Deformation and Transformation Textures in the NaMgF3 Neighborite—Post-Perovskite System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and High-Pressure Experiments
2.2. Data Analysis
2.3. Texture Simulations
3. Results
3.1. Stress Evolution
3.2. Texture Development
3.3. Lattice Strain Evolution
4. Discussion
4.1. Deviatoric Stress
4.2. Deformation Textures in Perovskite
4.3. Transformation Textures
4.4. Deformation Textures in Post-Perovskite
4.5. Application to the Lowermost Mantle
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Panning, M.; Romanowicz, B. A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophys. J. Int. 2006, 167, 361–379. [Google Scholar] [CrossRef]
- Panning, M.P.; Lekić, V.; Romanowicz, B.A. Importance of crustal corrections in the development of a new global model of radial anisotropy. J. Geophys. Res. Solid Earth 2010, 115, B12325. [Google Scholar] [CrossRef]
- Chang, S.J.; Ferreira, A.M.; Ritsema, J.; van Heijst, H.J.; Woodhouse, J.H. Global radially anisotropic mantle structure from multiple datasets: A review, current challenges, and outlook. Tectonophysics 2014, 617, 1–19. [Google Scholar] [CrossRef]
- French, S.W.; Romanowicz, B.A. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophys. J. Int. 2014, 199, 1303–1327. [Google Scholar] [CrossRef]
- Cottaar, S.; Romanowicz, B. Observations of changing anisotropy across the southern margin of the African LLSVP. Geophys. J. Int. 2013, 195, 1184–1195. [Google Scholar] [CrossRef]
- Lynner, C.; Long, M.D. Lowermost mantle anisotropy and deformation along the boundary of the African LLSVP. Geophys. Res. Lett. 2014, 41, 3447–3454. [Google Scholar] [CrossRef]
- Ford, H.A.; Long, M.D. A regional test of global models for flow, rheology, and seismic anisotropy at the base of the mantle. Phys. Earth Planet. Inter. 2015, 245, 71–75. [Google Scholar] [CrossRef]
- Lay, T.; Garnero, E.J. Reconciling the Post-Perovskite Phase with Seismological Observations of Lowermost Mantle Structure. In Post-Perovskite, The Last Mantle Phase Transition; Hirose, K., Yuen, D., Lay, T., Brodholt, J.P., Eds.; American Geophysical Union: Washington, DC, USA, 2007; pp. 129–154. [Google Scholar]
- Kustowski, B.; Ekström, G.; Dziewoński, A.M. Anisotropic shear-wave velocity structure of the Earth’s mantle: A global model. J. Geophys. Res. Solid Earth 2008, 113, B06306. [Google Scholar] [CrossRef]
- Lithgow-Bertelloni, C.; Richards, M.A. The dynamics of Cenozoic and Mesozoic plate motions. Rev. Geophys. 1998, 36, 27–78. [Google Scholar] [CrossRef]
- Davies, D.R.; Goes, S.; Lau, H.C.P. Thermally dominated deep mantle LLSVPs: A review. In The Earth’s Heterogeneous Mantle: A Geophysical, Geodynamical, and Geochemical Perspective; Springer: Cham, Switzerland, 2015; pp. 441–477. [Google Scholar]
- Zhao, C.; Garnero, E.J.; McNamara, A.K.; Schmerr, N.; Carlson, R.W. Seismic evidence for a chemically distinct thermochemical reservoir in Earth’s deep mantle beneath Hawaii. Earth Planet. Sci. Lett. 2015, 426, 143–153. [Google Scholar] [CrossRef]
- Wookey, J.; Kendall, J. Seismic anisotropy of post-perovskite and the lowermost mantle. In Post-Perovskite, The Last Mantle Phase Transition; Hirose, K., Yuen, D., Lay, T., Brodholt, J.P., Eds.; American Geophysical Union: Washington, DC, USA, 2007; pp. 171–189. [Google Scholar]
- McNamara, A.K.; van Keken, P.E.; Karato, S.-I. Development of anisotropic structure in the Earth’s lower mantle by solid-state convection. Nature 2002, 416, 310–314. [Google Scholar] [CrossRef]
