Assessment of Heavy Metal(loid) Pollution and Human Health Risks Associated with a Mineral (Zn, Cu, and Sn Ores) Processing Plant in Yunnan, Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Sampling and Analyses
2.2.1. Sample Collection
2.2.2. Sample Analysis and Testing
2.3. Evaluation Methods
2.3.1. Evaluation of Pollution Degree of Site
2.3.2. Human Health Risk Assessment
3. Results and Discussion
3.1. Characteristics of HM Pollution
3.1.1. Soil
3.1.2. Surface Water
3.1.3. Groundwater
3.2. Evaluation of the HM Pollution Index
3.3. Human Health Risk Assessment
3.3.1. Exposure Risk Assessment
3.3.2. Health Risk Assessment
3.4. Spatial Distribution Characteristics of HMs in Soil
3.5. Source Analysis of HMs
3.5.1. Relationships between HM Concentrations and Soil Physical and Chemical Properties
3.5.2. Correlation between Different Elements across Various Media
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CV | coefficient of variation |
HMs | Heavy metal(loid)s |
CR | Carcinogenic risk |
TCR | Multi-element total carcinogenic risk |
SD | Standard deviation |
References
- Cui, L.; Wang, X.L.N.; Li, J.; Gao, X.Y.; Zhang, J.W.; Liu, Z.T. Ecological and health risk assessments and water quality criteria of heavy metals in the Haihe River. Environ. Pollut. 2021, 290, 1177971. [Google Scholar] [CrossRef]
- Li, H.; Yao, J.; Min, N.; Chen, Z.H.; Li, M.M.M.; Pang, W.C.; Liu, B.; Cao, Y.; Men, D.Y.; Duran, R. Comprehensive evaluation of metal(loid)s pollution risk and microbial activity characteristics in non-ferrous metal smelting contaminated site. J. Clean. Prod. 2022, 344, 130999. [Google Scholar] [CrossRef]
- Luo, X.H.; Wu, C.; Lin, Y.C.; Li, W.C.; Deng, M.; Tan, J.Q.; Xue, S.G. Soil heavy metal pollution from Pb/Zn smelting regions in China and the remediation potential of biomineralization. J. Environ. Sci. 2023, 125, 662–677. [Google Scholar] [CrossRef]
- Yan, K.; Wang, H.Z.; Lan, Z.; Zhou, J.H.; Fu, H.Z.; Wu, L.S.; Xu, J.M. Heavy metal pollution in the soil of contaminated sites in China: Research status and pollution assessment over the past two decades. J. Clean. Prod. 2022, 373, 133780. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Zhang, Q.L.; Chen, W.F.; Shi, W.W.; Cui, Y.L.; Chen, L.L.; Shao, J.L. Hydrogeochemical analysis and groundwater pollution source identification based on self-organizing map at a contaminated site. J. Clean. Prod. 2023, 616, 128839. [Google Scholar] [CrossRef]
- Fry, L.K.; Wheeler, A.C.; Gillings, M.M.; Flegal, R.A.; Taylor, M.P. Anthropogenic in some areas of residential environments from smelter As, Cu and Pb emissions: Implications for human health. Environ. Pollut. 2020, 262, 114235. [Google Scholar] [CrossRef]
- Khan, S.; Naushad, M.; Lima, C.E.; Zhang, S.; Sabry, M.S.; Jörg, R. Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies—A review. J. Hazard. Mater. 2021, 417, 126039. [Google Scholar] [CrossRef]
- Tomiyama, S.; Igarashi, T.; Tabelin, B.C.; Pawit, T.; Hiroyuki, I. Acid mine drainage sources and hydrogeochemistry at the Yatani mine, Yamagata, Japan: A geochemical and isotopic study. J. Contam. Hydrol. 2019, 225, 103502. [Google Scholar] [CrossRef]
- Park, I.; Tabelin, B.C.; Jeon, S.; Li, X.; Seno, K.; Ito, M.; Hiroyoshi, N. A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere 2019, 219, 588–606. [Google Scholar] [CrossRef]
- Silwamba, M.; Ito, M.; Hiroyoshi, N.; Tabelin, C.B.; Fukushima, T.; Park, I.; Jeon, S.; Igarashi, T.; Sato, T.; Nyambe, I.A. Detoxification of lead-bearing zinc plant leach residues from Kabwe, Zambia by coupled extraction-cementation method. J. Environ. Chem. Eng. 2020, 8, 104197. [Google Scholar] [CrossRef]
- Baltazar, C.T.; Asuka, U.; Shingo, T.; Mylah, V.; Theerayut, P.; Marthias, S.; Sanghee, J.; Ilhwan, P.; Takahiko, A.; Toshifumi, I. Geochemical audit of a historical tailings storage facility in Japan: Acid mine drainage formation, zinc migration and mitigation strategies. J. Hazard. Mater. 2022, 438, 129453. [Google Scholar]
- Is¸ıldar, A.; van Hullebusch, E.D.; Lenz, M.; Du Laing, G.; Marra, A.; Cesaro, A.; Panda, S.; Akcil, A.; Kucuker, M.A.; Kuchta, K. Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE)—A review. J. Hazard. Mater. 2019, 362, 467–481. [Google Scholar] [CrossRef]
- Hussein, M.; Yoneda, K.; Mohd-Zaki, Z.; Amir, A.; Othman, N. Heavy metals in leachate, impacted soils and natural soils of different landfills in Malaysia: An alarming threat. Chemosphere 2021, 267, 128874. [Google Scholar] [CrossRef]
- Liao, J.B.; Qian, X.; Liu, F.; Deng, S.; Lin, H.; Liu, X.H.; Wei, C.H. Multiphase distribution and migration characteristics of heavy metals in typical sandy intertidal zones: Insights from solid-liquid partitioning. Ecotoxicol. Environ. 2021, 208, 111674. [Google Scholar] [CrossRef]
- Qiu, H.; Lou, Z.Y.; Gu, X.Y.; Sun, Y.Y.; Wang, J.; Zhang, W.; Cao, X.D. Smart 6S roadmap for deciphering the migration and risk of heavy metals in soil and groundwater systems at brownfield sites nationwide in China. Sci. Bull. 2022, 67, 1295–1299. [Google Scholar] [CrossRef]
