Thermochronology of the Laojunshan–Song Chai Granite Gneiss Massif (North Vietnam, South China)
Abstract
:1. Introduction
2. Geological Description of the Laojunshan–Song Chai Massif
3. Thermochronology of the Laojunshan–Song Chai Massif
Sample | Rock/Mineral * | Metod ** | Age (Ma) | Closure/ Formation T (°C) *** | Reference |
---|---|---|---|---|---|
7 samples | granite, granite gneiss/Whole rock | Rb/Sr | 465 ± 12 | 760f | [3] |
SH-4/93 | granite, granite gneiss/zrn | U/PbT | 464 ± 10 | 760f | [3] |
10YN-22D | granite gneiss/zrn | U/PbL | 457 ± 5 | 760f | [9] |
10YN-18A | granite gneiss/zrn | U/PbL | 456 ± 12 | 760f | [9] |
10YN-22B | granite gneiss/zrn | U/PbL | 453 ± 3 | 760f | [9] |
DL-1, DL3 | granite gneiss/zrn | U/PbI | 452 ± 5 | 760f | [8] |
LJ1778-2 | granite gneiss/zrn | U/PbL | 445.1 ± 2.4 | 760f | [11] |
LJ1773-9A-1 | granite gneiss/zrn | U/PbL | 441.3 ± 2.2 | 760f | [11] |
14WS-17-2 | granite gneiss/zrn | U/PbL | 436.3 ± 5.5 | 760f | [10] |
DL-1, DL3 | granite gneiss/zrn | U/PbI | 436 ± 6 | 760f | [8] |
VN14-52-2 | granite gneiss/zrn | U/PbL | 433.8 ± 3.2 | 760f | [10] |
14WS-16 | granite gneiss/zrn | U/PbL | 433.3 ± 2.5 | 760f | [10] |
WS13-8 | granite gneiss/zrn | U/PbL | 433.1 ± 2.7 | 760f | [10] |
10YN-22B | granite gneiss/zrn | U/PbL | 430 ± 3 | 760f | [9] |
10YN-18A | granite gneiss/zrn | U/PbL | 430 ± 2 | 760f | [9] |
15VN-58-1 | granite gneiss/zrn | U/PbL | 429.5 ± 4.9 | 760f | [10] |
15VN-58-1 | granite gneiss/zrn | U/PbL | 429.5 ± 4.9 | 760f | [10] |
WS13-11-1 | granite gneiss/zrn | U/PbL | 429.1 ± 4.5 | 760f | [10] |
WS13-7 | granite gneiss/zrn | U/PbL | 429 ± 2.1 | 760f | [10] |
WS13-24 | granite gneiss/zrn | U/PbL | 429 ± 3.3 | 760f | [10] |
10YN-13B | granite gneiss/zrn | U/PbL | 429 ± 3 | 760f | [9] |
15VN-62-2 | granite gneiss/zrn | U/PbL | 428.4 ± 4 | 760f | [10] |
V159-3 | granite gneiss/zrn | U/PbT | 428 ± 5 | 760f | [4] |
LJ1829-2A | granite gneiss/zrn | U/PbL | 427 ± 1.3 | 760f | [11] |
15VN-63 | granite gneiss/zrn | U/PbL | 426 ± 2.7 | 760f | [10] |
V101-4 | granite gneiss/zrn | U/PbI | 424 ± 6 | 760f | [5] |
15VN-65 | granite gneiss/zrn | U/PbL | 422.8 ± 2.7 | 760f | [10] |
LJ1829-1A | granite gneiss/zrn | U/PbL | 420.7 ± 1.0 | 760f | [11] |
V160-3 | schist/mnz in grt | Th/PbI | 419 ± 3 | 550f | [7] |
DL-1-6 | granite gneiss/zrn | U/PbI | 409 ± 6 | 760f | [8] |
V160-3 | schist/mnz in grt | Th/PbI | 380 ± 17 | 550f | [7] |
V160-3 | schist/mnz | Th/PbI | 255 ± 14 | 575f | [7] |
V160-3 | schist/mnz | Th/PbI | 246 ± 8 | 575f | [7] |
LJ1773-9A-2 | amphibolite | U/PbL | 241.5 ± 1.4 | 575f | [11] |
V160-3 | schist/mnz | Th/PbI | 240 ± 3 | 575f | [7] |
DL-5-6 | granite gneiss/amp | Ar/Ar | 237 ± 5 | 500f | [8] |
VN-324-2 | granite gneiss/ms | Ar/Ar | 236 ± 2 | 366c | [6] |
DL-1-6 | granite gneiss/zrn | U/PbS | 234 ± 10 | 500f | [8] |
VN-322-2 | granite gneiss/ms | Ar/Ar | 234 ± 2 | 366c | [6] |
LJ1829-2A | granite gneiss/zrn | U/PbL | 232.8 ± 1.8 | 575f | [11] |
V160-3 | schist/mnz | Th/PbI | 230 ± 5 | 575f | [7] |
4-94-1 | granite gneiss/bt | K/Ar | 230 ± 2 | 340c | [3] |
V160-3 | schist/mnz | Th/PbI | 224 ± 7 | 575f | [7] |
4-94-1 | granite gneiss/ms | K/Ar | 222 ± 2 | 366c | [3] |
