Thermochronology of the Laojunshan–Song Chai Granite Gneiss Massif (North Vietnam, South China)
Abstract
1. Introduction
2. Geological Description of the Laojunshan–Song Chai Massif
3. Thermochronology of the Laojunshan–Song Chai Massif
Sample | Rock/Mineral * | Metod ** | Age (Ma) | Closure/ Formation T (°C) *** | Reference |
---|---|---|---|---|---|
7 samples | granite, granite gneiss/Whole rock | Rb/Sr | 465 ± 12 | 760f | [3] |
SH-4/93 | granite, granite gneiss/zrn | U/PbT | 464 ± 10 | 760f | [3] |
10YN-22D | granite gneiss/zrn | U/PbL | 457 ± 5 | 760f | [9] |
10YN-18A | granite gneiss/zrn | U/PbL | 456 ± 12 | 760f | [9] |
10YN-22B | granite gneiss/zrn | U/PbL | 453 ± 3 | 760f | [9] |
DL-1, DL3 | granite gneiss/zrn | U/PbI | 452 ± 5 | 760f | [8] |
LJ1778-2 | granite gneiss/zrn | U/PbL | 445.1 ± 2.4 | 760f | [11] |
LJ1773-9A-1 | granite gneiss/zrn | U/PbL | 441.3 ± 2.2 | 760f | [11] |
14WS-17-2 | granite gneiss/zrn | U/PbL | 436.3 ± 5.5 | 760f | [10] |
DL-1, DL3 | granite gneiss/zrn | U/PbI | 436 ± 6 | 760f | [8] |
VN14-52-2 | granite gneiss/zrn | U/PbL | 433.8 ± 3.2 | 760f | [10] |
14WS-16 | granite gneiss/zrn | U/PbL | 433.3 ± 2.5 | 760f | [10] |
WS13-8 | granite gneiss/zrn | U/PbL | 433.1 ± 2.7 | 760f | [10] |
10YN-22B | granite gneiss/zrn | U/PbL | 430 ± 3 | 760f | [9] |
10YN-18A | granite gneiss/zrn | U/PbL | 430 ± 2 | 760f | [9] |
15VN-58-1 | granite gneiss/zrn | U/PbL | 429.5 ± 4.9 | 760f | [10] |
15VN-58-1 | granite gneiss/zrn | U/PbL | 429.5 ± 4.9 | 760f | [10] |
WS13-11-1 | granite gneiss/zrn | U/PbL | 429.1 ± 4.5 | 760f | [10] |
WS13-7 | granite gneiss/zrn | U/PbL | 429 ± 2.1 | 760f | [10] |
WS13-24 | granite gneiss/zrn | U/PbL | 429 ± 3.3 | 760f | [10] |
10YN-13B | granite gneiss/zrn | U/PbL | 429 ± 3 | 760f | [9] |
15VN-62-2 | granite gneiss/zrn | U/PbL | 428.4 ± 4 | 760f | [10] |
V159-3 | granite gneiss/zrn | U/PbT | 428 ± 5 | 760f | [4] |
LJ1829-2A | granite gneiss/zrn | U/PbL | 427 ± 1.3 | 760f | [11] |
15VN-63 | granite gneiss/zrn | U/PbL | 426 ± 2.7 | 760f | [10] |
V101-4 | granite gneiss/zrn | U/PbI | 424 ± 6 | 760f | [5] |
15VN-65 | granite gneiss/zrn | U/PbL | 422.8 ± 2.7 | 760f | [10] |
LJ1829-1A | granite gneiss/zrn | U/PbL | 420.7 ± 1.0 | 760f | [11] |
V160-3 | schist/mnz in grt | Th/PbI | 419 ± 3 | 550f | [7] |
DL-1-6 | granite gneiss/zrn | U/PbI | 409 ± 6 | 760f | [8] |
V160-3 | schist/mnz in grt | Th/PbI | 380 ± 17 | 550f | [7] |
V160-3 | schist/mnz | Th/PbI | 255 ± 14 | 575f | [7] |
V160-3 | schist/mnz | Th/PbI | 246 ± 8 | 575f | [7] |
LJ1773-9A-2 | amphibolite | U/PbL | 241.5 ± 1.4 | 575f | [11] |
V160-3 | schist/mnz | Th/PbI | 240 ± 3 | 575f | [7] |
DL-5-6 | granite gneiss/amp | Ar/Ar | 237 ± 5 | 500f | [8] |
VN-324-2 | granite gneiss/ms | Ar/Ar | 236 ± 2 | 366c | [6] |
DL-1-6 | granite gneiss/zrn | U/PbS | 234 ± 10 | 500f | [8] |
VN-322-2 | granite gneiss/ms | Ar/Ar | 234 ± 2 | 366c | [6] |
LJ1829-2A | granite gneiss/zrn | U/PbL | 232.8 ± 1.8 | 575f | [11] |
V160-3 | schist/mnz | Th/PbI | 230 ± 5 | 575f | [7] |
4-94-1 | granite gneiss/bt | K/Ar | 230 ± 2 | 340c | [3] |
V160-3 | schist/mnz | Th/PbI | 224 ± 7 | 575f | [7] |
4-94-1 | granite gneiss/ms | K/Ar | 222 ± 2 | 366c | [3] |
V160-3 | schist/mnz | Th/PbI | 216 ± 40 | 575f | [7] |