- Ciarkowska, K.; Gambus, F. Building a quality index for soils impacted by proximity to an industrial complex using statistical and data-mining methods. Sci. Total Environ. 2020, 740, 140161. [Google Scholar] [CrossRef]
- Ali Zerrouki, A.; Melila, M. Evaluation of soil contamination by heavy metals in the vicinity of Boucaid Mine, Ouarsenis (N.O. Algeria). Soil Sediment Contam. 2021, 30, 924–942. [Google Scholar] [CrossRef]
- Baieta, R.; Mihaljevič, M.; Ettler, V.; Vaněk, A.; Penížek, V.; Trubač, J.; Kříbek, B.; Ježek, J.; Svoboda, M.; Sracek, O.; et al. Depicting the historical pollution in a Pb–Zn mining/smelting site in Kabwe (Zambia) using tree rings. J. Afr. Earth Sci. 2021, 181, 104246. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Van, H.T.; Thang, P.Q.; Hoang, T.H.N.; Dao, D.C.; Nguyen, C.L.; Nguyen, L.H. Level and potential risk assessment of soil contamination by trace metal from mining activities. Soil Sediment Contam. 2021, 30, 92–106. [Google Scholar] [CrossRef]
- Peng, J.Y.; Zhang, S.; Han, Y.Y.; Bate, B.; Ke, H.; Chen, Y.M. Soil heavy metal pollution of industrial legacies in China and health risk assessment. Sci. Total Environ. 2022, 816, 151632. [Google Scholar] [CrossRef]
- Nyiramigisha, P.; Komariah, S. The concentration of heavy metals zinc and lead in the soil around the Putri Cempo landfill, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 824, 012050. [Google Scholar] [CrossRef]
- Augustsson, A.; Uddh Soderberg, T.; Froberg, M.; Berggren Kleja, D.B.; Astrom, M.; Svensson, P.A.; Jarsjo, J. Failure of generic risk assessment model framework to predict groundwater pollution risk at hundreds of metal contaminated sites: Implications for research needs. Environ. Res. 2020, 185, 109252. [Google Scholar] [CrossRef]
- Li, H.X.; Li, Y.; Guo, G.H.; Li, Y.; Zhang, R.Q.; Feng, C.L.; Zhang, Y.H. Distribution, Site-Specific Water Quality Criteria, and Ecological Risk Assessment of Heavy Metals in Surface Water in Fen River, China. Toxics 2023, 11, 704. [Google Scholar] [CrossRef]
- Topal, M.; Arslan, T. Phytoremediaton of priority substances (Pb and Ni) by Phragmites australis exposed to poultry slaughterhouse wastewater. Int. J. Phytoremediat. 2020, 22, 857–862. [Google Scholar] [CrossRef]
- Bai, Z.Y.; Wu, F.Z.; He, Y.P.; Han, Z.W. Pollution and risk assessment of heavy metals in Zuoxiguo antimony mining area, southwest China. Environ. Pollut. Bioavailab. 2023, 35, 2156397. [Google Scholar] [CrossRef]
- Jiang, Z.J.; Yang, S.Z.; Luo, S. Source analysis and health risk assessment of heavy metals in agricultural land of multi-mineral mining and smelting area in the Karst region—A case study of Jichangpo Town, Southwest China. Heliyon 2023, 9, e17246. [Google Scholar] [CrossRef]
- Liu, H.J.; Xie, J.; Cheng, Z.F.; Wu, X.L. Characteristics, Chemical Speciation and Health Risk Assessment of Heavy Metals in Paddy Soil and Rice around an Abandoned High-Arsenic Coal Mine Area, Southwest China. Minerals 2023, 13, 629. [Google Scholar] [CrossRef]
- Zhang, Q.; Han, G.L.; Liu, M.; Liang, T. Spatial distribution and controlling factors of heavy metals in soils from Puding Karst Critical Zone Observatory, southwest China. Environ. Earth Sci. 2019, 78, 279. [Google Scholar] [CrossRef]
- Laniyan, T.A.; Morakinyo, O.M. Environmental sustainability and prevention of heavy metal pollution of some geo-materials within a city in southwestern Nigeria. Heliyon 2021, 7, e06796. [Google Scholar] [CrossRef]
- Davis, A.; Olsen, R.L.; Walker, D.R. Distribution of metals between water and entrained sediment in streams impacted by acid mine discharge, Clear Creek, Colorado, U.S. Appl. Geochem. 1991, 6, 333–348. [Google Scholar] [CrossRef]
- Zhang, W.; Long, J.H.; Wei, Z.Y.; Alakangas, L. Vertical distribution and historical loss estimation of heavy metals in an abandoned tailings pond at HTM coppermine, northeastern China. Environ. Earth Sci. 2016, 75, 11–13. [Google Scholar] [CrossRef]
- Li, Z.; Deblon, J.; Zu, Y.; Colinet, G.; Li, B.; He, Y.M. Geochemical Baseline Values Determination and Evaluation of Heavy Metal Contamination in Soils of Lanping Mining Valley (Yunnan Province, China). Int. J. Environ. Res. Public Health 2019, 16, 4686. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.D.; Yao, W.W.; Huang, Z.X.; Ying, Q.C.; He, Z.W. Assessment of Soil Trace Metal Pollution in the Xuejiping Mine Area, Yunan, China. Clean—Soil Air Water 2021, 49, 2000093. [Google Scholar] [CrossRef]
- Xu, S.C.; Huang, Z.; Huang, J.X.; Wu, S.; Yan, D.; Chen, Z.; Yang, B.C.; Xu, Y.Q.; Liu, N.Q.; Gong, Q.J. Environmental Pollution Assessment of Heavy Metals in Soils and Crops in Xinping Area of Yunnan Province, China. Appl. Sci. 2023, 13, 10810. [Google Scholar] [CrossRef]
- HJ25.2-2014; Technical Guidelines for Environmental Site Environmental Monitoring. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2014.