V160-3 | schist/mnz | Th/PbI | 216 ± 40 | 575f | [7] |
3-73a-1 | granite gneiss/ms | K/Ar | 212 ± 2 | 366c | [3] |
VN-159-3 | granite gneiss/ms | Ar/Ar | 210 ± 9 | 366c | [4] |
V160-3 | granite gneiss/w.r.-ms | Rb/Sr | 206 ± 5 | 316c | [4] |
V160-3 | schist/mnz | Th/PbI | 203 ± 5 | 575 | [7] |
VN-329-2 | granite gneiss/bt | Ar/Ar | 201 ± 2 | 340c | [6] |
VN-335-2 | granite gneiss/ms | Ar/Ar | 198 ± 2 | 366c | [6] |
4-89-1 | granite gneiss/bt | K/Ar | 192 ± 2 | 340c | [3] |
VN-159-3 | granite gneiss/bt | Ar/Ar | 190 ± 8 | 340c | [4] |
VN-335-2 | granite gneiss/bt | Ar/Ar | 176 ± 2 | 340c | [6] |
V160-3 | granite gneiss/w.r.-bt | Rb/Sr | 176 ± 3 | 300c | [4] |
4-94-1 | granite gneiss/fsp | K/Ar | 175 ± 2 | 230c | [3] |
VN-333-2 | granite gneiss/bt | Ar/Ar | 166 ± 2 | 340c | [6] |
VN-159-3 | granite gneiss/fsp | Ar/Ar | 153 ± 3 | 230c | [4] |
DL-2-6 | granite gneiss/ms | Ar/Ar | 144 ± 2 | 366c | [8] |
4-89-1 | granite gneiss/fsp | K/Ar | 144 ± 2 | 230c | [3] |
DL-3-6 | granite gneiss/ms | Ar/Ar | 140 ± 2 | 366c | [8] |
DYK07-03 | Qz-Ms vein/ms | Ar/Ar | 124.3 ± 0.7 | 366c | [36] |
DYK06-08 | bt-pegmatite vein/bt | Ar/Ar | 123.8 ± 0.7 | 340c | [36] |
DL-4-6 | granite gneiss/bt | Ar/Ar | 116 ± 3 | 340c | [8] |
DYK06-13 | Granofels/bt | Ar/Ar | 103.2 ± 0.5 | 340c | [36] |
DL-1-6 | granite gneiss/bt | Ar/Ar | 84 ± 1 | 340c | [8] |
V159-3 | granite gneiss/zrn | FT | 77.5 ± 4 | 230c | [4] |
DYK06-09 | Granite massif/bt | Ar/Ar | 64.4 ± 0.5 | 340c | [36] |
V159-3 | granite gneiss/ap | FT | 33.6 ± 4 | 110c | [4] |
9805-2 | granite gneiss/ap | FT | 24 ± 2 | 110c | [6] |
9801-2 | granite gneiss/ap | FT | 23 ± 2 | 110c | [6] |
9811-2 | granite gneiss/ap | FT | 20 ± 2 | 110c | [6] |
9807-2 | granite gneiss/ap | FT | 20 ± 2 | 110c | [6] |
9814-2 | granite gneiss/ap | FT | 19 ± 2 | 110c | [6] |
9812-2 | granite gneiss/ap | FT | 19 ± 2 | 110c | [6] |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Zhang, A.; Fan, W.; Zhao, G.; Zhang, G.; Zhang, Y.; Zhang, F.; Li, S. Kwangsian crustal anataxis within the eastern South China Block: Geochemical, zircon U-Pb geochronological and Hf isotopic fingeprints from the gneissoid granites of Wugong and Wuyi-Yunkai Domains. Lithos 2011, 127, 239–260. [Google Scholar] [CrossRef]
- Huang, D.-L.; Wang, X.-L. Reviews of geochronology, geochemistry, and geodynamic processes of Ordovician-Devonian granitic rocks in southeast China. Asian Earth Sci. 2019, 184, 104001. [Google Scholar] [CrossRef]
- Ponomareva, A.P.; Vladimirov, A.G.; An, F.L.; Rudnev, S.N.; Kruk, N.N.; Ponomarchuk, V.A.; Bibikova, E.V.; Zhuravlev, D.Z. The Song-Chay high-alumina massif in Northern Vietnam: Substantiation of the Ordovician age, petrogenesis, and tectonic position. Geol. Geofizik. (Russ. Geol. Geophys.) 1977, 38, 1792–1806. [Google Scholar]
- Roger, F.; Leloup, P.H.; Jolivet, M.; Lacassin, R.; Trinh, P.T.; Brunel, M.; Seward, D. Long and complex thermal history of the Song Chay metamorphic dome (Northern Vietnam) by multi-system geochronology. Tectonophysics 2000, 321, 449–466. [Google Scholar] [CrossRef]
- Carter, A.; Rogues, D.; Bristow, C.; Kinny, P. Understanding Mesozoic accretion in Southeast Asia: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology 2001, 29, 211–214. [Google Scholar] [CrossRef]
