li, S.; Wu, H.; Damø, A.J.; Li, H.; Wu, Q.; Xi, X. Distribution and occurrence of lithium in high-alumina-coal fly ash. Int. J. Coal Geol. 2018, 189, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Seredin, V.V. Rare earth element-bearing coals from the Russian Far East deposits. Int. J. Coal Geol. 1996, 30, 101–129. [Google Scholar] [CrossRef]
- Blissett, R.S.; Smalley, N.; Rowson, N.A. An investigation into six coal fly ashes from the United Kingdom and Poland to evaluate rare earth element content. Fuel 2014, 119, 236–239. [Google Scholar] [CrossRef] [Green Version]
- Valentim, B.; Abagiu, A.T.; Anghelescu, L.; Flores, D.; French, D.; Gonçalves, P.; Guedes, A.; Popescu, L.G.; Predeanu, G.; Ribeiro, J.; et al. Assessment of bottom ash landfilled at Ceplea Valley (Romania) as a source of rare earth elements. Int. J. Coal Geol. 2019, 201, 109–126. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.-L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Dai, S.; Nechaev, V.P.; Chekryzhov, I.Y.; Zhao, L.; Vysotskiy, S.V.; Graham, I.; Ward, C.R.; Ignatiev, A.V.; Velivetskaya, T.A.; Zhao, L.; et al. A model for Nb–Zr–REE–Ga enrichment in Lopingian altered alkaline volcanic ashes: Key evidence of H-O isotopes. Lithos 2018, 302, 359–369. [Google Scholar] [CrossRef]
- Dai, S.; Graham, I.T.; Ward, C.R. A review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol. 2016, 159, 82–95. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, S.; Nechaev, V.P.; Nechaeva, E.V.; Graham, I.T.; French, D.; Sun, J. Enrichment of critical elements (Nb-Ta-Zr-Hf-REE) within coal and host rocks from the Datanhao mine, Daqingshan Coalfield, northern China. Ore Geol. Rev. 2019, 111, 102951. [Google Scholar] [CrossRef]
- Zou, J.; Liu, D.; Tian, H.; Li, T.; Liu, F.; Tan, L. Anomaly and geochemistry of rare earth elements and yttrium in the late Permian coal from the Moxinpo mine, Chongqing, southwestern China. Int. J. Coal Sci. Tech. 2014, 1, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Dai, S.; Zhou, Y.; Zhang, M.; Wang, X.; Wang, J.; Song, X.; Jiang, Y.; Luo, Y.; Song, Z.; Yang, Z.; et al. A new type of Nb (Ta)—Zr(Hf)—REE—Ga polymetallic deposit in the late Permian coal-bearing strata, eastern Yunnan, southwestern China: Possible economic significance and genetic implications. Int. J. Coal Geol. 2010, 83, 55–63. [Google Scholar] [CrossRef]
- Lin, R.; Soong, Y.; Granite, E.J. Evaluation of trace elements in U.S. coals using the USGS COALQUAL database version 3.0. Part I: Rare earth elements and yttrium (REY). Int. J. Coal Geol. 2018, 192, 1–13. [Google Scholar] [CrossRef]
- Hower, J.; Groppo, J.; Henke, K.; Hood, M.; Eble, C.; Honaker, R.; Zhang, W.; Qian, D. Notes on the Potential for the Concentration of Rare Earth Elements and Yttrium in Coal Combustion Fly Ash. Minerals 2015, 5, 356–366. [Google Scholar] [CrossRef] [Green Version]
- Hower, J.C.; Eble, C.; Dai, S.; Belkin, H.E. Distribution of rare earth elements in eastern Kentucky coals: Indicators of multiple modes of enrichment? Int. J. Coal Geol. 2016, 160, 73–81. [Google Scholar] [CrossRef]
- Hower, J.C.; Ruppert, L.F.; Eble, C. Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky. Int. J. Coal Geol. 1999, 39, 141–153. [Google Scholar] [CrossRef]
- The U.S. Department of Energy. DOE Selects Projects to Enhance Its Research into Recovery of rare Earth Elements from Coal and Coal Byproducts. Available online: https://energy.gov/fe/articles/doe-selects-projects-enhance-its-research-recovery-rare-earth-elements-coal-and-coal (accessed on 5 December 2015).