- HJ-T91-2002; Technical Specification for Surface Water and Sewage Monitoring. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2002.
- HJ 493-2009; Water Quality sampling—Technical Regulation of the Preservation and handling of Samples. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2009.
- HJ/T166-2004; Technical Specification for Soil Environmental Monitoring. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2002.
- GB-15618-2018; Soil Environment Quality Risk Control Standard for Soil Contamination of Agriculture Land. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2018; State Administration of Market Regulation: Beijing, China, 2018.
- Fan, C.Z.; Liu, Y.B.; Liu, C.H.; Zhao, W.B.; Hao, N.X.; Guo, W.; Yuan, J.H.; Zhao, J.J. Water quality characteristics, sources, and assessment of surface water in an industrial mining city, southwest of China. Environ. Monit. Assess. 2022, 194, 25. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Zhan, W.; Lu, G.C. Environmental Assessment of Heavy Metals in the Typical Vegetable Field and Irrigation Sediment in Xijiang River Basin, China: Spatial Distribution and Ecological Risk. Water Air Soil Pollut. 2023, 234, 558. [Google Scholar] [CrossRef]
- An, M.Y.; Song, Y.W.; Jiang, J.Y.; Fu, G.W.; Wang, Y.; Wan, X.M. Water Quality Evaluation, Spatial Distribution Characteristics, and Source Analysis of Pollutants in Wanquan River, China. Appl. Sci. 2023, 13, 7982. [Google Scholar] [CrossRef]
- Kumi, M.; Anku, W.W.; Antwi, B.Y.; Penny, P.G. Evaluation of the suitability of integrated bone char- and biochar-treated groundwater for drinking using single-factor, Nemerow, and heavy metal pollution indexes. Environ. Monit. Assess. 2023, 195, 647. [Google Scholar] [CrossRef]
- Yvan, R.S.A.; Roger, T.F.T.; Mefomdjo, B.F.; Leroy, L.N.M.; Bernard, L.T.; Arsène, M. Contamination and risk assessment of trace metals and as in surface sediments from abandoned gold mining sites of Bekao, Adamawa-Cameroon. Reg. Stud. Mar. Sci. 2023, 62, 102985. [Google Scholar]
- Siriuma, J.; Supabhorn, Y.; Panatda, P. Soil heavy metal pollution from waste electrical and electronic equipment of repair and junk shops in southern Thailand and their ecological risk. Heliyon 2023, 9, e2043. [Google Scholar]
- Asghari, F.; Salavati, M.; Hakimi, A.S.; Shariati, F. Geochemical and environmental assessment of river sediments in the East of Gilan province (case study: Otaghvarrud, Shalmanrud, and Polrud rivers), Northern Iran. Toxin Rev. 2023, 42, 681–700. [Google Scholar] [CrossRef]
- USEPA. A Risk Assessment–Multi Way Exposure Spread Sheet Calculation Tool; United States Environmental Protection Agency: Washington, DC, USA, 1999.
- USEPA. Risk Assessment Guidance for Superfund: Volume III—Part A. Process for Conducting Probabilistic Risk Assessment; USEPA: Washington, DC, USA, 2001.
- China Environmental Monitoring Station. Background Value of Soil Elements in China; China Environmental Press: Beijing, China, 1990. [Google Scholar]
- Karimi, N.; Mohammad, T.; Tabatabaii, S.M.; Gholami, A. Geochemical assessment of steel smelter-impacted urban soils, Ahvaz, Iran. J. Geochem. Explor. 2015, 152, 91–109. [Google Scholar] [CrossRef]
- GB 3838—2002; Environmental Quality Standard for Surface Water. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2018; State Administration of Market Regulation: Beijing, China, 2002.
- GB 8978—1996; Integrated Wastewater Discharge Standard. The State Bureau of Quality and Technical Supervision: Beijing, China, 1996.
- GB/T14848 2017; Standard for Groundwater Quality. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2018; State Administration of Market Regulation: Beijing, China, 2017.
- USEPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual Supplemental Guidance; USEPA: Washington, DC, USA, 1991.