- Maluski, H.; Lepvrier, C.; Jolivet, L.; Carter, A.; Roques, D.; Beyssacd, O.; Tange, T.T.; Thangf, N.D.; Avigadd, D. Ar-Ar and fission-track ages in the Song Chay Massif: Early Triassic and Cenozoic tectonics in northern Vietnam. J. Asian Earth Sci. 2001, 19, 233–248. [Google Scholar] [CrossRef]
- Gilley, L.D.; Harrison, T.M.; Leloup, P.H.; Ryerson, F.J.; Lovera, O.M.; Wang, J.-H. Direct dating of left-lateral deformation along the Red River shear zone, China and Vietnam. J. Geophys. Res. 2003, 108, 2127. [Google Scholar] [CrossRef]
- Yan, D.-P.; Zhou, M.-F.; Wang, C.Y.; Xia, B. Structural and geochronological constraints on the tectonic evolution of the Dulong-Song Chay tectonic dome in Yunnan province, SW China. J. Asian Earth Sci. 2006, 28, 332–353. [Google Scholar] [CrossRef]
- Peng, T.; Fan, W.; Zhao, G.; Peng, B.; Xia, X.; Mao, Y. Petrogenesis of the early Paleozoic strongly peraluminous granites in the Western South China Block and its tectonic implications. J. Asian Earth Sci. 2015, 98, 399–420. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, J.-H.; O’Reilly, S.Y.; Griffin, W.L.; Wang, X.; Sun, T. Sources of the Nanwenhe—Song Chay granitic complex (SW China—NE Vietnam) and its tectonic significance. Lithos 2017, 290–291, 76–93. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, S.; Dong, Y.; Li, W.; Cheng, X.; Wang, H.; Lyu, M. Deformation structure and exhumation process of the Laojunshan gneiss dome in southeastern Yunnan of China. Sci. China Earth Sci. 2021, 64, 2190–2216. [Google Scholar] [CrossRef]
- Dovzhikov, A.E.; Mi, B.F.; Vasilevskaya, E.D.; Zhamoyda, A.I.; Ivanov, G.V.; Izokh, E.P.; Xiu, L.D.; Mareichev, A.M.; Tien, N.V.; Tri, N.T.; et al. Geology of North Vietnam; Vietnam, Science and Technology: Hanoi, Vietnam, 1965; p. 668. (In Russian) [Google Scholar]
- Chi, C.W.; Tung, N.S. (Eds.) Geological Map of the Northern Part of Vietnam. Scale 1:1000000; Publishing House for Science and Technology: Hanoi, Vietnam, 1977. [Google Scholar]
- Son, N.K. (Ed.) Geology and Earth Resources of Viet Nam; Publishing House for Science and Technology: Hanoi, Vietnam, 2011; p. 645. [Google Scholar]
- Zhao, K.-D.; Jiang, S.-Y.; Sun, T.; Chen, W.-F.; Ling, H.-F.; Chen, P.-R. Zircon U-Pb dating, trace element and Sr-Nd-Hf isotope geochemistry of Paleozoic granites in the Miao’ershan-Yuechengling batholith, South China: Implication for petrogenesis and tectonic-magmatic evolution. J. Asian Earth Sci. 2013, 74, 244–264. [Google Scholar] [CrossRef]
- Guo, L.; Liu, Y.; Li, C.; Xu, W.; Ye, L. SHRIMP zircon U-Pb geochronology and lithogeochemistry of Caledonian Granites from the Laojunshan area, southeastern Yunnan province, China: Implications for the collision between the Yandtze and Cathaysia blocks. Geochem. J. 2009, 43, 101–122. [Google Scholar] [CrossRef]
- Chung, S.-L.; Jahn, B.-M. Plume-lithosphere interaction of the Emeishan flood basalts at the Permian-Triassic boundary. Geology 1995, 23, 889–892. [Google Scholar] [CrossRef]