3-73a-1 | granite gneiss/ms | K/Ar | 212 ± 2 | 366c | [3] |
VN-159-3 | granite gneiss/ms | Ar/Ar | 210 ± 9 | 366c | [4] |
V160-3 | granite gneiss/w.r.-ms | Rb/Sr | 206 ± 5 | 316c | [4] |
V160-3 | schist/mnz | Th/PbI | 203 ± 5 | 575 | [7] |
VN-329-2 | granite gneiss/bt | Ar/Ar | 201 ± 2 | 340c | [6] |
VN-335-2 | granite gneiss/ms | Ar/Ar | 198 ± 2 | 366c | [6] |
4-89-1 | granite gneiss/bt | K/Ar | 192 ± 2 | 340c | [3] |
VN-159-3 | granite gneiss/bt | Ar/Ar | 190 ± 8 | 340c | [4] |
VN-335-2 | granite gneiss/bt | Ar/Ar | 176 ± 2 | 340c | [6] |
V160-3 | granite gneiss/w.r.-bt | Rb/Sr | 176 ± 3 | 300c | [4] |
4-94-1 | granite gneiss/fsp | K/Ar | 175 ± 2 | 230c | [3] |
VN-333-2 | granite gneiss/bt | Ar/Ar | 166 ± 2 | 340c | [6] |
VN-159-3 | granite gneiss/fsp | Ar/Ar | 153 ± 3 | 230c | [4] |
DL-2-6 | granite gneiss/ms | Ar/Ar | 144 ± 2 | 366c | [8] |
4-89-1 | granite gneiss/fsp | K/Ar | 144 ± 2 | 230c | [3] |
DL-3-6 | granite gneiss/ms | Ar/Ar | 140 ± 2 | 366c | [8] |
DYK07-03 | Qz-Ms vein/ms | Ar/Ar | 124.3 ± 0.7 | 366c | [36] |
DYK06-08 | bt-pegmatite vein/bt | Ar/Ar | 123.8 ± 0.7 | 340c | [36] |
DL-4-6 | granite gneiss/bt | Ar/Ar | 116 ± 3 | 340c | [8] |
DYK06-13 | Granofels/bt | Ar/Ar | 103.2 ± 0.5 | 340c | [36] |
DL-1-6 | granite gneiss/bt | Ar/Ar | 84 ± 1 | 340c | [8] |
V159-3 | granite gneiss/zrn | FT | 77.5 ± 4 | 230c | [4] |
DYK06-09 | Granite massif/bt | Ar/Ar | 64.4 ± 0.5 | 340c | [36] |
V159-3 | granite gneiss/ap | FT | 33.6 ± 4 | 110c | [4] |
9805-2 | granite gneiss/ap | FT | 24 ± 2 | 110c | [6] |
9801-2 | granite gneiss/ap | FT | 23 ± 2 | 110c | [6] |
9811-2 | granite gneiss/ap | FT | 20 ± 2 | 110c | [6] |
9807-2 | granite gneiss/ap | FT | 20 ± 2 | 110c | [6] |
9814-2 | granite gneiss/ap | FT | 19 ± 2 | 110c | [6] |
9812-2 | granite gneiss/ap | FT | 19 ± 2 | 110c | [6] |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Zhang, A.; Fan, W.; Zhao, G.; Zhang, G.; Zhang, Y.; Zhang, F.; Li, S. Kwangsian crustal anataxis within the eastern South China Block: Geochemical, zircon U-Pb geochronological and Hf isotopic fingeprints from the gneissoid granites of Wugong and Wuyi-Yunkai Domains. Lithos 2011, 127, 239–260. [Google Scholar] [CrossRef]
- Huang, D.-L.; Wang, X.-L. Reviews of geochronology, geochemistry, and geodynamic processes of Ordovician-Devonian granitic rocks in southeast China. Asian Earth Sci. 2019, 184, 104001. [Google Scholar] [CrossRef]
- Ponomareva, A.P.; Vladimirov, A.G.; An, F.L.; Rudnev, S.N.; Kruk, N.N.; Ponomarchuk, V.A.; Bibikova, E.V.; Zhuravlev, D.Z. The Song-Chay high-alumina massif in Northern Vietnam: Substantiation of the Ordovician age, petrogenesis, and tectonic position. Geol. Geofizik. (Russ. Geol. Geophys.) 1977, 38, 1792–1806. [Google Scholar]
- Roger, F.; Leloup, P.H.; Jolivet, M.; Lacassin, R.; Trinh, P.T.; Brunel, M.; Seward, D. Long and complex thermal history of the Song Chay metamorphic dome (Northern Vietnam) by multi-system geochronology. Tectonophysics 2000, 321, 449–466. [Google Scholar] [CrossRef]
- Carter, A.; Rogues, D.; Bristow, C.; Kinny, P. Understanding Mesozoic accretion in Southeast Asia: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology 2001, 29, 211–214. [Google Scholar] [CrossRef]