- Taggart, R.K.; Hower, J.C.; Hsu-Kim, H. Effects of roasting additives and leaching parameters on the extraction of rare earth elements from coal fly ash. Int. J. Coal Geol. 2018, 196, 106–114. [Google Scholar] [CrossRef]
- Wang, Z.; Dai, S.; Zou, J.; French, D.; Graham, I.T. Rare earth elements and yttrium in coal ash from the Luzhou power plant in Sichuan, Southwest China: Concentration, characterization and optimized extraction. Int. J. Coal Geol. 2019, 203, 1–14. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Zhou, Y.; Chou, C.-L.; Wang, X.; Zhao, L.; Zhu, X. Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan Coalfield, Yunnan, China: Evidence for a volcanic ash component and influence by submarine exhalation. Chem. Geol. 2008, 255, 182–194. [Google Scholar] [CrossRef]
- China National Standardizing Committee. Sampling of Coal in Seam; China National Standardizing Committee: Beijing, China, 2008. (In Chinese)
- ASTM International. Test Method for Moisture in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ASTM International. Test Method for Ash in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ASTM International. Test Method for Volatile Matter in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ASTM International. Standard Test for Total Sulfur in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2007. [Google Scholar]
- ASTM International. Standard Test Method for Forms of Sulfur in Coal; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Taylor, J.C. Computer Programs for Standardless Quantitative Analysis of Minerals Using the Full Powder Diffraction Profile. Powder Diffr. 1991, 6, 2–9. [Google Scholar] [CrossRef] [Green Version]
- China National Standardizing Committee. Classification for Quality of Coal. Part 1: Ash; China National Standardizing Committee: Beijing, China, 2010. (In Chinese)
- China National Standardizing Committee. Classification for Quality of Coal. Part 2: Sulfur Content; China National Standardizing Committee: Beijing, China, 2010. (In Chinese)
- ASTM International. Standard Classification of Coals by Rank; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Liu, J.; Song, H.; Dai, S.; Nechaev, V.P.; Graham, I.T.; French, D.; Nechaeva, E.V. Mineralization of REE-Y-Nb-Ta-Zr-Hf in Wuchiapingian coals from the Liupanshui Coalfield, Guizhou, southwestern China: Geochemical evidence for terrigenous input. Ore Geol. Rev. 2019, 115, 103190. [Google Scholar] [CrossRef]
- Dai, S.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Xing, Y.; Zhang, W.; Song, W.; Wang, P. Enrichment of U-Se-Mo-Re-V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Miner. Depos. 2015, 50, 159–186. [Google Scholar] [CrossRef]
- Ketris, M.P.; Yudovich, Y.E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Taylor, S.R.; Mclennan, S.H. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, UK, 1985. [Google Scholar]
- Dai, S.; Hower, J.C.; Finkelman, R.B.; Graham, I.T.; French, D.; Ward, C.R.; Eskenazy, G.; Wei, Q.; Zhao, L. Organic associations of non-mineral elements in coal: A review. Int. J. Coal Geol. 2020, 218, 103347. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Dai, S.; French, D. The importance of minerals in coal as the hosts of chemical elements: A review. Int. J. Coal Geol. 2019, 212, 103251. [Google Scholar] [CrossRef]
- Finkelman, R.B. Modes of Occurrence of Trace Elements in Coal; U.S. Geological Survey: Reston, VA, USA, 1981.