- Dourson, M.; Patterson, J. A 20-year perspective on the development of non-cancer risk assessment methods. Hum. Ecol. Risk Assess. 2003, 9, 1239–1252. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, L.Q.; Deng, L.; Jin, Z.D. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau. Sci. Total Environ. 2019, 650, 2004–2012. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Y.; Li, H.K. Research progress on heavy metal pollution and risk assessment methods in site. Environ. Pollut. 2021, 43, 1201–1204+1208. [Google Scholar]
- Qiao, P.; Li, P.; Chen, Y.; Wei, W.; Yang, S.; Lei, M.; Chen, T. Comparison of common spatial interpolation methods for analyzing pollutant spatial distributions at contaminated sites. Environ. Geochem. Health 2019, 41, 2709–2730. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.D.; Wang, Y.Y.; Jiang, J.; Tang, L.; Xie, Y.; Gao, W.Y.; Tan, X.Y.; Zeng, J.Q. Groundwater heavy metal(loid)s risk prediction based on topsoil contamination and aquifer vulnerability at a zinc smelting site. Environ. Pollut. 2023, 341, 122939. [Google Scholar] [CrossRef]
- Li, H.J.; Yang, Y.J.; Lv, H.M. Research and application of indium recovery process from intermediate slag of indium smelting. World Nonferrous Met. 2018, 30–31. [Google Scholar]
- Chen, T.B.; Zheng, Y.M.; Lei, M.; Huang, Z.C.; Wu, H.T.; Chen, H.; Fank, K.K.; Yu, K.; Wu, X.; Tian, Q.Z. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere 2005, 60, 542–551. [Google Scholar] [CrossRef]
- Ma, X.J.; Lu, F.; Chen, L.L.; Chen, M. Heavy metal pollution and ecological risk assessment of surface water in Guizhou manganese mining area. Environ. Sci. Technol. 2018, 41, 191–197. [Google Scholar]
- Wu, W.H.; Zou, H.; Zhu, G.H.; Liao, Y.H.; Pan, H.T.; Xiao, Z.C.; Fan, J.; Li, L. Heavy metal pollution characteristics and health risk assessment of groundwater in a mining area in central Hunan. J. Ecol. Rural Environ. 2018, 34, 1027–1033. [Google Scholar]
- Zheng, Y.L.; Zhu, M.; Zheng, T.; Yao, Q.; Li, H.Y.; Li, H.; Yu, Y.J. Heavy metal pollution characteristics and potential risk assessment of farmland soil and surface water in e-waste dismantling area. Environ. Chem. 2023, 42, 2946–2960. [Google Scholar]
- Forghani, G.; Kelm, U.; Mazinani, V. Spatial distribution and chemical partitioning of potentially toxic elements in soils around Khatoon-Abad Cu Smelter, SE Iran. J. Geochem. Explor. 2019, 196, 66–80. [Google Scholar] [CrossRef]
- Ma, W.; Song, Y.C.; Zhuang, L.L.; Wu, W. Mass transfer during hydrothermal bleaching alteration of red beds in the Lanping Basin, SW China: Implications for regional Cu(–Co) and Pb-Zn mineralization. Ore Geol. Rev. 2023, 163, 105744. [Google Scholar] [CrossRef]
- Liu, P.F.; Wu, Z.Q.; Luo, X.R.; Wen, M.L.; Huang, L.L.; Chen, B.; Zheng, C.J.; Zhu, C.J.; Liang, R. Pollution Assessment and Source Analysis of Heavy Metals in Acidic Farmland of the Karst Region in Southern China—A Case Study of Quanzhou County. Appl. Geochem. 2020, 123, 104764. [Google Scholar] [CrossRef]
- Li, Q.H.; Li, X.X.; Bu, C.J.; Wu, P. Distribution, risk assessment, and source apportionment of heavy metal pollution in cultivated soil of typical mining area in Southwest, China. Environ. Toxicol. Chem. 2023, 42, 888–900. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.J.; Deng, J.; Jia, Y.J.; Tong, Y.K.; Liu, N.Q. Empiricalequations to describe trace element behaviors due to rockweathering in China. J. Geochem. Explor. 2015, 152, 110–117. [Google Scholar] [CrossRef]
- Gil-Díaz, M.; Rodríguez-Vald’es, E.; Alonso, J.; Baragano, D.; Gallego, J.R.; Lobo, M.C. Nanoremediation and long-term monitoring of brownfield soil highly polluted with as and Hg. Sci. Total Environ. 2019, 675, 165–175. [Google Scholar] [CrossRef]
- Guo, H.M.; Li, X.M.; Xiu, W.; He, W.; Cao, Y.S.; Zhang, D.; Wang, A. Controls of organic matter bioreactivity on arsenic mobility in shallow aquifers of the Hetao Basin, P.R. China. J. Hydrol. 2019, 571, 448–459. [Google Scholar] [CrossRef]