- Hanski, E.; Walker, R.J.; Huhma, H.; Polyakov, G.V.; Balykin, P.A.; Hoa, T.T.; Phuong, N.T. Origin of the Permian-Triassic komatiites, northwestern Vietnam. Contrib. Mineral Petrol. 2004, 147, 453–469. [Google Scholar] [CrossRef]
- Xu, Y.; Chung, S.-L.; Jahn, B.M.; Wu, G. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Eimeshan flood basalts in southwestern China. Lithos 2001, 58, 145–168. [Google Scholar] [CrossRef]
- Tran, H.; Izokh, A.E.; Polyakov, G.V.; Borisenko, A.S.; Anh, T.T.; Balykin, P.A.; Phuong, N.T.; Rudnev, S.N.; Van, V.V.; Nien, B.A. Permo-Triassic magmatism and metallogeny of Northern Vietnam in relation to the Emeishan plume. Russ. Geol. Geophys. 2008, 49, 480–491. [Google Scholar]
- Faure, M.; Nguyen, V.V.; Hoai, L.T.T.; Lepvrier, C. Early Paleozoic or Early-Middle Triassic collision between the South China and Indochina Blocks: The controversy resolved? Structural insights from the Kon Tum massif (Central Vietnam). J. Asian Earth Sci. 2018, 166, 162–180. [Google Scholar] [CrossRef]
- Lepvrier, C.; Faure, M.; Van, V.N.; Vu, T.V.; Lin, W.; Trong, T.T.; Hoa, P.T. North-directed Triassic nappes in Northeastern Vietnam (East Bac Bo). J. Asian Earth Sci. 2011, 41, 56–68. [Google Scholar] [CrossRef]
- Vladimirov, A.G.; Travin, A.V.; Anh, L.A.; Murzintsev, N.G.; Annikova, I.Y.; Mikheev, E.I.; Duong, N.A.; Man, T.T.; Lan, T.T. Thermochronology of granitoid batholiths and their transformation into metamorphic core complexes (example of Song-Chai massif, Northern Vietnam). Geodyn. Tectonophys. 2019, 10, 347–373. [Google Scholar] [CrossRef]
- Hodges, K.V. Geochronology and thermochronology in orogenic systems. In Treatise on Geochemistry; Elsevier: Oxford, UK, 2004; pp. 263–292. [Google Scholar]
- Travin, A.V.; Buslov, M.M.; Bishaev, Y.A.; Tsygankov, A.A.; Mikheev, E.I. Late Paleozoic-Cenozoic Tectonothermal Evolution of Transbaikalia: Thermochronology of the Angara-Vitim Granitoid Batholith. Russ. Geol. Geophys. 2023, 64, 1086–1097. [Google Scholar] [CrossRef]
- Faure, M.; Lin, W.; Chu, Y.; Lepvrier, C. Triassic tectonics of the southern margin of the South China Block. Comtes Rendus Geosci. 2016, 348, 5–14. [Google Scholar] [CrossRef]
- Xu, B.; Jiang, S.-Y.; Hofmann, A.W.; Wang, R.; Yang, S.-Y.; Zhao, K.D. Geochronology and geochemical constraints on petrogenesis of Early Paleozoic granites from the Laojunshan district in Yunnan Province of South China. Gondwana Res. 2016, 29, 248–263. [Google Scholar] [CrossRef]
- Wan, Y.; Liu, D.; Wilde, S.A.; Cao, J.; Chen, B.; Dong, C.; Song, B.; Du, L. Evolution of the Yunkai Terrane, South China: Evidence from SHRIMP zircon U-Pb dating, geochemistry and Nd isotope. J. Asian Earth Sci. 2010, 37, 140–153. [Google Scholar] [CrossRef]
- Li, Z.-X.; Li, X.-H.; Wartho, J.-A.; Clark, C.; Li, W.-X.; Zhang, C.-L.; Bao, C. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions. Geol. Soc. Am. Bull. 2010, 122, 772–793. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, W.; Zhang, G.; Zhang, Y. Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana Res. 2013, 23, 1273–1305. [Google Scholar] [CrossRef]
- Shellnutt, J.G. The Emeishan large igneous province: A synthesis. Geosci. Front. 2014, 5, 369–394. [Google Scholar] [CrossRef]