- Zhao, C. Distribution and Enrichment Mechanism of Multi-Metallic Elements Associated with Coal in Ordos Basin. Doctoral Dissertation; China University of Mining and Technology: Beijing, China, 2015. (In Chinese) [Google Scholar]
- Swaine, D.J. Trace Elements in Coal; Butterworths: London, UK, 1990. [Google Scholar]
- Finkelman, R.B.; Palmer, C.A.; Wang, P. Quantification of the modes of occurrence of 42 elements in coal. Int. J. Coal Geol. 2018, 185, 138–160. [Google Scholar] [CrossRef]
- Eskenazy, G.M. Rare Earth Elements in a Sampled Coal from the Pirin Deposit, Bulgaria. Int. J. Coal Geol. 1987, 7, 301–314. [Google Scholar] [CrossRef]
- Arbuzov, S.I.; Chekryzhov, I.Y.; Finkelman, R.B.; Sun, Y.Z.; Zhao, C.L.; Il’enok, S.S.; Blokhin, M.G.; Zarubina, N.V. Comments on the geochemistry of rare-earth elements (La, Ce, Sm, Eu, Tb, Yb, Lu) with examples from coals of north Asia (Siberia, Russian far East, North China, Mongolia, and Kazakhstan). Int. J. Coal Geol. 2019, 206, 106–120. [Google Scholar] [CrossRef]
- Ren, D.; Zhao, F.; Dai, S.; Zhang, J.; Luo, K. Geochemistry of Trace Elements in Coal; Science Press: Beijing, China, 2006. [Google Scholar]
- Seredin, V.V.; Finkelman, R.B. Metalliferous coals: A review of the main genetic and geochemical types. Int. J. Coal Geol. 2008, 76, 253–289. [Google Scholar] [CrossRef]
- Liu, J.; Nechaev, V.P.; Dai, S.; Song, H.; Nechaeva, E.V.; Jiang, Y.; Graham, I.T.; French, D.; Yang, P.; Hower, J.C. Evidence for multiple sources for inorganic components in the Tucheng coal deposit, western Guizhou, China and the lack of critical-elements. Int. J. Coal Geol. 2020, 223, 103468. [Google Scholar] [CrossRef]
- Hayashi, K.I.; Fujisawa, H.; Holland, H.D.; Ohmoto, H. Geochemistry of ~ 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta 1997, 21, 4115–4137. [Google Scholar] [CrossRef]
- Dai, S.; Luo, Y.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Zhao, L.; Liu, S.; Zhao, C.; Tian, H.; Zou, J. Revisiting the late Permian coal from the Huayingshan, Sichuan, southwestern China: Enrichment and occurrence modes of minerals and trace elements. Int. J. Coal Geol. 2014, 122, 110–128. [Google Scholar] [CrossRef]
- Dai, S.; Zhang, W.; Ward, C.R.; Seredin, V.V.; Hower, J.C.; Li, X.; Song, W.; Wang, X.; Kang, H.; Zheng, L.; et al. Mineralogical and geochemical anomalies of Late Permian coals from the Fusui Coalfield, Guangxi Province, southern China: Influences of terrigenous materials and hydrothermal fluids. Int. J. Coal Geol. 2013, 105, 60–84. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.-L.; Li, S.; Jiang, Y. Mineralogy and geochemistry of the No. 6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. Int. J. Coal Geol. 2006, 66, 253–270. [Google Scholar] [CrossRef]
