Next Article in Journal
Indirect Freeze Crystallization—An Emerging Technology for Valuable Resource Recovery from Wastewater
Previous Article in Journal
Reduction in Apparent Permeability Owing to Surface Precipitation of Solutes by Drying Process and Its Effect on Geological Disposal
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Identification of the Sedimentary Sources and Origin of Uranium for Zhiluo Formation of the Tarangaole U Deposit, Northeastern Ordos Basin

1
School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
2
Tianjin Center, China Geological Survey (North China Center for Geoscience Innovation), Tianjin 300170, China
3
Key Laboratory of Uranium Geology of China Geological Survey, Tianjin 300170, China
4
School of the Environment, University of Windsor, Windsor, ON N9B 3P4, Canada
*
Authors to whom correspondence should be addressed.
Minerals 2024, 14(4), 429; https://doi.org/10.3390/min14040429
Submission received: 5 February 2024 / Revised: 18 April 2024 / Accepted: 18 April 2024 / Published: 20 April 2024
(This article belongs to the Section Mineral Deposits)

Abstract

:
The large-sized Tarangaole uranium deposit and its neighboring Daying and Nalinggou deposits, located in the northeastern margin of the Ordos Basin, constitutes a major uranium resource base in northern China. In order to further clarify the sedimentary material source, uranium source and regional sediment–tectonic setting of the uranium-fed clastic rocks (i.e., Zhiluo Formation(J2z)) in the district, this paper carried out whole-rock geochemistry, heavy minerals composition and in situ U-Pb dating of detrital zircons for sandstones from the lower section of the Zhiluo Formation. The results have shown that the average chemical differentiation index (CIA) for the host rocks is 73.16 and the chemical weathering degree is moderate. Heavy minerals are mainly composed of ilmenite, garnet, chlorpyrite, zircon, pyrite, apatite, hematite, etc. The U-Pb dating of detrital zircon generally indicates three age peaks, i.e., 260~Ma, 1850~Ma and 2450~Ma, respectively. In conclusion, the source rocks may have been formed at active continental margins, e.g., in a continental margin arc environment. The sedimentary materials mainly come from khondalite series, TTGs, granulite, and mafic–ultramafic intrusive rocks distributed among the Daqing–Ula Mountains and adjacent areas, etc. The Late Paleozoic U-rich intermediate and acidic magmatic rocks spreading over the eastern part of the Ula–Daqing and Wolf mountains have provided the main uranium sources for the formation of major U deposits in the northern Ordos Basin.

Graphical Abstract

1. Introduction

The Ordos Basin is an important energy basin in northern China, in coexistence with coal, oil, gas, uranium and other mineral resources [1]. The northeastern margin of the Ordos Basin has been a research hotspot for sandstone-type uranium deposits. The Tarangaole uranium deposit, located between the Daying super-large and the Nalinggou large-sized uranium deposits, is a newly discovered large-sized uranium deposit in this district. The Daying–Tarangaole–Nalinggou uranium deposits constitute a large uranium resource base in northern China [2]. The uranium-bearing strata of the three deposits are the Middle Jurassic Zhiluo Formation. The analysis of the sedimentary material sources of the Zhiluo Formation can provide an important basis for the study of the coupling mineralization process, uranium sources and mineralization mechanism in the northeast margin of the Ordos Basin. Previously, whole-rock geochemistry, mineralogy, hydrothermal alteration and detrital zircon U-Pb dating have been carried out for uranium deposits such as the Daying and Nalinggou deposits [3,4,5,6,7,8,9]. These studies have presented some understanding of their geochemical characteristics, fluid alteration characteristics, mineralization mechanisms and metallogenic patterns. As a newly discovered deposit, the source of mineralization and its regional sedimentary–tectonic setting of the Tarangaole deposit are poorly constrained. This has limited our understanding for the Zhiluo Formation of sedimentary sources, evolution and further uranium prediction and evaluation in the uranium resource base.
In this paper, based on a systematic investigation on coalfield and uranium deposits boreholes, some basic work, such as the geochemistry, detrital zircon U-Pb geochronology and heavy minerals composition for the sandstones in the lower section of the Zhiluo Formation, was carried out in the Tarangaole area. Furthermore, in combination with regional geological background and isotopic chronologic data from the regional Precambrian metamorphic rocks and intrusive rocks, the origination, evolution and tectonic setting for the uranium-containing Zhiluo Formation are discussed. The relevant results provide key insights for the further exploration of the sandstone-type uranium deposit in the northeastern Ordos Basin mining district.