- Nakagawa, T.; Tackley, P.J. Effects of low-viscosity post-perovskite on thermo-chemical mantle convection in a 3-D spherical shell. Geophys. Res. Lett. 2011, 38, L04309. [Google Scholar] [CrossRef]
- Samuel, H.; Tosi, N. The influence of post-perovskite strength on the Earth’s mantle thermal and chemical evolution. Earth Planet. Sci. Lett. 2012, 323, 50–59. [Google Scholar] [CrossRef]
- McNamara, A.K.; Keken, P.E.V.; Karato, S.-I. Development of finite strain in the convecting lower mantle and its implications for seismic anisotropy. J. Geophys. Res. 2003, 108, 2230. [Google Scholar] [CrossRef]
- Loubet, N.; Ribe, N.M.; Gamblin, Y. Deformation modes of subducted lithosphere at the core-mantle boundary: An experimental investigation. Geochem. Geophys. Geosyst. 2009, 10, Q10004. [Google Scholar] [CrossRef]
- Hunt, S.A.; Weidner, D.J.; Li, L.; Wang, L.; Walte, N.P.; Brodholt, J.P. Weakening of calcium iridate during its transformation from perovskite to post-perovskite. Nat. Geosci. 2009, 2, 794–797. [Google Scholar] [CrossRef]
- Ammann, M.W.; Brodholt, J.P.; Wookey, J.; Dobson, D.P. First-principles constraints on diffusion in lower-mantle minerals and a weak D” layer. Nature 2010, 465, 462–465. [Google Scholar] [CrossRef] [PubMed]
- Dobson, D.P.; Lindsay-Scott, A.; Hunt, S.A.; Bailey, E.; Wood, I.G.; Brodholt, J.P.; Wheeler, J. Anisotropic diffusion creep in postperovskite provides a new model for deformation at the core-mantle boundary. Proc. Natl. Acad. Sci. USA 2019, 116, 26389–26393. [Google Scholar] [CrossRef] [PubMed]
- Karato, S.-I. Seismic Anisotropy in the Deep Mantle, Boundary Layers and the Geometry of Mantle Convection. Pure Appl. Geophys. 1998, 151, 565–587. [Google Scholar] [CrossRef]
- Wenk, H.R.; Cottaar, S.; Tomé, C.N.; McNamara, A.; Romanowicz, B. Deformation in the lowermost mantle: From polycrystal plasticity to seismic anisotropy. Earth Planet. Sci. Lett. 2011, 306, 33–45. [Google Scholar] [CrossRef]
- Cottaar, S.; Li, M.; McNamara, A.K.; Romanowicz, B.; Wenk, H.R. Synthetic seismic anisotropy models within a slab impinging on the core–mantle boundary. Geophys. J. Int. 2014, 199, 164–177. [Google Scholar] [CrossRef]
- Murakami, M.; Hirose, K.; Kawamura, K.; Sata, N.; Ohishi, Y. Post-Perovskite Phase Transition in MgSiO3. Science 2004, 304, 855–858. [Google Scholar] [CrossRef]
- Oganov, A.R.; Ono, S. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D” layer. Nature 2004, 430, 445–448. [Google Scholar] [CrossRef]
- Shim, S.; Duffy, T.S.; Jeanloz, R.; Shen, G. Stability and crystal structure of MgSiO3 perovskite to the core-mantle boundary. Geophys. Res. Lett. 2004, 31, L10603. [Google Scholar] [CrossRef]
- Tsuchiya, T.; Tsuchiya, J.; Umemoto, K.; Wentzcovitch, R.M. Phase transition in MgSiO3 perovskite in the earth’s lower mantle. Earth Planet. Sci. Lett. 2004, 224, 241–248. [Google Scholar]
- Oganov, A.R.; Martonak, R.; Laio, A.; Raiteri, P.; Parrinello, M. Anisotropy of Earth’s D” layer and stacking faults in the MgSiO3 post-perovskite phase. Nature 2005, 438, 1142–1144. [Google Scholar] [CrossRef] [PubMed]
- Okada, T.; Yagi, T.; Niwa, K.; Kikegawa, T. Lattice-preferred orientations in post-perovskite-type MgGeO3 formed by transformations from different pre-phases. Phys. Earth Planet. Inter. 2010, 180, 195–202. [Google Scholar] [CrossRef]
- Miyagi, L.; Kanitpanyacharoen, W.; Stackhouse, S.; Militzer, B.; Wenk, H. The enigma of post-perovskite anisotropy: Deformation versus transformation textures. Phys Chem Miner. 2011, 38, 665–678. [Google Scholar] [CrossRef]