- Dai, S.; Ward, C.R.; Graham, I.T.; French, D.; Hower, J.C.; Zhao, L.; Wang, X. Altered volcanic ashes in coal and coal-bearing sequences: A review of their nature and significance. Earth Sci. Rev. 2017, 175, 44–74. [Google Scholar] [CrossRef]
- Seredin, V.V. A new method for primary evaluation of the outlook for rare earth element ores. Geol. Ore Depos. 2010, 52, 428–433. [Google Scholar] [CrossRef]
- Dai, S.; Xie, P.; Jia, S.; Ward, C.R.; Hower, J.C.; Yan, X.; French, D. Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield, Chongqing, China: Genetic implications from geochemical and mineralogical data. Ore Geol. Rev. 2017, 80, 1–17. [Google Scholar] [CrossRef]
Sample | Proximate Analysis | Ultimate Analysis | Forms of Sulfur | Ro,ran | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mad | Ad | Vdaf | Cdaf | Hdaf | Ndaf | St,d | Sp,d | Ss,d | So,d | ||
PSDZ-2 | 0.69 | 20.15 | 12.49 | 88.22 | 3.7 | 1.49 | 4.47 | 2.04 | 0.28 | 2.15 | 2.19 |
PSDZ-3 | 0.85 | 18.46 | 13.24 | 86.74 | 3.46 | 1.53 | 6.37 | 2.91 | 0.48 | 2.99 | 2.12 |
PSDZ-4 | 0.86 | 15.41 | 11.81 | 89.64 | 3.74 | 1.57 | 2.25 | 0.74 | 0.11 | 1.39 | 2.23 |
PSDZ-5 | 0.76 | 18.20 | 12.15 | 88.97 | 3.77 | 1.63 | 3.04 | 1.16 | 0.18 | 1.71 | 2.22 |
PSDZ-6 | 0.86 | 20.41 | 12.63 | 88.13 | 3.71 | 1.53 | 4.42 | 1.9 | 0.33 | 2.18 | 2.23 |
PSDZ-7 | 0.85 | 23.62 | 14.32 | 86.55 | 3.67 | 1.5 | 5.79 | 2.65 | 0.56 | 2.59 | 2.19 |
PSDZ-8 | 1.38 | 43.74 | 26.51 | 72.96 | 3.57 | 1.08 | 12.56 | 6.75 | 1.25 | 4.56 | 2.21 |
PSDZ-9 | 1.42 | 36.15 | 25.01 | 73.18 | 3.47 | 1.11 | 14.28 | 7.21 | 2.12 | 4.95 | 2.16 |
Average | 0.96 | 24.52 | 16.02 | 84.30 | 3.64 | 1.43 | 6.65 | 3.17 | 0.66 | 2.82 | 2.19 |
Sample | LTA/HTA* | K | I | I/S | Or | Cha | Chl | Sid | Py | An | Q | Gy | Jar | Gi | Dia |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PSDZ-1-r | 66.2 * | 8.8 | 29.6 | 35.2 | 18 | 2.2 | 3.4 | 2.8 | |||||||
PSDZ-2 | 24 | 9.9 | 42.4 | 5.1 | 27.9 | 13.1 | 1.7 | ||||||||
PSDZ-3 | 23.3 | 7.2 | 44 | 43.7 | 3.2 | 1.8 | |||||||||
PSDZ-4 | 18.5 | 10 | 40.7 | 33.1 | 13.7 | 2.6 | |||||||||
PSDZ-5 | 21.7 | 11.1 | 49.4 | 15.1 | 19.7 | 4.6 | |||||||||
PSDZ-6 | 24.7 | 7.1 | 41.4 | 21.3 | 27.1 | 3.1 | |||||||||
PSDZ-7 | 29.6 | 4.5 | 37.7 | 20.8 | 0.9 | 33.9 | 2.2 | ||||||||
PSDZ-8 | 57.6 | 28.4 | 29.3 | 3.2 | 1.3 | 37.8 | |||||||||
PSDZ-9 | 50 | 15.5 | 11.3 | 8.2 | 65 | ||||||||||
PSDZ-10-f1 | 76 * | 47 | 37.9 | 0.8 | 9.3 | 4.1 | 0.9 | ||||||||