- Maluski, H.; Lepvrier, C.; Jolivet, L.; Carter, A.; Roques, D.; Beyssacd, O.; Tange, T.T.; Thangf, N.D.; Avigadd, D. Ar-Ar and fission-track ages in the Song Chay Massif: Early Triassic and Cenozoic tectonics in northern Vietnam. J. Asian Earth Sci. 2001, 19, 233–248. [Google Scholar] [CrossRef]
- Gilley, L.D.; Harrison, T.M.; Leloup, P.H.; Ryerson, F.J.; Lovera, O.M.; Wang, J.-H. Direct dating of left-lateral deformation along the Red River shear zone, China and Vietnam. J. Geophys. Res. 2003, 108, 2127. [Google Scholar] [CrossRef]
- Yan, D.-P.; Zhou, M.-F.; Wang, C.Y.; Xia, B. Structural and geochronological constraints on the tectonic evolution of the Dulong-Song Chay tectonic dome in Yunnan province, SW China. J. Asian Earth Sci. 2006, 28, 332–353. [Google Scholar] [CrossRef]
- Peng, T.; Fan, W.; Zhao, G.; Peng, B.; Xia, X.; Mao, Y. Petrogenesis of the early Paleozoic strongly peraluminous granites in the Western South China Block and its tectonic implications. J. Asian Earth Sci. 2015, 98, 399–420. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, J.-H.; O’Reilly, S.Y.; Griffin, W.L.; Wang, X.; Sun, T. Sources of the Nanwenhe—Song Chay granitic complex (SW China—NE Vietnam) and its tectonic significance. Lithos 2017, 290–291, 76–93. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, S.; Dong, Y.; Li, W.; Cheng, X.; Wang, H.; Lyu, M. Deformation structure and exhumation process of the Laojunshan gneiss dome in southeastern Yunnan of China. Sci. China Earth Sci. 2021, 64, 2190–2216. [Google Scholar] [CrossRef]
- Dovzhikov, A.E.; Mi, B.F.; Vasilevskaya, E.D.; Zhamoyda, A.I.; Ivanov, G.V.; Izokh, E.P.; Xiu, L.D.; Mareichev, A.M.; Tien, N.V.; Tri, N.T.; et al. Geology of North Vietnam; Vietnam, Science and Technology: Hanoi, Vietnam, 1965; p. 668. (In Russian) [Google Scholar]
- Chi, C.W.; Tung, N.S. (Eds.) Geological Map of the Northern Part of Vietnam. Scale 1:1000000; Publishing House for Science and Technology: Hanoi, Vietnam, 1977. [Google Scholar]
- Son, N.K. (Ed.) Geology and Earth Resources of Viet Nam; Publishing House for Science and Technology: Hanoi, Vietnam, 2011; p. 645. [Google Scholar]
- Zhao, K.-D.; Jiang, S.-Y.; Sun, T.; Chen, W.-F.; Ling, H.-F.; Chen, P.-R. Zircon U-Pb dating, trace element and Sr-Nd-Hf isotope geochemistry of Paleozoic granites in the Miao’ershan-Yuechengling batholith, South China: Implication for petrogenesis and tectonic-magmatic evolution. J. Asian Earth Sci. 2013, 74, 244–264. [Google Scholar] [CrossRef]
- Guo, L.; Liu, Y.; Li, C.; Xu, W.; Ye, L. SHRIMP zircon U-Pb geochronology and lithogeochemistry of Caledonian Granites from the Laojunshan area, southeastern Yunnan province, China: Implications for the collision between the Yandtze and Cathaysia blocks. Geochem. J. 2009, 43, 101–122. [Google Scholar] [CrossRef]
- Chung, S.-L.; Jahn, B.-M. Plume-lithosphere interaction of the Emeishan flood basalts at the Permian-Triassic boundary. Geology 1995, 23, 889–892. [Google Scholar] [CrossRef]
- Hanski, E.; Walker, R.J.; Huhma, H.; Polyakov, G.V.; Balykin, P.A.; Hoa, T.T.; Phuong, N.T. Origin of the Permian-Triassic komatiites, northwestern Vietnam. Contrib. Mineral Petrol. 2004, 147, 453–469. [Google Scholar] [CrossRef]