- Dobson, D.P.; Miyajima, N.; Nestola, F.; Alvaro, M.; Casati, N.; Liebske, C.; Wood, I.G.; Walker, A.M. Strong inheritance of texture between perovskite and post-perovskite in the D” layer. Nat. Geosci. 2013, 6, 575–578. [Google Scholar] [CrossRef]
- Gay, J.P.; Miyagi, L.; Couper, S.; Langrand, C.; Dobson, D.P.; Liermann, H.P.; Merkel, S. Deformation of NaCoF3 perovskite and post-perovskite up to 30 GPa and 1013 K: Implications for plastic deformation and transformation mechanism. Eur. J. Mineral. 2021, 33, 591–603. [Google Scholar] [CrossRef]
- Hernlund, J.W.; Thomas, C.; Tackley, P.J. A doubling of the post-perovskite phase boundary and structure of the Earth’s lowermost mantle. Nature 2005, 434, 882–886. [Google Scholar] [CrossRef] [PubMed]
- Van der Hilst, R.D.; De Hoop, M.V.; Wang, P.; Shim, S.H.; Ma, P.; Tenorio, L. Seismostratigraphy and thermal structure of Earth’s core-mantle boundary region. Science 2007, 315, 1813–1817. [Google Scholar] [CrossRef] [PubMed]
- Grocholski, B.; Catalli, K.; Shim, S.H.; Prakapenka, V. Mineralogical effects on the detectability of the postperovskite boundary. Proc. Natl. Acad. Sci. USA 2012, 109, 2275–2279. [Google Scholar] [CrossRef] [PubMed]
- Cobden, L.; Mosca, I.; Trampert, J.; Ritsema, J. On the likelihood of post-perovskite near the core–mantle boundary: A statistical interpretation of seismic observations. Phys. Earth Planet. Inter. 2012, 210, 21–35. [Google Scholar] [CrossRef]
- Goryaeva, A.M.; Carrez, P.; Cordier, P. Modeling defects and plasticity in MgSiO3 post-perovskite: Part 2—Screw and edge [100] dislocations. Phys. Chem. Miner. 2015, 42, 793–803. [Google Scholar] [CrossRef]
- Amodeo, J.; Merkel, S.; Tromas, C.; Carrez, P.; Korte-Kerzel, S.; Cordier, P.; Chevalier, J. Dislocations and plastic deformation in MgO crystals: A review. Crystals 2018, 8, 240. [Google Scholar] [CrossRef]
- Kraych, A.; Carrez, P.; Cordier, P. On dislocation glide in MgSiO3 bridgmanite at high-pressure and high-temperature. Earth Planet. Sci. Lett. 2016, 452, 60–68. [Google Scholar] [CrossRef]
- Girard, J.; Chen, J.; Raterron, P. Deformation of periclase single crystals at high pressure and temperature: Quantification of the effect of pressure on slip-system activities. J. Appl. Phys. 2012, 111, 112607. [Google Scholar] [CrossRef]
- Miyagi, L.; Kanitpanyacharoen, W.; Kaercher, P.; Lee, K.K.; Wenk, H.R. Slip systems in MgSiO3 post-perovskite: Implications for D′′ anisotropy. Science 2010, 329, 1639–1641. [Google Scholar] [CrossRef]
- Miyagi, L.; Wenk, H.R. Texture development and slip systems in bridgmanite and bridgmanite+ ferropericlase aggregates. Phys. Chem. Miner. 2016, 43, 597–613. [Google Scholar] [CrossRef]
- Nowacki, A.; Nowacki, A. Predicting lowermost mantle anisotropy using models of mantle flow. In Plate Deformation from Cradle to Grave: Seismic Anisotropy and Deformation at Mid-Ocean Ridges and in the Lowermost Mantle; Springer: Berlin/Heidelberg, Germany, 2013; Springer Thesis; pp. 123–149. [Google Scholar]
- Iitaka, T.; Hirose, K.; Kawamura, K.; Murakami, M. The elasticity of the MgSiO3 post-perovskite phase in the Earth’s lowermost mantle. Nature 2004, 430, 442–445. [Google Scholar] [CrossRef] [PubMed]
- Carrez, P.; Ferré, D.; Cordier, P. Peierls-Nabarro model for dislocations in MgSiO3 post-perovskite calculated at 120 GPa from first principles. Philos. Mag. 2007, 87, 3229–3247. [Google Scholar] [CrossRef]
