Gold in Irish Coal: Palaeo-Concentration from Metalliferous Groundwaters
Abstract
:1. Introduction
2. Gold in Global Coals
3. Study Site
4. Materials and Methods
4.1. Scanning Electron Microscopy (SEM–EDS)
4.2. X-Ray Diffraction (XRD)
4.3. Whole Rock and Sediment Geochemistry
4.4. Laser Ablation ICP–MS
5. Results
- (1)
- Gold was recorded in four distinct (sideritic and pyritic) samples by SEM–EDS and LA–ICP–MS analyses (Table 1).
- (2)
- Gold was recorded on both polished and unpolished surfaces.
- (3)
- The composition of the gold is distinct from that of gold sputter coating used in the laboratory.
- (4)
- No other gold-bearing material was prepared at the same time.
- (5)
- The context of trace element sulphur in the gold is variable, suggesting that it is a natural precipitate rather than a man-made artefact.
6. Discussion
6.1. Conditions of Mineralisation
6.2. Gold (and Platinum) Source
6.3. Wider Exploration Implications
7. Conclusions
- The gold occurs adjacent to a region where the Caledonian basement bedrock is mineralised by gold, thus a demonstrable source is available.
- The gold does not contain detectable silver, so could not represent detrital gold from the bedrock gold mineralisation and instead implies precipitation from groundwaters.
- The consistent enrichment in platinum in the gold suggests precipitation from groundwaters, whose present-day equivalents are also enriched in both gold and platinum.
- The enrichment of selenium in the coal is corroborating evidence for the flow of groundwaters through the coal.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Coker, W.B.; Shilts, W.W. Geochemical exploration for gold in glaciated terrain. In Gold Metallogeny and Exploration; Foster, R.P., Ed.; Springer: Dordrecht, The Netherlands, 1991; pp. 336–359. [Google Scholar]
- Parnell, J. Variscan cycling of gold into a global coal reservoir. Ore Geol. Rev. 2019, 114, 103158. [Google Scholar] [CrossRef]
- Jenney, W.P. Field observations in the Hay Creek coal field. US Geol. Surv. 19th Ann. Rep. 1903, 2, 568–593. [Google Scholar]
- Seredin, V.; Finkelman, R.B. Metalliferous coals: A review of the main genetic and geochemical types. Int. J. Coal Geol. 2008, 76, 253–289. [Google Scholar] [CrossRef]
- Sorokin, A.P.; Kuz’minykh, V.M.; Rozhdestvina, V.I. Gold in brown coals: Localization conditions, modes of occurrence, and methods of extracting. Dokl. Earth Sci. 2009, 424, 109–113. [Google Scholar] [CrossRef]
- Wang, W.F.; Qin, Y.; Sang, S.X.; Wang, J.Y.; Wang, R. Advances in geochemical research on gold in coal. J. China Coal Soc. 2010, 35, 236–240. [Google Scholar]
- Dai, S.; Wang, X.; Seredin, V.V.; Hower, J.C.; Ward, C.R.; O’Keefe, J.M.K.; Huang, W.; Li, T.; Li, X.; Liu, H.; et al. Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. Int. J. Coal Geol. 2012, 90–91, 72–99. [Google Scholar] [CrossRef]
- Chelgani, S.C.; Hower, J.C. Relationships between noble metals as potential coal combustion products and conventional coal properties. Fuel 2018, 226, 345–349. [Google Scholar] [CrossRef]
- Chyi, L.L. The distribution of gold and platinum in bituminous coal. Econ. Geol. 1982, 77, 1592–1597. [Google Scholar] [CrossRef]