- Shellnutt, J.G.; Pham, T.T.; Denyszyn, S.W.; Yeh, M.-W.; Tran, T.A. Magmatic duration of the Emeishan large igneous province: Insight from northern Vietnam. Geology 2020, 48, 457–461. [Google Scholar] [CrossRef]
- Leloup, P.H.; Arnaud, N.; Lacassin, R.; Kienast, J.R.; Harrison, T.M.; Phan Trong, T.T.; Replumaz, A.; Tapponier, P. New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia. J. Geophys. Res. 2001, 106, 6683–6732. [Google Scholar] [CrossRef]
- Dodson, M.H. Closure temperature in cooling geochronological and petrological systems. Contrib. Mineral. Petrol. 1973, 40, 259–274. [Google Scholar] [CrossRef]
- Giletti, B. Studies in diffusion 1: Ar in phlogopite mica. In Geochemical Transport and Kinetics; Hofmann, A., Giletti, B., Yoder, H.S., Yund, R.A., Eds.; Carnegie Institution of Washington Publication: Washington, DC, USA, 1974; pp. 107–115. [Google Scholar]
- Xue, G.; Marshall, D.; Zhang, S.; Ullrich, T.D.; Bishop, T.; Groat, L.A.; Thorkelson, D.J.; Guiliani, G.; Fallick, A.E. Conditions fot Early Cretaceous Emerald Formation at Dyakou, China: Fluid Inclusion, Ar-Ar, and Stable Isotope Studies. Econ. Geol. 2010, 105, 339–349. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Jenkin, G.R.T.; Ellam, R.M.; Rogers, G.; Stuart, F.M. An investigation of closure temperature of the biotite Rb-Sr system: The importance of cation exchange. Geochim. Cosmochim. Acta 2001, 65, 1141–1160. [Google Scholar] [CrossRef]
- Glodny, J.; Kȕhn, A.; Austrheim, H. Diffusion versus recrystallization processes in Rb-Sr geochronology: Isotopic relics in eclogite facies rocks, Western Gneiss Region, Norway. Geochim. Cosmochim. Acta 2008, 72, 506–525. [Google Scholar] [CrossRef]
- Peytcheva, I.; von Quadt, A.; Ovtcharova, M.; Handler, R.; Neubauer, F.; Salnikova, E.; Kostitsyn, Y.; Sarov, S.; Kolcheva, K. Metagrenitoids from the eastern part of the Central Rhodopean Dome (Bulgaria): U-Pb, Rb-Sr and 40Ar/39Ar timing of emplacement and exhumation and isotope-geochemical features. Mineral. Petrol. 2004, 82, 1–31. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, W.; Zhao, G.; Ji, S.; Peng, T. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia block, China: Tectonic implications and the need to redefine lithostratigraphic units. Gondw. Res. 2007, 12, 166–183. [Google Scholar]
- Charvet, J.; Shu, L.; Faure, M.; Choulet, F.; Wang, B.; Lu, H.; Le Breton, N. Structural development of the Lower Paleozoic belt of South China: Genesis of an intracontinental orogen. J. Asian Earth Sci. 2010, 39, 309–330. [Google Scholar] [CrossRef]
- Chu, Y.; Lin, W.; Faure, M.; Wang, Q.; Ji, W. Phanerozoic tectonothermal events of the Xuefengshan Belt, central South China: Implications from U-Pb age and Lu-Hf determinations of granites. Lithos 2012, 150, 243–255. [Google Scholar] [CrossRef]
- Tan, H.Q.; Liu, Y.P. Genesis of amphibolite in Mengdong Group-complex in southeastern Yunnan and its tectonic significance. J. Jilin Univ.-Earth Sci. 2017, 47, 1763–1783. (In Chinese) [Google Scholar]
- Liu, Z.; Cao, S.Y.; Li, W. Deformation-Metamorphism and Constraints on Exhumation of the Laojunshan Metamorphic Core Complex in Southeastern Yunnan; Annual Meeting of Chinese Geosciences Union: Beijing, China, 2018; p. 138. [Google Scholar]