- Carrez, P.; Ferré, D.; Cordier, P. Implications for plastic flow in the deep mantle from modelling dislocations in MgSiO3 minerals. Nature 2007, 446, 68–70. [Google Scholar] [CrossRef] [PubMed]
- Metsue, A.; Carrez, P.; Mainprice, D.; Cordier, P. Numerical modelling of dislocations and deformation mechanisms in CaIrO3 and MgGeO3 post-perovskites—Comparison with MgSiO3 post-perovskite. Phys. Earth Planet. Inter. 2009, 174, 165–173. [Google Scholar] [CrossRef]
- Goryaeva, A.M.; Carrez, P.; Cordier, P. Low viscosity and high attenuation in MgSiO3 post-perovskite inferred from atomic-scale calculations. Sci. Rep. 2016, 6, 34771. [Google Scholar] [CrossRef] [PubMed]
- Goryaeva, A.M.; Carrez, P.; Cordier, P. Modeling defects and plasticity in MgSiO3 post-perovskite: Part 3—Screw and edge [001] dislocations. Phys. Chem. Miner. 2017, 44, 521–533. [Google Scholar] [CrossRef] [PubMed]
- Rodi, V.; Babel, D. Ternäre Oxide der Übergangsmetalle, I.V. Erdalkaliiridium(IV)-oxide: Kristallstruktur von CaIrO3. Z. Für Anorg. Und Allg. Chem. 1965, 366, 17–23. [Google Scholar] [CrossRef]
- Miyajima, N.; Ohgushi, K.; Ichihara, M.; Yagi, T. Crystal morphology and dislocation microstructures of CaIrO3: A TEM study of an analogue of the MgSiO3 post-perovskite phase. Geophys. Res. Lett. 2006, 33, L12302. [Google Scholar] [CrossRef]
- Yamazaki, D.; Yoshino, T.; Ohfuji, H.; Ando, J.; Yoneda, A. Origin of seismic anisotropy in the D’’ layer inferred from shear deformation experiments on post-perovskite phase. Earth Planet. Sci. Lett. 2006, 252, 372–378. [Google Scholar] [CrossRef]
- Walte, N.; Heidelbach, F.; Miyajima, N.; Frost, D. Texture development and TEM analysis of deformed CaIrO3: Implications for the D″ layer at the core-mantle boundary. Geophys. Res. Lett. 2007, 34, L08306. [Google Scholar] [CrossRef]
- Niwa, K.; Yagi, T.; Ohgushi, K.; Merkel, S.; Miyajima, N.; Kikegawa, T. Lattice preferred orientation in CaIrO3 perovskite and post-perovskite formed by plastic deformation under pressure. Phys. Chem. Miner. 2007, 34, 679–686. [Google Scholar] [CrossRef]
- Miyagi, L.; Nishiyama, N.; Wang, Y.; Kubo, A.; West, D.V.; Cava, R.J.; Duffy, T.S.; Wenk, H.-R. Deformation and texture development in CaIrO3 post-perovskite phase up to 6 GPa and 1300 K. Earth Planet. Sci. Lett. 2008, 268, 515–525. [Google Scholar] [CrossRef]
- Miyajima, N.; Walte, N. Burgers vector determination in deformed perovskite and post-perovskite of CaIrO3 using thickness fringes in weak-beam dark-field images. Ultramicroscopy 2009, 109, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Walte, N.P.; Heidelbach, F.; Miyajima, N.; Frost, D.J.; Rubie, D.C.; Dobson, D.P. Transformation textures in post-perovskite: Understanding mantle flow in the D″ layer of the Earth. Geophys. Res. Lett. 2009, 36, L04302. [Google Scholar] [CrossRef]
- Hunt, S.A.; Walker, A.M.; Mariani, E. In-situ measurement of texture development rate in CaIrO3 post-perovskite. Phys. Earth Planet. Inter. 2016, 257, 91–104. [Google Scholar] [CrossRef]
- Miyajima, N.; Niwa, K.; Heidelbach, F.; Yagi, T.; Ohgushi, K. Deformation microtextures in CaIrO3 post-perovskite under high stress conditions using a laser-heated diamond anvil cell. J. Phys. Conf. Ser. 2010, 215, 012097. [Google Scholar] [CrossRef]
- Niwa, K.; Miyajima, N.; Seto, Y.; Ohgushi, K.; Gotou, H.; Yagi, T. In situ observation of shear stress-induced perovskite to post-perovskite phase transition in CaIrO3 and the development of its deformation texture in a diamond-anvil cell up to 30 GPa. Phys. Earth Planet. Inter. 2012, 194, 10–17. [Google Scholar] [CrossRef]