- Romer, R.L.; Kroner, U. Paleozoic gold in the Appalachians and Variscides. Ore Geol. Rev. 2018, 92, 475–505. [Google Scholar] [CrossRef]
- Zodrow, E.L. Geochemical trends in whole-seam coal channel samples from the Sydney Coalfield (Upper Carboniferous), Nova Scotia, Canada. Marit. Sed. Atlantic Geol. 1987, 23, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Gayer, R.A.; Rickard, D. Gold in South Wales coal. Nature 1993, 364, 395. [Google Scholar] [CrossRef]
- Gayer, R.A.; Rickard, D. Colloform gold in coal from southern Wales. Geology 1994, 22, 35–38. [Google Scholar] [CrossRef]
- Bouchot, V.; Ledru, P.; Lerouge, C.; Lescuyer, J.-L.; Milesi, J.-P. Late Variscan mineralizing systems related to orogenic processes: The French Massif Central. Ore Geol. Rev. 2005, 27, 169–197. [Google Scholar] [CrossRef]
- Bielowicz, B.; Misiak, J. The forms of occurrence and geochemistry of sulphides in hard coal deposits of the Libiąż Beds in the Upper Silesian Coal Basin, Southern Poland. Geol. Geophys. Environ. 2017, 43, 109–125. [Google Scholar] [CrossRef]
- Klominsky, J.; Klener, J.; Novak, F.; Malec, J.; Kvacek, M. Fossil gold placers in the Carboniferous near Krivce (western Bohemia). Cas. Mineral. Geol. 1979, 24, 291–300. [Google Scholar]
- Malec, J.; Veselovsky, F.; Bohmova, V.; Prouza, V. Jacutingaite, palladian gold and Pd-selenide in the copper ore from Carboniferous sediments by Kostalov near Semily (Krkonose Piedmont Basin, Czech Republic). Geosci. Res. Rep. 2011, 189–192. [Google Scholar]
- Eskenazy, G.M. Trace elements geochemistry of the Dobrudza coal basin, Bulgaria. Int. J. Coal Geol. 2009, 78, 192–200. [Google Scholar] [CrossRef]
- Arbuzov, S.I.; Rikhvanov, L.P.; Maslov, S.G.; Arhipov, V.S.; Belyaeva, A.M. Anomalous gold contents in brown coals and peat in the south-eastern region of the Western-Siberian platform. Int. J. Coal Geol. 2006, 68, 127–134. [Google Scholar] [CrossRef]
- Rozhdestvina, V.I.; Sorokin, A.P.; Kuz’minykh, V.M.; Kiseleva, A.A. A gold content in brown coal and combustion products. J. Min. Sci. 2011, 47, 842–849. [Google Scholar] [CrossRef]
- Seredin, V.V. Distribution and formation conditions of noble metal mineralization in coal-bearing basins. Geol. Ore Deposits 2007, 49, 1–30. [Google Scholar] [CrossRef]
- Levitan, G. Gold Deposits of the CIS; Xlibris Publishing: Bloomington, IN, USA, 2008. [Google Scholar]
- Nie, A.; Mei, S.; Guan, D.; Wu, P.; Zhang, Z. A study on the genetic relations between Permian Longtan Formation coal series strata and Carlin-type gold deposits, southwestern Guizhou Province, China. Chin. J. Geochem. 2008, 27, 291–298. [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S. The occurrence of gold in fly ash derived from high-Ge coal. Miner. Depos. 2014, 49, 1–6. [Google Scholar] [CrossRef]
- Ketris, M.P.; Yudovich, Y.E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S.F.; Sun, Y.Z.; Chekryzhov, I.Y. Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Appl. Geochem. 2013, 31, 1–11. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Kim, K.; Powell, M.A.; Equeenuddin, S.M. Recovery of metals and other beneficial products from coal fly ash: A sustainable approach for fly ash management. Int. J. Coal Sci. Technol. 2016, 3, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Sang, S.; Hao, W.; Wang, R.; Zhang, J.; Duan, P.; Qin, Y.; Xu, S. A cut-off grade for gold and gallium in coal. Fuel 2015, 147, 62–66. [Google Scholar] [CrossRef]