PSDZ-11-f2 | 73.9 * | 47.7 | 25.9 | 4.5 | 8.4 | 4.5 | 4.8 | 2.1 | 2.1 |
Sample | PSDZ-1-r | PSDZ-2 | PSDZ-3 | PSDZ-4 | PSDZ-5 | PSDZ-6 | PSDZ-7 | PSDZ-8 | PSDZ-9 | PSDZ-10-f | PSDZ-11-t | Average | China [24] | World [51] | CC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 29.11 | 9.21 | 6.95 | 7.22 | 8.09 | 8.44 | 8.95 | 13.96 | 8.4 | 34.05 | 35.77 | 8.9 | 8.47 | ||
TiO2 | 0.74 | 0.44 | 0.21 | 0.22 | 0.36 | 0.32 | 0.33 | 0.5 | 0.39 | 2.7 | 3.21 | 0.34 | 0.33 | ||
Al2O3 | 10.96 | 4.44 | 4.45 | 4.94 | 5.98 | 6.28 | 6.97 | 12.2 | 7.22 | 26.79 | 29.45 | 6.56 | 5.98 | ||
Fe2O3 | 20.88 | 4.12 | 5.49 | 1.78 | 2.62 | 4.08 | 5.88 | 14.72 | 18.19 | 6.95 | 12.68 | 7.11 | 4.85 | ||
MnO | 0.097 | 0.002 | 0.001 | 0.001 | 0.001 | 0.002 | 0.002 | 0.005 | 0.004 | 0.011 | 0.062 | 0.002 | 0.015 | ||
MgO | 0.62 | 0.22 | 0.23 | 0.19 | 0.16 | 0.25 | 0.29 | 0.31 | 0.21 | 1.01 | 0.63 | 0.23 | 0.22 | ||
CaO | 0.43 | 0.14 | 0.09 | 0.1 | 0.12 | 0.1 | 0.11 | 0.17 | 0.13 | 0.35 | 0.45 | 0.12 | 1.23 | ||
Na2O | bdl | 0.014 | 0.027 | 0.027 | 0.028 | 0.034 | 0.032 | bdl | bdl | 0.021 | bdl | 0.02 | 0.16 | ||
K2O | 2.36 | 1.18 | 0.7 | 0.62 | 0.47 | 0.53 | 0.59 | 0.78 | 0.6 | 2.08 | 1.96 | 0.68 | 0.19 | ||
P2O5 | 0.099 | 0.006 | 0.004 | 0.005 | 0.008 | 0.009 | 0.011 | 0.025 | 0.038 | 0.096 | 0.093 | 0.013 | 0.092 | ||
SiO2/Al2O3 | 2.66 | 2.07 | 1.56 | 1.46 | 1.35 | 1.34 | 1.28 | 1.14 | 1.16 | 1.27 | 1.21 | 1.42 | 1.42 | ||
Li | 21.2 | 6.5 | 14.4 | 59.1 | 57.8 | 100 | 156 | 244 | 134 | 898 | 531 | 96.5 | 31.8 | 12 | 8.04 |
Be | 2.78 | 4.7 | 4.22 | 3.75 | 3.14 | 5.18 | 6.52 | 5.08 | 5.25 | 11 | 6.01 | 4.73 | 2.11 | 1.6 | 2.96 |
B | 132 | 111 | 124 | 123 | 113 | nd | 129 | 114 | 88.6 | 231 | 221 | 115 | 53 | 52 | 2.21 |
F | 441 | 882 | 279 | 268 | 226 | 287 | 291 | 287 | 204 | 887 | 638 | 340 | 130 | 88 | 3.87 |
Sc | 5.62 | 7.39 | 4.39 | 3.57 | 2.9 | 4.63 | 5.37 | 5.36 | 16.6 | 25.9 | 17.8 | 6.28 | 4.38 | 3.9 | 1.61 |
V | 55.7 | 51 | 29.6 | 25.2 | 18.1 | 32.1 | 37.2 | 105 | 413 | 408 | 548 | 88.9 | 35.1 | 25 | 3.56 |
Cr | 116 | 31 | 23.3 | 21.1 | 16.2 | 37.2 | 36.7 | 47.7 | 397 | 727 | 975 | 76.3 | 15.4 | 16 | 4.77 |
Co | 17.3 | 2.48 | 3.48 | 2.98 | 3.23 | 4.36 | 5 | 12.1 | 18.9 | 15.2 | 31.1 | 6.57 | 7.08 | 5.1 | 1.29 |
Ni | 46.7 | 5.96 | 4.6 | 6.62 | 8.24 | 10.8 | 14.2 | 40.2 | 55.4 | 100 | 159 | 18.2 | 13.7 | 13 | 1.4 |
Cu | 26.1 | 14.5 | 23.4 | 12.9 | 13.5 | 18.4 | 20.8 | 31.2 | 64.7 | 73.3 | 124 | 24.9 | 17.5 | 16 | 1.56 |
Zn | 33.4 | 19 | 29.8 | 32.1 | 28.2 | 22.5 | 23.8 | 18.4 | 15.3 | 41.3 | 33.3 | 23.6 | 41.4 | 23 | 1.03 |