- Lebensohn, R.; Tomé, C. A self-consistent viscoplastic model: Prediction of rolling textures of anisotropic polycrystals. Mater. Sci. Eng. A 1994, 175, 71–82. [Google Scholar] [CrossRef]
- Merkel, S.; Kubo, A.; Miyagi, L.; Speziale, S.; Duffy, T.S.; Mao, H.K.; Wenk, H.R. Plastic Deformation of MgGeO3 Post-Perovskite at Lower Mantle Pressures. Science 2006, 311, 644–646. [Google Scholar] [CrossRef]
- Merkel, S.; McNamara, A.K.; Kubo, A.; Speziale, S.; Miyagi, L.; Meng, Y.; Duffy, T.S.; Wenk, H.R. Deformation of (Mg,Fe)SiO3 Post-Perovskite and D’’ Anisotropy. Science 2007, 316, 1729–1732. [Google Scholar] [CrossRef]
- Santillán, J.; Shim, S.H.; Shen, G.; Prakapenka, V.B. High-pressure phase transition in Mn2O3: Application for the crystal structure and preferred orientation of the CaIrO3 type. Geophys. Res. Lett. 2006, 33, L15307. [Google Scholar] [CrossRef]
- Nisr, C.; Ribárik, G.; Ungár, T.; Vaughan, G.B.; Cordier, P.; Merkel, S. High resolution three-dimensional X-ray diffraction study of dislocations in grains of MgGeO3 post-perovskite at 90 GPa. J. Geophys. Res. Solid Earth 2012, 117, B033201. [Google Scholar] [CrossRef]
- Hirose, K.; Nagaya, Y.; Merkel, S.; Ohishi, Y. Deformation of MnGeO3 post-perovskite at lower mantle pressure and temperature. Geophys. Res. Lett. 2010, 37, L20302. [Google Scholar] [CrossRef]
- Wu, X.; Lin, J.F.; Kaercher, P.; Mao, Z.; Liu, J.; Wenk, H.R.; Prakapenka, V.B. Seismic anisotropy of the D ″layer induced by (001) deformation of post-perovskite. Nat. Commun. 2017, 8, 14669. [Google Scholar] [CrossRef] [PubMed]
- Kubo, A.; Kiefer, B.; Shim, S.; Shen, G.; Prakapenka, V.B.; Duffy, T.S. Rietveld structure refinement of MgGeO3 post-perovskite phase to 1 Mbar. Am. Mineral. 2008, 93, 965–976. [Google Scholar] [CrossRef]
- Hustoft, J.; Shim, S.; Kubo, A.; Nishiyama, N. Raman spectroscopy of CaIrO3 postperovskite up to 30 GPa. Am. Mineral. 2008, 93, 1654–1658. [Google Scholar] [CrossRef]
- Tsuchiya, T.; Tsuchiya, J. Structure and elasticity of Cmcm CaIrO3 and their pressure dependences: Ab initio calculations. Phys. Rev. B 2007, 76, 144119. [Google Scholar] [CrossRef]
- Martin, C.D.; Crichton, W.A.; Liu, H.; Prakapenka, V.; Chen, J.; Parise, J.B. Phase transitions and compressibility of NaMgF3 (Neighborite) in perovskite-and post-perovskite-related structures. Geophys. Res. Lett. 2006, 33, L11305. [Google Scholar] [CrossRef]
- Dobson, D.P.; Hunt, S.A.; Lindsay-Scott, A.; Wood, I.G. Towards better analogues for MgSiO3 post-perovskite: NaCoF3 and NaNiF3, two new recoverable fluoride post-perovskites. Phys. Earth Planet. Inter. 2011, 189, 171–175. [Google Scholar] [CrossRef]
- Merkel, S.; Yagi, T. X-ray transparent gasket for diamond anvil cell high pressure experiments. Rev. Sci. Instrum. 2005, 76, 046109. [Google Scholar] [CrossRef]
- Fei, Y.; Ricolleua, A.; Frank, M.; Mibe, K.; Shen, G.; Prakapenka, V. Toward an internally consistent pressure scale. Proc. Natl. Acad. Sci. USA 2007, 104, 9182–9186. [Google Scholar] [CrossRef]
- Hammersley, A.P. FIT2D: An Introduction and Overview; ESRF97HA02T, ESRF Internal Report; ESRF: Grenoble, France, 1997; Volume 68, p. 58. [Google Scholar]
- Lutterotti, L.; Matthies, S.; Wenk, H.; Schultz, A.S.; Richardson, J.W. Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J. Appl. Phys. 1997, 81, 594–600. [Google Scholar] [CrossRef]