- Chapman, R.J.; Leake, R.C.; Warner, R.A.; Cahill, M.C.; Moles, N.R.; Shell, C.A.; Taylor, J.J. Microchemical characterisation of natural gold and artefact gold as a tool for provenancing prehistoric gold artefacts: A case study in Ireland. Appl. Geochem. 2006, 21, 904–918. [Google Scholar] [CrossRef]
- Simancas, J.F.; Tahiri, A.; Azor, A.; Lodeiro, F.G.; Poyatos, D.J.M.; El Hadi, H. The tectonic frame of the Variscan-Alleghanian orogeny in Southern Europe and Northern Africa. Tectonophysics 2005, 398, 181–198. [Google Scholar] [CrossRef]
- Gayer, R.A.; Garven, G.; Rickard, D.T. Fluid migration and coal-rank development in foreland basins. Geology 1998, 26, 679–682. [Google Scholar] [CrossRef]
- Mills, R.F. Parallels between paleoplacer development in northern Nova Scotia and southern New Brunswick. In Minerals and Energy Branch Report of Activities 1998; Nova Scotia Department of Natural Resources: Halifax, NS, Canada, 1999; pp. 61–68. [Google Scholar]
- Hower, J.C.; Gayer, R.A. Mechanisms of coal metamorphism: Case studies from Paleozoic coalfields. Int. J. Coal Geol. 2002, 50, 215–245. [Google Scholar] [CrossRef]
- Bevins, R.E.; Young, B.; Mason, J.S.; Manning, D.A.C.; Symes, R.F. Wales. In Mineralization of England and Wales (Geological Conservation Review Series); Joint Nature Conservation Committee: Peterborough, UK, 2010; Volume 36, pp. 199–381. [Google Scholar]
- Nevill, W.E. The Millstone Grit and Lower Coal Measures of the Leinster Coalfield. Proc. R. Ir. Acad. B 1956, 58, 1–16. [Google Scholar]
- Clayton, G.; Haughey, N.; Sevastopulo, G.D.; Burnett, R. Thermal Maturation Levels in the Devonian and Carboniferous Rocks in Ireland; Geological Survey of Ireland: Dublin, Ireland, 1989. [Google Scholar]
- Bevins, R.E.; White, S.C.; Robinson, D. The South Wales Coalfield: Low grade metamorphism in a foreland basin setting? Geol. Mag. 1996, 133, 739–749. [Google Scholar] [CrossRef]
- Higgs, K.T.; O’Connor, G. Stratigraphy and palynology of the Westphalian strata of the Leinster Coalfield, Ireland. Ir. J. Earth Sci. 2005, 23, 65–84. [Google Scholar] [CrossRef]
- Hull, E. On the upper Limit of the essentially Marine Beds of the Carboniferous Group of the British Isles and adjoining Continental Districts: With suggestions for a fresh classification of the Carboniferous Series. Part II Irish Carboniferous Districts. Quart. J. Geol. Soc. London 1877, 33, 613. [Google Scholar] [CrossRef]
- Hardman, E.T.; Baily, W.H. Explanatory Memoir on the Geology of the Leinster Coalfield; British Geological Survey: Keyworth, UK, 1881; p. 95. [Google Scholar]
- Misz, M. Characteristics of coals from the Leinster Coalfield (Ireland); Part 1, Geology of coals from the Leinster Coalfield. Pr. Geol. UŚl. 1997, 14, 28–44. [Google Scholar]