- Jiang, H.H.; Cai, L.M.; Wen, H.H.; Luo, J. Characterizing pollution and source identification of heavy metals in soils using geochemical baseline and PMF approach. Sci. Rep. 2020, 10, 6460. [Google Scholar] [CrossRef]
- Araújo, P.R.M.; Biondi, C.M.; do Nascimento, C.W.A.; da Silva, F.B.V.; da Silva, W.R.; da Silva, F.L.; de Melo Ferreira, D.K. Assessing the spatial distribution and ecologic and human health risks in mangrove soils polluted by Hg in northeastern Brazil. Chemosphere 2021, 266, 129019. [Google Scholar] [CrossRef] [PubMed]
- Ke, W.S.; Zeng, J.Q.; Zhu, F.; Luo, X.H.; Feng, J.P.; He, J.; Xue, S.G. Geochemical partitioning and spatial distribution of heavy metals in soils contaminated by lead smelting. Environ. Pollut. 2022, 307, 11948. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.Q.; Luo, X.H.; Cheng, Y.Z.; Ke, W.S.; Hartley, W.; Li, C.X.; Jiang, J.; Zhu, F.; Xue, S.G. Spatial distribution of toxic metal(loid)s at an abandoned zinc smelting site, Southern China. J. Hazard. Mater. 2022, 425, 127970. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.T.; Zhou, W.; Yang, X.; Christie, P.; Luo, Y.M. Risk Assessment of Contamination by Potentially Toxic Metals: A Case Study in the Vicinity of an Abandoned Pyrite Mine. Minerals 2019, 9, 783. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, X.X.; Zhang, W.W.; He, S.W.; Luo, S.H.; Han, J.G.; Shen, D.L. Metal-driven bacterial community variation in urban and suburban park soils of Shanghai, China. Eur. J. Soil Biol. 2023, 115, 103475. [Google Scholar] [CrossRef]
- Qin, W.J.; Han, D.M.; Song, X.F.; Liu, S.H. Sources and migration of heavy metals in a karst water system under the threats of an abandoned Pb–Zn mine, Southwest China. Environ. Pollut. 2021, 277, 116774. [Google Scholar] [CrossRef] [PubMed]
- Qiao, P.W.; Wang, S.; Li, J.B.; Zhao, Q.Y.; Wei, Y.; Lei, M.; Yang, J.; Zhang, Z.G. Process, influencing factors, and simulation of the lateral transport of heavy metals in surface runoff in a mining area driven by rainfall: A review. Sci. Total Environ. 2022, 857, 159119. [Google Scholar] [CrossRef]
- Zhao, B.; Zhu, W.X.; Hao, S.F.; Hua, M.; Liao, Q.L.; Jing, Y.; Liu, L.; Gu, X.Y. Prediction heavy metals accumulation risk in rice using machine learning and mapping pollution risk. J. Hazard. Mater. 2023, 448, 130879. [Google Scholar] [CrossRef]
- Bravo, S.; Amorós, J.A.; Pérez-de-los-Reyes, C.; García, F.J.; Moreno, M.M.; Sánchez-Ormeño, M.; Higueras, P. Influence of the soil pH in the uptake and bioaccumulation of heavy metals (Fe, Zn, Cu, Pb and Mn) and other elements (Ca, K, Al, Sr and Ba) in vine leaves, Castilla-La Mancha (Spain). J. Geochem. Explor. 2017, 174, 79–83. [Google Scholar] [CrossRef]
- Alicja, K.; Radosław, P.; Miguel, I. Changes in soil pH and mobility of heavy metals in contaminated soils. Eur. J. Soil Sci. 2021, 73, e13203. [Google Scholar]
- Sheng, L.L.; Hao, C.M.; Guan, S.D.; Huang, Z.B. Spatial distribution, geochemical behaviors and risk assessment of antimony in rivers around the antimony mine of Xikuangshan, Hunan Province, China. Water Sci. Technol. 2022, 85, 1141–1154. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.R. Study on Environmental Geochemical Characteristics of Heavy Metal Elements in Southwest Shandong Coal Mine Area. Ph.D. Thesis, Wuhan University of Technology, Wuhan, China, 2013. [Google Scholar]
- Liao, Q.L.; Cui, X.D.; Huang, S.S.; Huang, B.; Ren, J.H.; Gu, X.Y.; Fan, J.; Xu, H.T. Element geochemistry of selenium-enriched soil and its main sources in Jiangsu Province. Geol. China 2020, 47, 1813–1825. [Google Scholar]
- Cao, J.; Xie, C.Y.; Hou, Z.R. Ecological evaluation of heavy metal pollution in the soil of Pb-Zn mines. Ecotoxicology 2022, 31, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.D.; Guo, T.; Lv, P.L.; Niu, Z.F.; Zhou, Y.J.; Tang, X.J.; Zheng, P.; Zhu, L.Z.; Zhu, Y.G.; Kappler, A.; et al. Coupled anaerobic methane oxidation and reductive arsenic mobilization in wetland soils. Nat. Geosci. 2020, 13, 799–805. [Google Scholar] [CrossRef]