- Wenk, H.R.; Lutterotti, L.; Kaercher, P.; Kanitpanyacharoen, W.; Miyagi, L.; Vasin, R. Rietveld texture analysis from synchrotron diffraction images, I.I. Complex multiphase materials and diamond anvil cell experiments. Powder Diffr. 2014, 29, 220–232. [Google Scholar] [CrossRef]
- Popa, N.C.; Balzar, D. An analytical approximation for a size-broadened profile given by the lognormal and gamma distributions. J. Appl. Crystallogr. 2002, 35, 338–346. [Google Scholar] [CrossRef]
- Matthies, S.; Humbert, M. The Realization of the Concept of a Geometric Mean for Calculating Physical Constants of Polycrystalline Materials. Phys. Status Solidi B 1993, 177, K47–K50. [Google Scholar] [CrossRef]
- Matthies, S.; Priesmeyer, H.G.; Daymond, M.R. On the diffractive determination of single-crystal elastic constants using polycrystalline samples. J. Appl. Crystallogr. 2001, 34, 585–601. [Google Scholar] [CrossRef]
- Zhao, Y.; Weidner, D.J. The single crystal elastic moduli of neighborite. Phys. Chem. Miner. 1993, 20, 419–424. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W.J.P.R. Density functional theory (DFT). Phys. Rev. 1964, 136, B864. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Karki, B.B.; Stixrude, L.; Wentzcovitch, R.M. High-pressure elastic properties of major materials of Earth’s mantle from first principles. Rev. Geophys. 2001, 39, 507–534. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Jakymiw, C.; Vočadlo, L.; Dobson, D.P.; Bailey, E.; Thomson, A.R.; Brodholt, J.P.; Lindsay-Scott, A. The phase diagrams of KCaF3 and NaMgF3 by ab initio simulations. Phys. Chem. Miner. 2018, 45, 311–322. [Google Scholar] [CrossRef]
- Arar, R.; Ouahrani, T.; Varshney, D.; Khenata, R.; Murtaza, G.; Rached, D.; Reshak, A.H. Structural, mechanical and electronic properties of sodium based fluoroperovskites NaXF3 (X = Mg, Zn) from first-principle calculations. Mater. Sci. Semicond. Process. 2015, 33, 127–135. [Google Scholar] [CrossRef]
- Matthies, S.; Vinel, G.W. On the reproduction of the orientation distribution function of texturized samples from reduced pole figures using the conception of a conditional ghost correction. Phys. Status Solidi (B) 1982, 112, K111–K114. [Google Scholar] [CrossRef]
- Speziale, S.; Shieh, S.R.; Duffy, T.S. High-pressure elasticity of calcium oxide: A comparison between Brillouin spectroscopy and radial X-ray diffraction. J. Geophys. Res. Solid Earth 2006, 111, B02203. [Google Scholar] [CrossRef]
- Wenk, H.R.; Matthies, S.; Donovan, J.; Chateigner, D. BEARTEX: A Windows-based program system for quantitative texture analysis. J. Appl. Crystallogr. 1998, 31, 262–269. [Google Scholar] [CrossRef]
- Bunge, H. Texture Analysis in Material Science: Mathematical Models; Butterworths: London, UK, 1982. [Google Scholar]
- Skemer, P.; Katayama, I.; Jiang, Z.; Karato, S.-I. The misorientation index: Development of a new method for calculating the strength of lattice-preferred orientation. Tectonophysics 2005, 411, 157–167. [Google Scholar] [CrossRef]
- Bachmann, F.; Hielscher, R.; Schaeben, H. Texture analysis with MTEX–free and open source software toolbox. Solid State Phenom. 2010, 160, 63–68. [Google Scholar] [CrossRef]
- Wang, H.; Wu, P.D.; Tomé, C.N.; Huang, Y. A finite strain elastic–viscoplastic self-consistent model for polycrystalline materials. J. Mech. Phys. Solids 2010, 58, 594–612. [Google Scholar] [CrossRef]
- Dobson, D.P.; McCormack, R.; Hunt, S.A.; Ammann, M.W.; Weidner, D.; Li, L.; Wang, L. The relative strength of perovskite and post-perovskite NaCoF3. Mineral. Mag. 2012, 76, 925–932. [Google Scholar] [CrossRef]