- Misz, M. Characteristics of coals from the Leinster Coalfield (Ireland); Part 2, Characteristic of anthracites from the Leinster Coalfield. Geologia (Katowice) 2002, 15, 95–110. [Google Scholar]
- Kwiecińska, B.; Pusz, S.; Duber, S. Petrographical study of anthracites from European coal basins. Pol. Geol. Inst. Spec. Pap. 2002, 7, 149–158. [Google Scholar]
- Bullock, L.A.; Parnell, J.; Feldmann, J.; Armstrong, J.G.T.; Henn, A.S.; Mesko, M.F.; Mello, P.A.; Flores, E.M.M. Selenium and tellurium concentrations of Carboniferous British coals. Geol. J. 2018, 1, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Young, T. Sedimentary iron ores. In Mineralization in the British Isles; Pattrick, R., Polya, D., Eds.; Chapman and Hall: London, UK, 1993; pp. 446–489. [Google Scholar]
- Alderton, D.H.M.; Bevins, R.E. P T conditions in the South Wales Coalfields: Evidence from co-existing hydrocarbon and aqueous fluid inclusions. J. Geol. Soc. Lond. 1996, 153, 265–275. [Google Scholar] [CrossRef]
- Dai, S.; Bechtel, A.; Eble, C.F.; Flores, R.M.; French, D.; Graham, I.T.; Hood, M.M.; Hower, J.C.; Korasidis, V.A.; Moore, T.A.; et al. Recognition of peat depositional environments in coal: A review. Int. J. Coal Geol. 2020, 219, 103383. [Google Scholar] [CrossRef]
- Alderton, D.H.M.; Oxtoby, N.; Brice, H.; Grassineau, J.N.; Bevins, R.E. The link between fluids and rank variation in the South Wales Coalfield: Evidence from fluid inclusions and stable isotopes. Geofluids 2004, 4, 221–236. [Google Scholar] [CrossRef]
- Firth, J.N.M.; Eglinton, G. Hatchettine from the South Wales Coalfield. In Advances in Organic Geochemistry; Pergamon: Oxford, UK, 1972; pp. 613–628. [Google Scholar]
- Youngson, J.; Craw, D. Recycling and chemical mobility of alluvial gold in Tertiary and Quaternary sediments, Central and East Otago, New Zealand. N. Zeal. J. Geol. Geop. 1996, 39, 493–508. [Google Scholar] [CrossRef]
- Sanyal, S.K.; Shuster, J.; Reith, F. Cycling of biogenic elements drives biogeochemical gold cycling. Earth Sci. Rev. 2019, 190, 131–147. [Google Scholar] [CrossRef]
- Cleal, C.J.; Thomas, B.A. Palaeozoic tropical rainforests and their effect on global climates: Is the past the key to the present? Geobiology 2005, 3, 13–31. [Google Scholar] [CrossRef]
- Morton, A.; Waters, C.; Fanning, M.; Chisholm, I.; Brettle, M. Origin of Carboniferous sandstones fringing the northern margin of the Wales-Brabant Massif: Insights from detrital zircon ages. Geol. J. 2015, 50, 553–574. [Google Scholar] [CrossRef] [Green Version]
- Webster, J.G.; Mann, A.W. The influence of climate, geomorphology and primary geology on the supergene migration of gold and silver. J. Geochem. Explor. 1984, 22, 21–42. [Google Scholar] [CrossRef]
- Dissanayake, C.B.; Kritsotakis, K. The geochemistry of Au and Pt in peat and algal mats—A case study from Sri Lanka. Chem. Geol. 1984, 42, 61–76. [Google Scholar] [CrossRef]
- Santosh, M.; Omana, P.K. Very high purity gold from lateritic weathering profiles of Nilambur, southern India. Geology 1991, 19, 746–749. [Google Scholar] [CrossRef]
- O’Connor, P.J.; Gallagher, V. Gold prospectivity in the Caledonides of southeast Ireland: Application of the upper-crustal reservoir model. Trans. Inst. Min. Metall. B 1994, 103, 175–187. [Google Scholar]