- Tran, T.H.H.; Kim, S.H.; Jo, H.Y.; Chung, J.; Lee, S. Transient behavior of arsenic in vadose zone under alternating wet and dry conditions: A comparative soil column study. J. Hazard. Mater. 2022, 422, 126957. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Lee, D.; Kim, H.; Woo, N.C. Effects of dry and heavy rainfall periods on arsenic species and behaviour in the aquatic environment adjacent a mining area in South Korea. J. Hazard. Mater. 2023, 441, 129968. [Google Scholar] [CrossRef]
- Kang, M.J.; Yu, S.; Jeon, S.W.; Jung, M.C.; Kwon, Y.K.; Lee, P.K.; Chae, G. Mobility of metal(loid)s in roof dusts and agricultural soils surrounding a Zn smelter: Focused on the impacts of smelter-derived fugitive dusts. Sci. Total Environ. 2021, 757, 143884. [Google Scholar] [CrossRef] [PubMed]
- Anaman, R.; Peng, C.; Jiang, Z.C.; Liu, X.; Zhou, Z.R.; Guo, Z.H.; Xiao, X.Y. Identifying sources and transport routes of heavy metals in soil with different land uses around a smelting site by GIS based PCA and PMF. Sci. Total Environ. 2022, 823, 15375. [Google Scholar] [CrossRef]
- Fang, H.; Wang, X.J.; Xia, D.; Zhu, J.T.; Yu, W.D.; Su, Y.M.; Zeng, J.W.; Zhang, Y.L.; Lin, X.J.; Lei, Y.T.; et al. Improvement of Ecological Risk Considering Heavy Metal in Soil and Groundwater Surrounding Electroplating Factories. Processes 2022, 10, 1267. [Google Scholar] [CrossRef]
- Chen, J.; Shi, W.; Zhang, Y.; Song, Y. Pollution analysis and health risk spatial distribution evaluation of electroplating factory legacy sites. Environ. Eng. 2018, 36, 153–159. [Google Scholar]
- Tao, H.; Zhang, X.; Wang, Y.; Tao, E.; Wang, F. Distribution characteristics and health risk assessment of heavy metal pollution in surface dust of Yinchuan urban area. Environ. Chem. 2022, 41, 2573–2585. [Google Scholar]
Characteristic Parameter | pH | As | Hg | Cd | Cu | Ni | Pb |
---|---|---|---|---|---|---|---|
Min | 2.65 | 3.55 | 0.002 | 0.01 | 1.83 | 2.62 | 1.08 |
Max | 8.91 | 24400.0 | 0.20 | 244.0 | 2074.0 | 132.0 | 1966.0 |
Avg | 5.91 | 2441.0 | 0.04 | 18.85 | 313.08 | 30.56 | 215.39 |
SD | - | 4917.59 | 0.04 | 31.73 | 432.57 | 22.44 | 369.53 |
CV | - | 2.01 | 1.01 | 1.68 | 1.38 | 0.73 | 1.72 |
Background value of Yunnan Province | background value | 18.40 | 0.058 | 0.22 | 46.30 | 42.50 | 40.60 |
Beyond the number | 253 | 56 | 248 | 190 | 95 | 194 | |
excessive rate | 89.72% | 19.86% | 87.94% | 67.38% | 33.69% | 68.79% | |
Excess multiples | 132.66 | 0.69 | 85.68 | 6.76 | 0.72 | 5.31 | |
Soil pollution of construction land Risk management and control standards | screening values | 60 | 38 | 65 | 18000 | 900 | 800 |
Beyond the number | 22 | 0 | 12 | 0 | 0 | 19 | |
excessive rate | 7.80% | 0 | 4.26% | 0 | 0 | 6.74% | |
Excess multiples | 40.68 | 0.001 | 0.29 | 0.02 | 0.03 | 0.27 | |
Control value | 140 | 82 | 172 | 36000 | 2000 | 2500 | |
Beyond the number | 168 | 0 | 1 | 0 | 0 | 0 | |
excessive rate | 59.57% | 0 | 0.35% | 0 | 0 | 0 | |
Excess multiples | 17.44 | 0.0005 | 0.11 | 0.009 | 0.02 | 0.09 |
Types | Sample Number | pH | As | Hg | Cr | Cd | Cu | Ni | Pb |
---|---|---|---|---|---|---|---|---|---|
Surface water (mg·L−1) | B1 | 8.17 | 0.0099 | <0.00004 | <0.004 | <0.00005 | 0.0005 | 0.0002 | 0.0001 |
B2 | 8.21 | 0.0088 | <0.00004 | <0.004 | <0.00005 | 0.0006 | 0.0001 | 0.0001 | |
B3 | 8.21 | 0.0078 | <0.00004 | <0.004 | <0.00005 | 0.0011 | 0.0005 | 0.0002 | |
Standard limit | 6~9 | 0.05 | 0.00005 | 0.05 | 0.005 | 1.00 | - | 0.01 | |
B4 | 2.49 | 0.953 | <0.00004 | <0.004 | 0.257 | 2.061 | 0.0566 | 0.0116 | |
Standard limit | 6~9 | 0.5 | 0.05 | 0.5 | 0.1 | 0.5 | 1.0 | 1.0 | |
Groundwater (mg·L−1) | standard limit | 6.5~8.5 | ≤0.01 | ≤0.001 | ≤0.05 | ≤0.005 | ≤1.0 | ≤0.02 | ≤0.01 |
X1 | 6.1 | 0.93 | <0.00004 | 0.009 | 0.00128 | 0.001 | 0.0365 | 0.0005 | |
X2 | 4.43 | 0.454 | <0.00004 | 0.01 | 0.184 | 0.703 | 0.0507 | 0.0028 | |
X3 | 6.98 | 0.056 | <0.00004 | 0.011 | 0.00118 | 0.00062 | 0.0017 | 0.0004 | |