- Xu, Y.; Chung, S.-L.; Jahn, B.M.; Wu, G. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Eimeshan flood basalts in southwestern China. Lithos 2001, 58, 145–168. [Google Scholar] [CrossRef]
- Tran, H.; Izokh, A.E.; Polyakov, G.V.; Borisenko, A.S.; Anh, T.T.; Balykin, P.A.; Phuong, N.T.; Rudnev, S.N.; Van, V.V.; Nien, B.A. Permo-Triassic magmatism and metallogeny of Northern Vietnam in relation to the Emeishan plume. Russ. Geol. Geophys. 2008, 49, 480–491. [Google Scholar]
- Faure, M.; Nguyen, V.V.; Hoai, L.T.T.; Lepvrier, C. Early Paleozoic or Early-Middle Triassic collision between the South China and Indochina Blocks: The controversy resolved? Structural insights from the Kon Tum massif (Central Vietnam). J. Asian Earth Sci. 2018, 166, 162–180. [Google Scholar] [CrossRef]
- Lepvrier, C.; Faure, M.; Van, V.N.; Vu, T.V.; Lin, W.; Trong, T.T.; Hoa, P.T. North-directed Triassic nappes in Northeastern Vietnam (East Bac Bo). J. Asian Earth Sci. 2011, 41, 56–68. [Google Scholar] [CrossRef]
- Vladimirov, A.G.; Travin, A.V.; Anh, L.A.; Murzintsev, N.G.; Annikova, I.Y.; Mikheev, E.I.; Duong, N.A.; Man, T.T.; Lan, T.T. Thermochronology of granitoid batholiths and their transformation into metamorphic core complexes (example of Song-Chai massif, Northern Vietnam). Geodyn. Tectonophys. 2019, 10, 347–373. [Google Scholar] [CrossRef]
- Hodges, K.V. Geochronology and thermochronology in orogenic systems. In Treatise on Geochemistry; Elsevier: Oxford, UK, 2004; pp. 263–292. [Google Scholar]
- Travin, A.V.; Buslov, M.M.; Bishaev, Y.A.; Tsygankov, A.A.; Mikheev, E.I. Late Paleozoic-Cenozoic Tectonothermal Evolution of Transbaikalia: Thermochronology of the Angara-Vitim Granitoid Batholith. Russ. Geol. Geophys. 2023, 64, 1086–1097. [Google Scholar] [CrossRef]
- Faure, M.; Lin, W.; Chu, Y.; Lepvrier, C. Triassic tectonics of the southern margin of the South China Block. Comtes Rendus Geosci. 2016, 348, 5–14. [Google Scholar] [CrossRef]
- Xu, B.; Jiang, S.-Y.; Hofmann, A.W.; Wang, R.; Yang, S.-Y.; Zhao, K.D. Geochronology and geochemical constraints on petrogenesis of Early Paleozoic granites from the Laojunshan district in Yunnan Province of South China. Gondwana Res. 2016, 29, 248–263. [Google Scholar] [CrossRef]
- Wan, Y.; Liu, D.; Wilde, S.A.; Cao, J.; Chen, B.; Dong, C.; Song, B.; Du, L. Evolution of the Yunkai Terrane, South China: Evidence from SHRIMP zircon U-Pb dating, geochemistry and Nd isotope. J. Asian Earth Sci. 2010, 37, 140–153. [Google Scholar] [CrossRef]
- Li, Z.-X.; Li, X.-H.; Wartho, J.-A.; Clark, C.; Li, W.-X.; Zhang, C.-L.; Bao, C. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions. Geol. Soc. Am. Bull. 2010, 122, 772–793. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, W.; Zhang, G.; Zhang, Y. Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana Res. 2013, 23, 1273–1305. [Google Scholar] [CrossRef]
- Shellnutt, J.G. The Emeishan large igneous province: A synthesis. Geosci. Front. 2014, 5, 369–394. [Google Scholar] [CrossRef]
- Shellnutt, J.G.; Pham, T.T.; Denyszyn, S.W.; Yeh, M.-W.; Tran, T.A. Magmatic duration of the Emeishan large igneous province: Insight from northern Vietnam. Geology 2020, 48, 457–461. [Google Scholar] [CrossRef]