2. Geological Setting

The research area is located at the Tarangaole, north-central part of the Yimeng Uplift, Ordos Basin (Figure 1), and is situated to the south of the Hetao graben and Yinshan orogenic belt. Within this area, the well-known Daying uranium deposit lies in the west, the Nalinggou uranium deposit lies in the east and the three deposits are located approximately 10–15 km from each other. Regionally, the Carboniferous to Quaternary successively were deposited on Archean and Proterozoic basement rocks and the overall strata show a monoclinic structure gently dipping towards the south-west direction. The Poerjianghaizi deep fault is located near the study area and cuts deeply into the basement. The sandstone-type uranium deposits are hosted in the Middle Jurassic Zhiluo Formation (J2z) [10]. This formation unconformably overlies the coal-bearing strata of the Yan’an Formation(J1-2y) and is in conformable contact with the overlying Anding Formation(J2a). Due to the uneven erosion of the Anding Formation, the Lower Cretaceous conglomerates unconformably cover the top of the Zhiluo Formation in some areas [11]. Two capital ancient river channels spread from north to south in the Tarangaole area [8], evolving into multiple branches to the south (Figure 1). The width of the channel is 5~10 km, the thickness can reach up to 260 m and the arenite content can reach up to 85%.
The thickness of the Zhiluo Formation in the study area is 130~400 m and the bottom boundary is buried at a depth of 300~800 m (Figure 2a,b). The Zhiluo Formation can be divided into upper and lower sections according to their lithology (Figure 2c,d). The lower section (J2z1) is dominated by gray and gray–green medium-coarse sandstone, with gravel at the bottom, and the proportion of sandstone is generally more than 75%, which presents typical sedimentation of braided fluvial facies [12]. In the upper section (J2z2), the argillaceous interlayer increases significantly and the grain size becomes finer. The upper stratum is mainly composed by gray–green medium-fine-grained sandstone, brown–red mudstone and siltstone. The uranium ore bodies, which are distributed in the transition part of the gray–green alteration zone and the gray reduction zone of the Zhiluo Formation (J2z1), appear in the form of board and rolls on the profile. The lower section of the Zhiluo Formation presents loose, coarse-grained, mainly gray and gray–white conglomerate sandstone and coarse sandstone in the northern part of the study area; it gradually changes to gray and gray–green medium sandstone and fine sandstone. The main mineral components of the sandstone of the Zhiluo Formation are: quartz, feldspar and granite detritus, etc. Mineral sorting is medium-fine and the rounding is general-medium-sized (Figure 2e,f). The thickness of gray–green uranium-bearing sandstone can generally reach up to 50~100 m (Figure 2g).

3. Sampling and Analytical Methods

3.1. Sampling

Clastic rock samples from the boreholes were collected from the Zhiluo Formation in the Tarangaole and Nalinggou deposit area. All samples were processed at the Laboratory of Beijing Institute of Geology, Nuclear Industry, and the Laboratory of Tianjin Center, China Geological Survey.

3.2. Analytical Methods

3.2.1. Petrogeochemistry

Seven sandstone samples were used for the petrogeochemistry analysis. The major elements analysis was carried out by melting X-ray fluorescence spectroscopy (XRF) method and the Inductively coupled plasma-Mass Spectrometry (ICP-MS) method was used for trace and rare earth elements analysis at the Laboratory of Beijing Institute of Geology, Nuclear Industry. The analysis accuracy for major and trace elements are better than 5%.

3.2.2. Heavy Mineral Analysis

Heavy minerals analysis was performed on 19 medium-sized to coarse-grained sandstone samples and the sampling location is shown in Figure 1. Sixteen samples were taken from the borehole cores in the Tarangaole area, whereas 3 samples were collected from outcrop profile in the Gaotouyao area, covering the entire Zhiluo Formation distribution in the northern basin. Each sample (mainly medium-coarse-grained sandstone) weighed l~3 kg. The samples were processed as following: the weathered parts of the sample were removed, crushed, acidified and then selected as 63~250 μm mixed particle level fragments. Minerals were separated by the heavy liquid (CHBr3) method, then about 20 mg heavy minerals were identified under the binocular.