- Alborn, T. An Irish El Dorado: Recovering Gold in County Wicklow. J. Br. Stud. 2011, 50, 359–380. [Google Scholar] [CrossRef]
- Spinks, S.C.; Parnell, J.; Bellis, J.; Still, J. Remobilization and mineralization of selenium-tellurium in metamorphosed red beds: Evidence from the Munster Basin, Ireland. Ore Geol. Rev. 2016, 72, 114–127. [Google Scholar] [CrossRef]
- Todd, S.P. Taking the roof off a suture zone: Basin setting and provenance of conglomerates in the ORD Dingle Basin of SW Ireland. In New Perspectives on the Old Red Sandstone (Geological Society Special Publication); Friend, P.F., Williams, B.P.J., Eds.; Geological Society of London: London, UK, 2000; Volume 180, pp. 185–222. [Google Scholar]
- McArdle, P.; Fitzell, M.; Oosterom, M.G.; O’Connor, P.J.; Kennan, P.S. Tourmalinite as a potential host rock for gold in the Caledonides of Southeast Ireland. Mineral. Depos. 1989, 24, 154–159. [Google Scholar] [CrossRef]
- Diskin, S.; Evans, J.; Fowler, M.B.; Guion, P.D. Recognising different sediment provenances within a passive margin setting: Towards characterising a sediment source to the west of the British late Carboniferous sedimentary basins. Chem. Geol. 2011, 283, 143–160. [Google Scholar] [CrossRef]
- Chapman, R.J.; Leake, R.C.; Moles, N.R.; Earls, G.; Cooper, C.; Harrington, K.; Berzins, R. The application of microchemical analysis of gold grains to the understanding of complex local and regional gold mineralization: A case study in Ireland and Scotland. Econ. Geol. 2000, 95, 1753–1773. [Google Scholar]
- Leake, R.C.; Bland, D.J.; Styles, M.T.; Cameron, D.G. Internal structure of Au-Pd-Pt grains from south Devon, England, in relation to low-temperature transport and deposition. Appl. Earth Sci. 1991, 100, 159–178. [Google Scholar]
- Nekrasov, I.Y.; Ivanov, V.V.; Lennikov, A.M.; Sapin, V.I.; Safronov, P.P.; Oktyabr’skii, R.A. Rare Natural Polycomponent Alloys Based on Gold and Copper from a Platinum Placer in the Konder Alkaline-Ultrabasic Massif, southeastern Aldan Shield, Russia. Geol. Ore Depos. 2001, 43, 406–417. [Google Scholar]
- Barkov, A.Y.; Tamura, N.; Shvedov, G.I.; Stan, C.V.; Ma, C.; Winkler, B.; Martin, R.F. Platiniferous tetra-auricupride: A case study from the Bolshoy Khailyk placer deposit, Western Sayans, Russia. Minerals 2019, 9, 160. [Google Scholar] [CrossRef] [Green Version]
- Mallet, W. On the minerals of the auriferous districts of Wicklow. J. Geol. Soc. Dublin 1850, 4, 269–277. [Google Scholar] [CrossRef]
- Scott, B.G. The occurrence of platinum as a trace element in Irish gold: Comments in Hartmann’s gold analyses. Ir. Arch. Res. F. 1976, 3, 21–24. [Google Scholar]
- Abdullah, M.H.; Radhid, A.S.A.; Anuar, U.H.M.; Marto, A.; Abuelgasim, R. Bottom ash utilization: A review on engineering applications and environmental aspects. IOP Conf. Ser. Mater. Sci. Eng. 2019, 527, 012006. [Google Scholar] [CrossRef]
- Mining.com. Global Coal Production will Grow this Year Despite Covid-19. Available online: https://www.mining.com/global-coal-production-to-grow-by-0-5-in-2020/ (accessed on 9 June 2020).