Ga | 12.4 | 9.48 | 8.02 | 8.24 | 10.6 | 12 | 16 | 21 | 15.3 | 57.3 | 50.4 | 12.6 | 6.55 | 5.8 | 2.17 |
Ge | 3.91 | 14.6 | 23 | 18.6 | 6.4 | 4.36 | 6.21 | 4.04 | 2.46 | 3.02 | 1.61 | 9.96 | 2.78 | 2.2 | 4.53 |
As | 62 | 3.91 | 9.2 | 2.69 | 2.87 | 3.56 | 5.9 | 7.39 | 10.6 | 12.7 | 7.3 | 5.76 | 3.79 | 8.3 | 0.69 |
Se | 45.7 | 7.44 | 15.8 | 11.1 | 9.31 | 11.9 | 14.7 | 14.6 | 15.7 | 11.9 | 0.7 | 12.6 | 2.47 | 1.3 | 9.67 |
Rb | 22.1 | 12.4 | 7.58 | 7.17 | 5.23 | 7.46 | 7.48 | 7.06 | 5.83 | 20.3 | 14.7 | 7.52 | 9.25 | 14 | 0.54 |
Sr | 61.2 | 40.3 | 28.6 | 27.7 | 29 | 25.1 | 32 | 48.2 | 45.5 | 89.7 | 364 | 34.6 | 140 | 110 | 0.31 |
Y | 16.5 | 15.3 | 18 | 19.8 | 42.5 | 40.8 | 50.5 | 113 | 191 | 158 | 84.2 | 61.4 | 18.2 | 8.4 | 7.31 |
Zr | 110 | 187 | 86.1 | 196 | 418 | 297 | 212 | 186 | 672 | 650 | 597 | 282 | 89.5 | 36 | 7.83 |
Nb | 28.1 | 14.7 | 6.88 | 18.9 | 52.7 | 25.9 | 22.9 | 23.8 | 17.8 | 61.9 | 84.1 | 22.9 | 9.44 | 3.7 | 6.2 |
Mo | 26.2 | 3.17 | 3.41 | 3.03 | 3.11 | 2.31 | 3.06 | 6.11 | 10.2 | 3.97 | 3.15 | 4.3 | 3.08 | 2.2 | 1.95 |
Ag | 0.41 | 0.48 | 0.29 | 0.68 | 1.52 | 1.02 | 0.59 | 0.59 | 2.65 | 1.99 | 2.27 | 0.98 | nd | 0.095 | 10.29 |
Cd | 0.63 | 0.33 | 0.48 | 0.72 | 1.14 | 1.28 | 3.35 | 1.77 | 1.9 | 1.78 | 2.02 | 1.37 | 0.25 | 0.22 | 6.23 |
In | 0.14 | 0.04 | 0.06 | 0.07 | 0.11 | 0.11 | 0.12 | 0.23 | 0.27 | 0.37 | 0.38 | 0.13 | 0.05 | 0.031 | 4.08 |
Sn | 3.38 | 2.59 | 1.41 | 1.46 | 2.34 | 1.93 | 2.19 | 4.78 | 17.6 | 6.37 | 8.95 | 4.29 | 2.11 | 1.1 | 3.9 |
Sb | 0.95 | bdl | bdl | bdl | bdl | bdl | 0.4 | 0.95 | 1.38 | 1.86 | 3.65 | 0.91 | 0.84 | 0.92 | 0.99 |
Cs | 11.8 | 1.44 | 0.6 | 0.05 | bdl | bdl | 1.68 | 1.2 | bdl | 4.12 | 9.77 | 0.99 | 1.13 | 1 | 0.99 |
Ba | 42.7 | 21.3 | 16.6 | 13.5 | 14.1 | 16.6 | 17.8 | 45.2 | 127 | 51.9 | 47 | 34 | 159 | 150 | 0.23 |
La | 113 | 13.4 | 12.9 | 17.1 | 32.6 | 33.7 | 40.2 | 37.9 | 20.6 | 40.4 | 71.6 | 26 | 22.5 | 11 | 2.37 |
Ce | 226 | 29.4 | 27.6 | 34.7 | 59.5 | 59.3 | 71.2 | 66.5 | 40.8 | 55.1 | 116 | 48.6 | 46.7 | 23 | 2.11 |
Pr | 29.4 | 3.9 | 3.76 | 4.54 | 7.85 | 8.01 | 10.2 | 11.5 | 8.37 | 13.4 | 16.2 | 7.27 | 6.42 | 3.5 | 2.08 |
Nd | 116 | 15.2 | 16.1 | 18.2 | 33.5 | 32.7 | 41.3 | 50 | 42.3 | 63.5 | 63.4 | 31.1 | 22.3 | 12 | 2.6 |
Sm | 18.8 | 2.93 | 3.43 | 3.59 | 6.88 | 6.4 | 7.93 | 11.2 | 13.3 | 16.8 | 11 | 6.96 | 4.07 | 2 | 3.48 |
Eu | 2.82 | 0.5 | 0.57 | 0.6 | 1.34 | 1.29 | 1.6 | 2.8 | 3.73 | 4.31 | 2.4 | 1.55 | 0.84 | 0.47 | 3.31 |
Gd | 15.5 | 2.95 | 3.42 | 3.64 | 7.35 | 6.86 | 8.73 | 14.9 | 20.6 | 20.5 | 12.8 | 8.56 | 4.65 | 2.7 | 3.17 |