- Leloup, P.H.; Arnaud, N.; Lacassin, R.; Kienast, J.R.; Harrison, T.M.; Phan Trong, T.T.; Replumaz, A.; Tapponier, P. New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia. J. Geophys. Res. 2001, 106, 6683–6732. [Google Scholar] [CrossRef]
- Dodson, M.H. Closure temperature in cooling geochronological and petrological systems. Contrib. Mineral. Petrol. 1973, 40, 259–274. [Google Scholar] [CrossRef]
- Giletti, B. Studies in diffusion 1: Ar in phlogopite mica. In Geochemical Transport and Kinetics; Hofmann, A., Giletti, B., Yoder, H.S., Yund, R.A., Eds.; Carnegie Institution of Washington Publication: Washington, DC, USA, 1974; pp. 107–115. [Google Scholar]
- Xue, G.; Marshall, D.; Zhang, S.; Ullrich, T.D.; Bishop, T.; Groat, L.A.; Thorkelson, D.J.; Guiliani, G.; Fallick, A.E. Conditions fot Early Cretaceous Emerald Formation at Dyakou, China: Fluid Inclusion, Ar-Ar, and Stable Isotope Studies. Econ. Geol. 2010, 105, 339–349. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Jenkin, G.R.T.; Ellam, R.M.; Rogers, G.; Stuart, F.M. An investigation of closure temperature of the biotite Rb-Sr system: The importance of cation exchange. Geochim. Cosmochim. Acta 2001, 65, 1141–1160. [Google Scholar] [CrossRef]
- Glodny, J.; Kȕhn, A.; Austrheim, H. Diffusion versus recrystallization processes in Rb-Sr geochronology: Isotopic relics in eclogite facies rocks, Western Gneiss Region, Norway. Geochim. Cosmochim. Acta 2008, 72, 506–525. [Google Scholar] [CrossRef]
- Peytcheva, I.; von Quadt, A.; Ovtcharova, M.; Handler, R.; Neubauer, F.; Salnikova, E.; Kostitsyn, Y.; Sarov, S.; Kolcheva, K. Metagrenitoids from the eastern part of the Central Rhodopean Dome (Bulgaria): U-Pb, Rb-Sr and 40Ar/39Ar timing of emplacement and exhumation and isotope-geochemical features. Mineral. Petrol. 2004, 82, 1–31. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, W.; Zhao, G.; Ji, S.; Peng, T. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia block, China: Tectonic implications and the need to redefine lithostratigraphic units. Gondw. Res. 2007, 12, 166–183. [Google Scholar]
- Charvet, J.; Shu, L.; Faure, M.; Choulet, F.; Wang, B.; Lu, H.; Le Breton, N. Structural development of the Lower Paleozoic belt of South China: Genesis of an intracontinental orogen. J. Asian Earth Sci. 2010, 39, 309–330. [Google Scholar] [CrossRef]
- Chu, Y.; Lin, W.; Faure, M.; Wang, Q.; Ji, W. Phanerozoic tectonothermal events of the Xuefengshan Belt, central South China: Implications from U-Pb age and Lu-Hf determinations of granites. Lithos 2012, 150, 243–255. [Google Scholar] [CrossRef]
- Tan, H.Q.; Liu, Y.P. Genesis of amphibolite in Mengdong Group-complex in southeastern Yunnan and its tectonic significance. J. Jilin Univ.-Earth Sci. 2017, 47, 1763–1783. (In Chinese) [Google Scholar]
- Liu, Z.; Cao, S.Y.; Li, W. Deformation-Metamorphism and Constraints on Exhumation of the Laojunshan Metamorphic Core Complex in Southeastern Yunnan; Annual Meeting of Chinese Geosciences Union: Beijing, China, 2018; p. 138. [Google Scholar]