3.2.3. Zircon U-Pb Dating

The detrital zircons from fine-grained sandstone samples were collected for in situ LA-ICP-MS U-Pb dating. The separation of zircon grains and production of sample targets were undertaken by Langfang Chengxin Geological Service Co., Ltd. (Hebei, China). Zircon U-Pb isotope dating was conducted at the Laboratory of the Tianjin Center, China Geological Survey, using a Neptune (LA-MC-ICPMS) manufactured by Thermo Fisher Scientific, Waltham, MA, USA, referring to [13] and [14] for detailed procedures. The age data were processed by the ICPMS Data Cal program [15] and the calculation of zircon weighted average age and drawing of concordia diagrams were finished by Isopolot [16].

4. Results

4.1. Petrogeochemistry

The results of the major element analysis are shown in Table 1. The SiO2 content of the Zhiluo Formation sandstone in the Tarangaole area is relatively low, averaging at 64.14%. The content of Al2O3 is higher, with an average content of 15.98%. In addition, the average chemical differentiation index (CIA) of the Zhiluo Formation sandstone is 73.16, indicating that the chemical weathering degree is moderate at the source area.
The analysis results of trace and rare earth elements (REE) are shown in Table 2. The contents of compatible elements such as Co, Ni, Cr and V are similar to average levels of the continental crust [17], showing a moderately acidic tendency. In the MORB-normalized trace element spider diagram (Figure 3a), these rocks are relatively enriched in large-ion lipophile elements (LILEs) such as K, Rb and Ba, and depleted in high-field-strength elements (HFSEs) (e.g., Ti and Ta) and inactive elements such as P, as well as Sr, Ni and Y. The total amount of REEs for the Zhiluo sandstones varies significantly (192.42~292.32 ppm) with an average of 241.82 ppm. The ΣLREE/ΣHREE ratios fall into 4.46 to 5.27, with an average ratio of 4.65. The (La/Yb)N is varying from 10.79 to 13.03 with an average ratio of 11.80. According to the distribution mode of REEs (Figure 3b), most of the samples have no obvious Ce anomalies. The chondrite-normalized patterns show that the light REE tends to be enriched, whereas heavy REEs are flat, with δEu 0.66~0.77 (the average 0.73). The weak Eu negative anomaly and the REE mode is similar to that of the upper crust [18].

4.2. Heavy Mineral Analysis

The statistical results of heavy minerals in the study area are shown in Figure 4. The main heavy minerals in the Zhiluo Formation sandstones are ilmenite, zoisite and garnet (>40%), followed by zircon, pyrite, apatite, hematite, etc., (within 10%). Especially noteworthy is that pyrite minerals are concentrated in the middle of the study area, spreading in a north–south band, whereas hematite minerals are relatively concentrated in the outer area (Figure 4).