- Yang, L.; Wang, Q.; Bai, X.; Deng, J.; Hu, Y. Mapping of trace elements in coal and ash research based on bibliometric analysis method spanning 1971–2017. Minerals 2018, 8, 89. [Google Scholar] [CrossRef] [Green Version]
- Bullock, L.A.; Parnell, J.; Perez, M.; Armstrong, J.T.G.; Feldmann, J.; Boyce, A.J. High selenium in the Carboniferous Coal Measures of Northumberland, North East England. Int. J. Coal Geol. 2018, 195, 61–74. [Google Scholar] [CrossRef]
- Bullock, L.A.; Parnell, J.; Perez, M.; Feldmann, J. Tellurium enrichment in Jurassic coal, Brora, Scotland. Minerals 2017, 7, 231. [Google Scholar] [CrossRef] [Green Version]
- Dai, S.; Zhao, L.; Peng, S.; Chou, C.-L.; Wang, X.; Zhang, Y.; Li, D.; Sun, Y. Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China. Int. J. Coal Geol. 2010, 81, 320–332. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, G.; Sun, R.; Wu, D. Health risk assessment of heavy metals in groundwater of coal mining area: A case study in Dingji coal mine, Huainan coalfield, China. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 1469–1479. [Google Scholar] [CrossRef]
- Fang, T.; Liu, G.; Zhou, C.; Lu, L. Lead in soil and agricultural products in the Huainan Coal Mining Area, Anhui, China: Levels, distribution, and health implications. Environ. Monit. Assess. 2015, 187, 152. [Google Scholar] [CrossRef]
Sample Code | Locality | Latitude | Longitude | Sample Description | Se (ppm) | Au (ppm) | S (%) | TOC (%) | Gold Present in Sample |
---|---|---|---|---|---|---|---|---|---|
CC1 | Castlecomer | 52.813683 | −7.2049499 | Coal matrix (free of pyrite and siderite) | 0.7 | - | 0.4 | 77 | No |
CC2 | Bilboa quarry | 52.809600 | −7.022492 | Coal matrix (free of pyrite and siderite) | 0.8 | - | 0.4 | 80.1 | No |
CC3 | River Dinin | 52.805511 | −7.1924973 | Coal matrix (containing pyrite) | 7 | - | 0.7 | 64.4 | No |
CC4 | Castlecomer | 52.813683 | −7.2049499 | Coal matrix (containing pyrite) | 7.1 | - | 0.7 | 64.4 | No |
CC5 | River Dinin | 52.805511 | −7.1924973 | Coal matrix (containing pyrite and siderite) | 4.2 | 0.00 | 12.1 | 38.4 | Yes |
CC6 | River Dinin | 52.805511 | −7.1924973 | Sideritic coal (abundant pyrite and siderite) | 25.8 | 0.02 | 24.3 | 3.8 | Yes |
CC7 | River Dinin | 52.805511 | −7.1924973 | Sideritic coal (abundant pyrite and siderite) | 20.5 | 0.01 | 29.5 | 3.9 | No |
CC8 | Bilboa quarry | 52.809600 | −7.022492 | Sideritic coal (abundant pyrite and siderite) | 9.9 | 0.00 | 25.1 | 37.5 | Yes |
CC9 | Bilboa quarry | 52.809600 | −7.022492 | Sideritic coal (abundant pyrite and siderite) | 11.2 | 0.00 | 12.3 | 27.6 | Yes |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bullock, L.A.; Parnell, J.; Armstrong, J.G.T.; Perez, M.; Spinks, S. Gold in Irish Coal: Palaeo-Concentration from Metalliferous Groundwaters. Minerals 2020, 10, 635. https://doi.org/10.3390/min10070635
Bullock LA, Parnell J, Armstrong JGT, Perez M, Spinks S. Gold in Irish Coal: Palaeo-Concentration from Metalliferous Groundwaters. Minerals. 2020; 10(7):635. https://doi.org/10.3390/min10070635
Chicago/Turabian StyleBullock, Liam A., John Parnell, Joseph G.T. Armstrong, Magali Perez, and Sam Spinks. 2020. "Gold in Irish Coal: Palaeo-Concentration from Metalliferous Groundwaters" Minerals 10, no. 7: 635. https://doi.org/10.3390/min10070635