- Kaercher, P.; Miyagi, L.; Kanitpanyacharoen, W.; Zepeda-Alarcon, E.; Wang, Y.; Parkinson, D.; Wenk, H.R. Two-phase deformation of lower mantle mineral analogs. Earth Planet. Sci. Lett. 2016, 456, 134–145. [Google Scholar] [CrossRef]
- Merkel, S.; Wenk, H.R.; Shu, J.; Shen, G.; Gillet, P.; Mao, H.K.; Hemley, R.J. Deformation of polycrystalline MgO at pressures of the lower mantle. J. Geophys. Res. Solid Earth 2002, 107, ECV-3. [Google Scholar] [CrossRef]
- Wenk, H.R.; Lonardelli, I.; Merkel, S.; Miyagi, L.; Pehl, J.; Speziale, S.; Tommaseo, C.E. Deformation textures produced in diamond anvil experiments, analysed in radial diffraction geometry. J. Phys. Condens. Matter 2006, 18, S933. [Google Scholar] [CrossRef] [PubMed]
- Tsujino, N.; Nishihara, Y.; Yamazaki, D.; Seto, Y.; Higo, Y.; Takahashi, E. Mantle dynamics inferred from the crystallographic preferred orientation of bridgmanite. Nature 2016, 539, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Couper, S.; Speziale, S.; Marquardt, H.; Liermann, H.P.; Miyagi, L. Does heterogeneous strain act as a control on seismic anisotropy in Earth’s lower mantle? Front. Earth Sci. 2020, 8, 540449. [Google Scholar] [CrossRef]
- Cordier, P.; Ungár, T.; Zsoldos, L.; Tichy, G. Dislocation creep in MgSiO3 perovskite at conditions of the Earth’s uppermost lower mantle. Nature 2004, 428, 837–840. [Google Scholar] [CrossRef] [PubMed]
- Wenk, H.R.; Lonardeli, I.; Pehl, J.; Devine, J.; Prakapenka, V.; Shen, G.; Mao, H.K. In situ observation of texture development in olivine, ringwoodite, magnesiowüstite and silicate perovskite at high pressure. Earth Planet. Sci. Lett. 2004, 226, 507–519. [Google Scholar] [CrossRef]
- Rokosky, J.M.; Lay, T.; Garnero, E.J. Small-scale lateral variations in azimuthally anisotropic D ″structure beneath the Cocos Plate. Earth Planet. Sci. Lett. 2006, 248, 411–425. [Google Scholar] [CrossRef]
- Whittaker, S.; Thorne, M.S.; Schmerr, N.C.; Miyagi, L. Seismic array constraints on the D ″discontinuity beneath Central America. J. Geophys. Res. Solid Earth 2016, 121, 152–169. [Google Scholar] [CrossRef]
- Walker, A.M.; Dobson, D.P.; Wookey, J.; Nowacki, A.; Forte, A.M. The anisotropic signal of topotaxy during phase transitions in D″. Phys. Earth Planet. Inter. 2018, 276, 159–171. [Google Scholar] [CrossRef]
- Chandler, B.C.; Chen, L.W.; Li, M.; Romanowicz, B.; Wenk, H.R. Seismic anisotropy, dominant slip systems and phase transitions in the lowermost mantle. Geophys. J. Int. 2021, 227, 1665–1681. [Google Scholar] [CrossRef]
- Kaercher, P.; Speziale, S.; Miyagi, L.; Kanitpanyacharoen, W.; Wenk, H.R. Crystallographic preferred orientation in wüstite (FeO) through the cubic-to-rhombohedral phase transition. Phys. Chem. Miner. 2012, 39, 613–626. [Google Scholar] [CrossRef]
- Wookey, J.; Stackhouse, S.; Kendall, J.M.; Brodholt, J.; Price, G.D. Efficacy of the post-perovskite phase as an explanation for lowermost-mantle seismic properties. Nature 2005, 438, 1004–1007. [Google Scholar] [CrossRef]
- Walker, A.M.; Forte, A.M.; Wookey, J.; Nowacki, A.; Kendall, J.M. Elastic anisotropy of D ″predicted from global models of mantle flow. Geochem. Geophys. Geosyst. 2011, 12, Q10006. [Google Scholar] [CrossRef]
- Nowacki, A.; Walker, A.M.; Wookey, J.; Kendall, J.M. Evaluating post-perovskite as a cause of D′′ anisotropy in regions of palaeosubduction. Geophys. J. Int. 2013, 192, 1085–1090. [Google Scholar] [CrossRef]