X4 | 5.66 | 0.256 | <0.00004 | 0.009 | 0.00271 | 0.0144 | 0.0028 | 0.0006 | |
X5 | 7.62 | 0.009 | <0.00004 | <0.004 | 0.00014 | 0.0008 | <0.00006 | <0.00009 | |
X6 | 7.19 | 0.0038 | <0.00004 | 0.008 | 0.000006 | 0.0002 | 0.0002 | <0.00009 | |
X7 | 7.73 | 0.0085 | <0.00004 | 0.012 | <0.00005 | 0.0006 | <0.00006 | <0.00009 |
Pollution Index | Pi | |||||
---|---|---|---|---|---|---|
As | Hg | Cd | Cu | Ni | Pb | |
Min | 0.06 | 0.00005 | 0.0002 | 0.0001 | 0.003 | 0.001 |
Max | 406.67 | 0.005 | 3.75 | 0.12 | 0.15 | 2.46 |
Avg | 40.68 | 0.0009 | 0.29 | 0.02 | 0.03 | 0.27 |
PN | 291.01 | 0.004 | 0.85 | 0.05 | 0.11 | 1.77 |
Degree pollution | High pollution | Uncontaminated | Warning Level of Caution | Uncontaminated | Uncontaminated | Light pollution |
HMs | ADDing | ADDderm | ADDinh | ADD | |||||
---|---|---|---|---|---|---|---|---|---|
Adult | Child | Adult | Child | Adult | Child | Adult | Child | ||
Carcinogenic | As | 1.41 × 10−3 | 2.52 × 10−3 | 1.51 × 10−7 | 6.96 × 10−8 | 5.64 × 10−5 | 7.07 × 10−5 | 1.47 × 10−3 | 2.60 × 10−3 |
Hg | 2.05 × 10−8 | 3.66 × 10−8 | 2.19 × 10−12 | 1.01 × 10−12 | 8.18 × 10−10 | 1.03 × 10−9 | 2.13 × 10−8 | 3.76 × 10−8 | |
Cd | 1.09 × 10−5 | 1.95 × 10−5 | 1.16 × 10−9 | 5.37 × 10−10 | 4.35 × 10−7 | 5.46 × 10−7 | 1.13 × 10−5 | 2.00 × 10−5 | |
Cu | 1.81 × 10−4 | 3.24 × 10−4 | 1.93 × 10−8 | 8.93 × 10−9 | 7.23 × 10−6 | 9.06 × 10−6 | 1.88 × 10−4 | 3.33 × 10−4 | |
Ni | 1.77 × 10−5 | 3.16 × 10−5 | 1.89 × 10−9 | 8.71 × 10−10 | 7.06 × 10−7 | 8.85 × 10−7 | 1.84 × 10−5 | 3.25 × 10−5 | |
Pb | 1.25 × 10−4 | 2.23 × 10−4 | 1.33 × 10−8 | 6.14 × 10−9 | 4.97 × 10−6 | 6.24 × 10−6 | 1.30 × 10−4 | 2.29 × 10−4 | |
ADD | 1.75 × 10−3 | 3.12 × 10−3 | 1.86 × 10−7 | 8.61 × 10−8 | 6.97 × 10−5 | 8.74 × 10−5 | 1.82 × 10−3 | 3.21 × 10−3 | |
Non-carcinogenic | As | 4.12 × 10−3 | 2.94 × 10−2 | 4.39 × 10−7 | 8.12 × 10−7 | 1.64 × 10−5 | 8.24 × 10−5 | 4.14 × 10−3 | 2.95 × 10−2 |
Hg | 5.98 × 10−8 | 4.27 × 10−7 | 6.37 × 10−12 | 1.18 × 10−11 | 2.39 × 10−10 | 1.20 × 10−9 | 6.00 × 10−8 | 4.28 × 10−7 | |
Cd | 3.18 × 10−5 | 2.27 × 10−4 | 3.39 × 10−9 | 6.27 × 10−9 | 1.27 × 10−7 | 6.37 × 10−7 | 3. 20 × 10−5 | 2.28 × 10−4 | |
Cu | 5.29 × 10−4 | 3.78 × 10−3 | 5.64 × 10−8 | 1.04 × 10−7 | 2.11 × 10−6 | 1.06 × 10−5 | 5.31 × 10−4 | 3.79 × 10−3 | |
Ni | 5.16 × 10−5 | 3.69 × 10−4 | 5.50 × 10−9 | 1.02 × 10−8 | 2.06 × 10−7 | 1.03 × 10−6 | 5.18 × 10−5 | 3.70 × 10−4 | |
Pb | 3.64 × 10−4 | 2.60 × 10−3 | 3.88 × 10−8 | 7.16 × 10−8 | 1.45 × 10−6 | 7.27 × 10−6 | 3.65 × 10−4 | 2.61 × 10−3 | |
ADD | 5.10 × 10−3 | 3.64 × 10−2 | 5.43 × 10−7 | 1.00 × 10−6 | 2.03 × 10−5 | 1.02 × 10−4 | 5.12 × 10−3 | 3.65 × 10−2 |
HMs | CRing | CRderm | CRinh | TCR | |||||
---|---|---|---|---|---|---|---|---|---|
Adult | Child | Adult | Child | Adult | Child | Adult | Child | ||
As | Min | 3.08 × 10−6 | 5.51 × 10−6 | 3.31 × 10−9 | 1.53 × 10−9 | 3.00 × 10−7 | 3.76 × 10−7 | 3.39 × 10−6 | 5.88 × 10−6 |
Max | 2.12 × 10−2 | 3.78 × 10−2 | 2.27 × 10−5 | 1.05 × 10−5 | 2.06 × 10−3 | 2.59 × 10−3 | 2.33 × 10−2 | 4.04 × 10−2 | |
Avg | 2.12 × 10−3 | 3.79 × 10−3 | 2.27 × 10−6 | 1.05 × 10−6 | 2.06 × 10−4 | 2.59 × 10−4 | 2.32 × 10−3 | 4.05 × 10−3 | |
Hg | Min | 3.47 × 10−13 | 6.20 × 10−13 | 3.70 × 10−17 | 1.71 × 10−17 | 1.39 × 10−17 | 1.74 × 10−17 | 3.47 × 10−13 | 6.20 × 10−13 |
Max | 3.51 × 10−11 | 6.27 × 10−11 | 3.74 × 10−15 | 1.73 × 10−15 | 1.40 × 10−15 | 1.75 × 10−15 | 3.51 × 10−11 | 6.27 × 10−11 | |
Avg | 6.15 × 10−12 | 1.10 × 10−11 | 6.56 × 10−16 | 3.03 × 10−16 | 2.45 × 10−16 | 3.08 × 10−16 | 6.15 × 10−12 | 1.10 × 10−11 | |
Cd | Min | 3.53 × 10−8 | 6.31 × 10−8 | 3.89 × 10−12 | 1.80 × 10−12 | 1.41 × 10−9 | 1.77 × 10−9 | 3.67 × 10−8 | 6.48 × 10−8 |
Max | 8.62 × 10−4 | 1.54 × 10−3 | 9.49 × 10−8 | 4.38 × 10−8 | 3.44 × 10−5 | 4.31 × 10−5 | 8.96 × 10−4 | 1.58 × 10−3 | |
Avg | 6.65 × 10−5 | 1.19 × 10−4 | 7.33 × 10−9 | 3.39 × 10−9 | 2.66 × 10−6 | 3.33 × 10−6 | 6.92 × 10−5 | 1.22 × 10−4 | |
Cu | Min | - | - | - | - | - | - | - | - |