- Tran, T.V.; Faure, M.; Nguyen, V.V.; Bui, H.H.; Fyhn, M.B.W.; Nguyen, T.Q.; Lepvrier, C.; Thomsen, T.B.; Tani, K.; Charusiri, P. Neoproterozoic to Early Triassic tectono-stratigraphic evolution of Indochina and adjacent areas: A review with new data. J. Asian Earth Sci. 2020, 191, 104231. [Google Scholar] [CrossRef]
- Kőnigshof, P.; Linnemann, U.; Phuong, T.H. U-Pb detrital zircon geochronology of sedimentary rocks in NE Vietnam: Implication for Early and Middle Devonian Palaeography. Vietnam. J. Earth Sci. 2017, 39, 303–323. [Google Scholar]
- Lehrmann, D.J.; Enos, P.; Payne, J.L.; Montgomery, P.; Wei, J.; Yu, Y.; Xiao, J.; Orchard, M. Permian and Triassic depositional history of the Yangtze platform and Great Bank of Guizhou in the Nanpanjiang basin of Guizhou and Guangxi, south China. Albertiana 2005, 33, 149–168. [Google Scholar]
- Yang, J.; Cawood, P.A.; Du, Y.; Huang, H.; Hu, L. Detrital record of Indosinian mountain building in SW China: Provenance of the Middle Triassic turbidites in the Youjiang Basin. Tectonophysics 2012, 574–575, 105–117. [Google Scholar] [CrossRef]
- Hu, L.; Cawood, P.A.; Du, Y.; Xu, Y.; Xu, W.; Huang, H. Detrital records for Upper Permian-Lower Triassic succession in the Shiwandashan Basin, South China and implication for Permo-Triassic (Indosinian) otogeny. J. Asian Earth Sci. 2015, 98, 152–166. [Google Scholar] [CrossRef]
- Feng, J.; Mao, J.; Pei, R. Ages and geochemistry of Laojunshan granites in southeastern Yunnan: Implications for W-Sn polymetallic ore deposits. Mineral. Petrol. 2013, 107, 573–589. [Google Scholar] [CrossRef]
- Xu, B.; Jiang, S.-Y.; Wang, R.; Ma, L.; Zhao, K.D.; Yan, X. Late Cretaceous granites from the giant Dulong Sn-polymetallic ore district in Yunnan Province, South China: Geochronology, geochemistry, mineral chemistry and Nd-Hf isotopic compositions. Lithos 2015, 218–219, 54–72. [Google Scholar] [CrossRef]
- Liu, Y.-P.; Li, Z.-X.; Li, H.M.; Guo, L.-G.; Xu, W.; Ye, L.; Li, C.-Y.; Pi, D.H. U-Pb geochronology of cassiterite and zircon from the Dulong Sn-Zn deposit: Evidence for Cretaceous large-scale granitic magmatism and mineralization events in southeastern Yunnan province, China. Acta Petrol. Sin. 2007, 23, 967–976. [Google Scholar]
- Cheng, Y.; Mao, J.; Liu, P. Geodynamic setting of Late Cretaceous Sn-W mineralization in southeastern Yunnan and northeastern Vietnam. Solid Earth Sci. 2016, 1, 79–88. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Travin, A.; Murzintsev, N.; Kruk, N. Thermochronology of the Laojunshan–Song Chai Granite Gneiss Massif (North Vietnam, South China). Minerals 2024, 14, 251. https://doi.org/10.3390/min14030251
Travin A, Murzintsev N, Kruk N. Thermochronology of the Laojunshan–Song Chai Granite Gneiss Massif (North Vietnam, South China). Minerals. 2024; 14(3):251. https://doi.org/10.3390/min14030251
Chicago/Turabian StyleTravin, Alexey, Nikolai Murzintsev, and Nikolai Kruk. 2024. "Thermochronology of the Laojunshan–Song Chai Granite Gneiss Massif (North Vietnam, South China)" Minerals 14, no. 3: 251. https://doi.org/10.3390/min14030251