- Jung, H.; Katayama, I.; Jiang, Z.; Hiraga, T.; Karato, S.I. Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics 2006, 421, 1–22. [Google Scholar] [CrossRef]
Run # | Pressure | Unit Cell Parameters | Crystallite Size | t | IPF Max | IPF Secondary Max | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(GPa) | Pt | Prv | pPrv | Prv | pPrv | Prv | pPrv | (m.r.d.) | (m.r.d.) | |||||||||
Pt | Prv | pPrv | a(Å) | a(Å) | b(Å) | c(Å) | a(Å) | b(Å) | c(Å) | (Å) | (Å) | (GPa) | (GPa) | Prv | pPrv | Prv | pPrv | |
1 | 3 | 3 | - | 3.9121(2) | 5.2831(5) | 5.4631(5) | 7.5713(8) | - | - | - | 257(2) | - | 1.91(1) | - | 4.6 | - | 1.0 | - |
1 | 25 | 26 | - | 3.8261(2) | 4.8664(13) | 5.2712(12) | 7.0784(14) | - | - | - | 92(1) | - | 4.44(4) | - | 3.4 | - | 0.8 | - |
1 | 27 | 29 | - | 3.8216(2) | 4.8491(13) | 5.2702(12) | 7.0527(13) | - | - | - | 79(1) | - | 4.47(4) | - | 3.5 | - | 1.0 | - |
1 | 28 | 29 | 28 | 3.8166(1) | 4.8488(9) | 5.1951(9) | 7.0719(11) | 2.8065(3) | 8.9035(13) | 6.9403(8) | 152(1) | 3421(124) | 0.68(2) | 1.05(4) | 2.9 | 4.6 | 1.2 | none |
1 | 33 | 32 | 32 | 3.8018(1) | 4.8108(10) | 5.1719(9) | 7.0191(12) | 2.7847(4) | 8.8103(20) | 6.9241(11) | 140(1) | 842(22) | 2.47(3) | 1.71(5) | 3.8 | 3.9 | 1.4 | 2.2 |
1 | 40 | 37 | 36 | 3.7838(1) | 4.7471(15) | 5.1486(15) | 6.9673(18) | 2.7565(4) | 8.8058(14) | 6.8576(10) | 122(1) | 211(2) | 3.99(2) | 3.57(1) | 3.6 | 2.6 | 2.2 | 1.7 |
1 | 44 | 43 | 48 | 3.7613(1) | 4.6835(17) | 5.1292(17) | 6.8847(18) | 2.7328(4) | 8.8322(21) | 6.6526(9) | 88(1) | 168(1) | 6.01(4) | 7.06(3) | 2.3 | 2.9 | 1.7 | 1.3 |
2 | 32 | 32 | - | 3.8062(2) | 4.7441(12) | 5.1970(11) | 7.0929(9) | - | - | - | 135(2) | - | 3.40(3) | - | 2.3 | - | 1.6 | - |
2 | 33 | 33 | 31 | 3.8015(2) | 4.7642(24) | 5.1773(27) | 7.0467(27) | 2.7926(3) | 8.8210(17) | 6.9285(5) | 288(10) | 601(7) | 1.84(6) | 2.01(1) | 1.6 | 2.5 | - | none |
2 | 40 | 35 | 37 | 3.7816(2) | 4.7153(4) | 5.1431(28) | 7.0925(26) | 2.7550(7) | 8.7720(26) | 6.8583(9) | 190(4) | 151(2) | 3.26(8) | 3.92(5) | - | 2.9 | - | none |
2 | 49 | 41 | 45 | 3.7580(2) | 4.7253(224) | 5.1942(192) | 6.8094(141) | 2.7445(8) | 8.5603(32) | 6.8337(13) | 106(9) | 115(3) | 4.75(44) | 4.56(8) | - | 3.0 | - | none |
2 | 54 | - | 50 | 3.7475(1) | - | - | - | 2.7408(7) | 8.4452(23) | 6.8079(8) | - | 89(1) | - | 5.44(6) | - | 3.0 | - | 1.3 |
2 | 64 | - | 61 | 3.7232(1) | - | - | - | 2.7247(6) | 8.2917(19) | 6.7400(7) | - | 78(1) | - | 5.68(2) | - | 2.6 | - | 1.4 |
Slip System | CRSS | Activity (%) |
---|---|---|
(010)<100> | 10 | 0 |
(010)<001> | 10 | 0 |
(010)<101> | 10 | 0 |
(110)<-110> | 10 | 0 |
(100)<010> | 0.042 | 35 |
(001)<100> | 0.001 | 50 |
(001)<010> | 10 | 0 |
(001)<110> | 0.12 | 15 |
(011)<100> | 10 | 0 |
(100)<001> | 10 | 0 |
(110)<001> | 10 | 0 |
(110)<−110> TWIN | 10 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ledoux, E.E.; Jugle, M.; Stackhouse, S.; Miyagi, L. Deformation and Transformation Textures in the NaMgF3 Neighborite—Post-Perovskite System. Minerals 2024, 14, 250. https://doi.org/10.3390/min14030250
Ledoux EE, Jugle M, Stackhouse S, Miyagi L. Deformation and Transformation Textures in the NaMgF3 Neighborite—Post-Perovskite System. Minerals. 2024; 14(3):250. https://doi.org/10.3390/min14030250
Chicago/Turabian StyleLedoux, Estelle E., Michael Jugle, Stephen Stackhouse, and Lowell Miyagi. 2024. "Deformation and Transformation Textures in the NaMgF3 Neighborite—Post-Perovskite System" Minerals 14, no. 3: 250. https://doi.org/10.3390/min14030250