Max | - | - | - | - | - | - | - | - | |
Avg | - | - | - | - | - | - | - | - | |
Ni | Min | 2.58 × 10−6 | 4.60 × 10−6 | 1.36 × 10−10 | 6.27 × 10−11 | 2.57 × 10−6 | 3.22 × 10−6 | 5.15 × 10−6 | 7.83 × 10−6 |
Max | 1.30 × 10−4 | 2.32 × 10−4 | 6.84 × 10−9 | 3.16 × 10−9 | 1.30 × 10−4 | 1.62 × 10−4 | 2.59 × 10−4 | 3.94 × 10−4 | |
Avg | 3.01 × 10−5 | 5.37 × 10−5 | 1.58 × 10−9 | 7.32 × 10−10 | 3.00 × 10−5 | 3.76 × 10−5 | 6.01 × 10−5 | 9.13 × 10−5 | |
Pb | Min | 5.31 × 10−9 | 9.49 × 10−9 | 2.80 × 10−12 | 1.29 × 10−12 | 4.24 × 10−10 | 5.31 × 10−10 | 5.74 × 10−9 | 1.00 × 10−8 |
Max | 9.67 × 10−6 | 1.73 × 10−5 | 5.10 × 10−9 | 2.35 × 10−9 | 7.72 × 10−7 | 9.68 × 10−7 | 1.04 × 10−5 | 1.82 × 10−5 | |
Avg | 1.06 × 10−6 | 1.89 × 10−6 | 5.58 × 10−10 | 2.58 × 10−10 | 8.46 × 10−8 | 1.06 × 10−7 | 1.14 × 10−6 | 2.00 × 10−6 |
Heavy Metal | HQing | HQderm | HQinh | HI | |||||
---|---|---|---|---|---|---|---|---|---|
Adult | Child | Adult | Child | Adult | Child | Adult | Child | ||
As | Min | 2.00 × 10−2 | 1.43 × 10−1 | 5.19 × 10−6 | 9.60 × 10−6 | 1.94 × 10−4 | 9.75 × 10−4 | 2.02 × 10−2 | 1.44 × 10−1 |
Max | 1.37 × 102 | 9.81 × 102 | 3.57 × 10−2 | 6.60 × 10−2 | 1.34 × 100 | 6.70 × 100 | 1.39 × 102 | 9.88 × 102 | |
Avg | 1.37 × 101 | 9.81 × 100 | 3.57 × 10−3 | 6.60 × 10−3 | 1.34 × 10−1 | 6.70 × 10−1 | 1.39 × 101 | 9.88 × 101 | |
Hg | Min | 1.13 × 10−5 | 8.04 × 10−5 | 4.20 × 10−9 | 7.76 × 10−9 | 6.42 × 10−7 | 3.22 × 10−6 | 1.19 × 10−5 | 8.36 × 10−5 |
Max | 1.14 × 10−3 | 8.12 × 10−3 | 4.24 × 10−7 | 7.84 × 10−7 | 6.48 × 10−5 | 3.25 × 10−4 | 1.20 × 10−3 | 8.45 × 10−3 | |
Avg | 1.99 × 10−4 | 1.42 × 10−3 | 7.44 × 10−8 | 1.37 × 10−7 | 1.14 × 10−5 | 5.70 × 10−5 | 2.11 × 10−4 | 1.48 × 10−3 | |
Cd | Min | 1.69 × 10−5 | 1.21 × 10−4 | 1.80 × 10−7 | 3.33 × 10−7 | 6.74 × 10−6 | 3.38 × 10−5 | 2.38 × 10−5 | 1.55 × 10−4 |
Max | 4.12 × 10−1 | 2.94 × 100 | 4.39 × 10−3 | 8.12 × 10−3 | 1.64 × 10−1 | 8.24 × 10−1 | 5.81 × 10−1 | 3.78 × 100 | |
Avg | 3.18 × 10−2 | 2.27 × 10−1 | 3.39 × 10−4 | 6.27 × 10−4 | 1.27 × 10−2 | 6.37 × 10−2 | 4.49 × 10−2 | 2.92 × 10−1 | |
Cu | Min | 7.72 × 10−5 | 5.52 × 10−4 | 8.19 × 10−9 | 1.51 × 10−8 | 1.03 × 10−6 | 5.15 × 10−6 | 7.83 × 10−5 | 5.57 × 10−4 |
Max | 8.75 × 10−2 | 6.25 × 10−1 | 9.29 × 10−6 | 1.72 × 10−5 | 1.16 × 10−3 | 5.84 × 10−3 | 8.87 × 10−2 | 6.31 × 10−1 | |
Avg | 1.32 × 10−2 | 9.44 × 10−2 | 1.40 × 10−6 | 2.59 × 10−6 | 1.76 × 10−4 | 8.81 × 10−4 | 1.34 × 10−2 | 9.53 × 10−2 | |
Ni | Min | 2.21 × 10−4 | 1.58 × 10−3 | 2.29 × 10−8 | 4.23 × 10−8 | 3.27 × 10−6 | 1.64 × 10−5 | 2.24 × 10−4 | 1.60 × 10−3 |
Max | 1.11 × 10−2 | 7.96 × 10−2 | 1.15 × 10−6 | 2.13 × 10−6 | 1.65 × 10−4 | 8.26 × 10−4 | 1.13 × 10−2 | 8.04 × 10−2 | |
Avg | 2.58 × 10−3 | 1.84 × 10−2 | 2.67 × 10−7 | 4.93 × 10−7 | 3.81 × 10−5 | 1.91 × 10−4 | 2.62 × 10−3 | 1.86 × 10−2 | |
Pb | Min | 5.21 × 10−4 | 3.72 × 10−3 | 5.52 × 10−8 | 1.02 × 10−7 | 1.39 × 10−5 | 6.95 × 10−5 | 5.35 × 10−4 | 3.79 × 10−3 |
Max | 9.48 × 10−1 | 6.78 × 100 | 1.01 × 10−4 | 1.86 × 10−4 | 2.52 × 10−2 | 1.26 × 10−1 | 9.74 × 10−1 | 6.90 × 100 | |
Avg | 1.04 × 10−1 | 7.42 × 10−1 | 1.10 × 10−5 | 2.04 × 10−5 | 2.76 × 10−3 | 1.39 × 10−2 | 1.07 × 10−1 | 7.56 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, W.; Zhang, Y.; Wei, P.; Sun, C. Assessment of Heavy Metal(loid) Pollution and Human Health Risks Associated with a Mineral (Zn, Cu, and Sn Ores) Processing Plant in Yunnan, Southwest China. Minerals 2024, 14, 253. https://doi.org/10.3390/min14030253
Luo W, Zhang Y, Wei P, Sun C. Assessment of Heavy Metal(loid) Pollution and Human Health Risks Associated with a Mineral (Zn, Cu, and Sn Ores) Processing Plant in Yunnan, Southwest China. Minerals. 2024; 14(3):253. https://doi.org/10.3390/min14030253
Chicago/Turabian StyleLuo, Wenping, Yan Zhang, Pingtang Wei, and Chengshuai Sun. 2024. "Assessment of Heavy Metal(loid) Pollution and Human Health Risks Associated with a Mineral (Zn, Cu, and Sn Ores) Processing Plant in Yunnan, Southwest China" Minerals 14, no. 3: 253. https://doi.org/10.3390/min14030253