Tb | 1.5 | 0.47 | 0.53 | 0.54 | 1.03 | 0.94 | 1.14 | 2.15 | 3.57 | 3.3 | 2.07 | 1.3 | 0.62 | 0.32 | 4.05 |
Dy | 5.6 | 2.99 | 3.26 | 3.44 | 6.33 | 5.64 | 6.61 | 12.9 | 23.7 | 19.7 | 13.6 | 8.12 | 3.74 | 2.1 | 3.87 |
Ho | 0.78 | 0.64 | 0.66 | 0.7 | 1.25 | 1.1 | 1.3 | 2.67 | 5.14 | 3.92 | 2.85 | 1.68 | 0.96 | 0.54 | 3.12 |
Er | 1.95 | 2.09 | 2.07 | 2.2 | 3.91 | 3.35 | 3.72 | 7.63 | 15.4 | 11.4 | 8.98 | 5.04 | 1.79 | 0.93 | 5.42 |
Tm | 0.23 | 0.33 | 0.3 | 0.3 | 0.51 | 0.44 | 0.47 | 0.95 | 1.95 | 1.46 | 1.25 | 0.66 | 0.64 | 0.31 | 2.11 |
Yb | 1.54 | 2.49 | 2.11 | 2.13 | 3.45 | 2.96 | 3.13 | 5.64 | 12.1 | 9.27 | 8.25 | 4.25 | 2.08 | 1 | 4.25 |
Lu | 0.2 | 0.37 | 0.31 | 0.3 | 0.49 | 0.43 | 0.44 | 0.83 | 1.88 | 1.37 | 1.21 | 0.63 | 0.38 | 0.2 | 3.15 |
Hf | 3.18 | 3.91 | 2.22 | 4.84 | 10.7 | 7.02 | 5.37 | 4.86 | 9.49 | 15.2 | 16 | 6.05 | 3.71 | 1.2 | 5.05 |
Ta | 2.45 | 0.78 | 0.53 | 1.71 | 2 | 2.15 | 1.58 | 2.08 | 0.8 | 4.58 | 6.07 | 1.45 | 0.62 | 0.28 | 5.19 |
W | 0.91 | 0.85 | bdl | 0.38 | 1.95 | bdl | 1 | 2.5 | 1.54 | 2.42 | 2.98 | 1.37 | 1.08 | 1.1 | 1.24 |
Hg | 1.04 | 0.19 | 0.23 | 0.2 | 0.21 | 0.35 | 0.46 | 1.05 | 1.33 | 1.48 | 0.08 | 0.5 | 0.16 | 0.1 | 5.05 |
Tl | 1.01 | 0.11 | 0.07 | 0.11 | 0.31 | 0.42 | 0.72 | 0.29 | 0.19 | 0.19 | 0.18 | 0.28 | 0.47 | 0.63 | 0.44 |
Pb | 64.1 | 19.6 | 42.3 | 11.1 | 10.7 | 15.5 | 32.9 | 81 | 89.4 | 37.6 | 18.8 | 37.8 | 15.1 | 7.8 | 4.85 |
Bi | 0.03 | 0.2 | 0.19 | 0.23 | 0.12 | 0.37 | 0.32 | 0.37 | 0.28 | 1.21 | 1.51 | 0.26 | 0.79 | 0.97 | 0.27 |
Th | 6.48 | 5.47 | 3.42 | 5.21 | 5.35 | 7.61 | 6.43 | 11.2 | 6.21 | 17.1 | 21.3 | 6.35 | 5.84 | 3.3 | 1.93 |
U | 3.16 | 5.51 | 1.6 | 1.47 | 2.98 | 9.49 | 16.3 | 22.5 | 30.2 | 22.1 | 15.5 | 11.3 | 2.43 | 2.4 | 4.69 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, J.; Cheng, L.; Guo, Y.; Wang, Z.; Tian, H.; Li, T. Mineralogical and Geochemical Characteristics of Lithium and Rare Earth Elements in High-Sulfur Coal from the Donggou Mine, Chongqing, Southwestern China. Minerals 2020, 10, 627. https://doi.org/10.3390/min10070627
Zou J, Cheng L, Guo Y, Wang Z, Tian H, Li T. Mineralogical and Geochemical Characteristics of Lithium and Rare Earth Elements in High-Sulfur Coal from the Donggou Mine, Chongqing, Southwestern China. Minerals. 2020; 10(7):627. https://doi.org/10.3390/min10070627
Chicago/Turabian StyleZou, Jianhua, Longfei Cheng, Yuanchen Guo, Zhengcheng Wang, Heming Tian, and Tian Li. 2020. "Mineralogical and Geochemical Characteristics of Lithium and Rare Earth Elements in High-Sulfur Coal from the Donggou Mine, Chongqing, Southwestern China" Minerals 10, no. 7: 627. https://doi.org/10.3390/min10070627