- Tran, T.V.; Faure, M.; Nguyen, V.V.; Bui, H.H.; Fyhn, M.B.W.; Nguyen, T.Q.; Lepvrier, C.; Thomsen, T.B.; Tani, K.; Charusiri, P. Neoproterozoic to Early Triassic tectono-stratigraphic evolution of Indochina and adjacent areas: A review with new data. J. Asian Earth Sci. 2020, 191, 104231. [Google Scholar] [CrossRef]
- Kőnigshof, P.; Linnemann, U.; Phuong, T.H. U-Pb detrital zircon geochronology of sedimentary rocks in NE Vietnam: Implication for Early and Middle Devonian Palaeography. Vietnam. J. Earth Sci. 2017, 39, 303–323. [Google Scholar]
- Lehrmann, D.J.; Enos, P.; Payne, J.L.; Montgomery, P.; Wei, J.; Yu, Y.; Xiao, J.; Orchard, M. Permian and Triassic depositional history of the Yangtze platform and Great Bank of Guizhou in the Nanpanjiang basin of Guizhou and Guangxi, south China. Albertiana 2005, 33, 149–168. [Google Scholar]
- Yang, J.; Cawood, P.A.; Du, Y.; Huang, H.; Hu, L. Detrital record of Indosinian mountain building in SW China: Provenance of the Middle Triassic turbidites in the Youjiang Basin. Tectonophysics 2012, 574–575, 105–117. [Google Scholar] [CrossRef]
- Hu, L.; Cawood, P.A.; Du, Y.; Xu, Y.; Xu, W.; Huang, H. Detrital records for Upper Permian-Lower Triassic succession in the Shiwandashan Basin, South China and implication for Permo-Triassic (Indosinian) otogeny. J. Asian Earth Sci. 2015, 98, 152–166. [Google Scholar] [CrossRef]
- Feng, J.; Mao, J.; Pei, R. Ages and geochemistry of Laojunshan granites in southeastern Yunnan: Implications for W-Sn polymetallic ore deposits. Mineral. Petrol. 2013, 107, 573–589. [Google Scholar] [CrossRef]
- Xu, B.; Jiang, S.-Y.; Wang, R.; Ma, L.; Zhao, K.D.; Yan, X. Late Cretaceous granites from the giant Dulong Sn-polymetallic ore district in Yunnan Province, South China: Geochronology, geochemistry, mineral chemistry and Nd-Hf isotopic compositions. Lithos 2015, 218–219, 54–72. [Google Scholar] [CrossRef]
- Liu, Y.-P.; Li, Z.-X.; Li, H.M.; Guo, L.-G.; Xu, W.; Ye, L.; Li, C.-Y.; Pi, D.H. U-Pb geochronology of cassiterite and zircon from the Dulong Sn-Zn deposit: Evidence for Cretaceous large-scale granitic magmatism and mineralization events in southeastern Yunnan province, China. Acta Petrol. Sin. 2007, 23, 967–976. [Google Scholar]
- Cheng, Y.; Mao, J.; Liu, P. Geodynamic setting of Late Cretaceous Sn-W mineralization in southeastern Yunnan and northeastern Vietnam. Solid Earth Sci. 2016, 1, 79–88. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Travin, A.; Murzintsev, N.; Kruk, N. Thermochronology of the Laojunshan–Song Chai Granite Gneiss Massif (North Vietnam, South China). Minerals 2024, 14, 251. https://doi.org/10.3390/min14030251
Travin A, Murzintsev N, Kruk N. Thermochronology of the Laojunshan–Song Chai Granite Gneiss Massif (North Vietnam, South China). Minerals. 2024; 14(3):251. https://doi.org/10.3390/min14030251
Chicago/Turabian StyleTravin, Alexey, Nikolai Murzintsev, and Nikolai Kruk. 2024. "Thermochronology of the Laojunshan–Song Chai Granite Gneiss Massif (North Vietnam, South China)" Minerals 14, no. 3: 251. https://doi.org/10.3390/min14030251
APA StyleTravin, A., Murzintsev, N., & Kruk, N. (2024). Thermochronology of the Laojunshan–Song Chai Granite Gneiss Massif (North Vietnam, South China). Minerals, 14(3), 251. https://doi.org/10.3390/min14030251