4.3. Zircon U-Pb Geochronology

According to the cathodoluminescence (CL) images (Figure 5), it can be seen that the zircon grains are medium in size (60~120 μm), the crystals are idiomorphic and hypidiomorphic and the growth ring and oscillatory zoning are obvious. Among them, the Paleozoic grains are mostly angular, indicating a magmatic source. In contrast, the older zircons are mostly round and some of them have ancient cores, indicating that they may have experienced long-distance transport abrasion and later metamorphic recrystallization [21].
Based on the geochronological results (Table 3, Table 4, Table 5 and Table 6), the 206Pb/238U surface age was adopted for the individual zircon (<1000 Ma); the 207Pb/206Pb surface age was also adopted (>1000 Ma) [22] (Figure 5). Most of the data points fall on or near a concordia line, after removing the concordia degree < 95%. Only a few points deviated slightly from the concordia line, reflecting the little loss of Pb or U.
Eighty zircon grains from Sample G26-1 were tested (Table 3), of which four zircon grains had a concordia degree of less than 95%, without participating in the age statistics. The concordia age of 76 zircon grains is mainly divided into three groups: group 1, with an age of 240~277 Ma and a main peak of ~262Ma; group 2, with an age of 1817~1989 Ma and a main peak of ~1956 Ma; and group 3, with an age of 2247~2668 Ma and peaks of 2335 Ma and 2512 Ma (Figure 6a,b).
Ninety-five zircon grains from Sample G36-1 were tested (Table 4), of which one zircon grain presented a concordia degree of less than 95%, without participating in the age statistics. The concordia age of 94 zircon grains can be divided into three groups: group 1, with an age of 260~323 Ma and a peak of ~ 280Ma; group 2, with an age of 1643~2035 Ma and peaks of ~1828 Ma and ~2000 Ma; and group 3, with an age of 2172~2736 Ma and a peak of ~2450 Ma (Figure 6c,d).
Eighty-eight zircon grains from Sample G41-1 were tested (Table 5), of which three zircon grains present a concondia degree of less than 95%, without participating in the age statistics. The concordia age of 85 zircon grains could be divided into three groups: group 1, aged between 264~335 Ma with a main peak of ~315 Ma; group 2, with an age of 1767~2200 Ma and peak ages of ~1850 Ma, 1960 Ma and ~2020 Ma; and group 3, with an age of 2256~2785 Ma and a main peak of ~2531 Ma (Figure 6e,f).
Eighty zircon grains from Sample G43-1 were tested (Table 6), of which eight zircon grains presented a concondia degree of less than 95%, without participating in the age statistics. The concordia age of 72 zircon grains can be divided into three groups: group 1, aged between 275~326Ma with a peak of ~265Ma; group 2, with an age of 1700~2200 Ma and a main peak of ~1829 Ma and ~1997 Ma; and group 3, with an age of 2200~3000 Ma and a peak of ~2418 Ma (Figure 6g,h).

5. Discussion

5.1. Geochemical Characteristics and Tectonic Setting of Host Rocks

On the FeO-MgO-A12O3 diagram [24], the source rocks of the Zhiluo Formation sandstones generally fall into the active continental margin or island-arc settings (Figure 7). In terms of trace element compositions, these sandstones are enriched in LILEs and are strongly depleted in HFSEs (Figure 3). This further suggests that the source rocks of these sandstones may have been formed in typical subduction-related settings. We, therefore, conclude that the source rocks of the Zhiluo Formation in the Daying–Tarangaole–Nalinggou area were formed in island-arc or active continental margin settings.

5.2. Composition of Heavy Mineral and Implications for U Mineralization

Based on the statistical analysis on the composition of heavy minerals for the Zhiluo Formation sandstones, there is no obvious difference for the associations of stable heavy minerals among the three uranium deposits. The content of ilmenite is slightly decreased in some boreholes due to the changing of surface hydrodynamic conditions during the sedimentary processes. From the comparison of the heavy mineral contents (Figure 4), the individual relative enrichment zone can be divided into pyrite and hematite, reflecting that under the same source background, the late oxidation-reduction may have generated some authigenic heavy minerals. Although they may not indicate the source rocks of the material, they can identify the paleo-oxidation-reduction environment, which plays a certain role in indicating the spatial positioning of uranium reservoirs. The pyrite enrichment area represents the dominant zones for reducing fluids, whereas the hematite enrichment area represents the dominant zone for oxidizing fluids. Some pyrite overlaps with the limonite enrichment area, which is considered the oxidation-reduction barrier, a favorable location of U prospection.

5.3. Spatial–Temporal Constraints on the Source Rocks

Compared with the age spectrum of the neighboring areas, the age peaks (i.e., ~260 Ma, ~1850 Ma and ~2450 Ma) (Figure 6) of detrital zircons from the Tarangaole uranium deposit are highly similar to that of the Daqingshan–Ula, Yin and Wolf mountains located at the northern edge of the basin [2,8,9,25]. The Precambrian high-grade metamorphic complex distributed among the Daqing–Ula Mountains is an important part of the khondalite belt on the northern margin of the North China Craton (NCC). It is mainly composed of the Archean Xinghe Rock Group gneiss series (basement reconstructed rock series: 1950~1850 Ma, 2500~2450 Ma), the Paleoproterozoic khondalite series, the (perilla) granitic gneiss–diorite gneiss and the Paleoproterozoic mafic gneiss, the plagioclase amphibole [26]. The metamorphic events are related to the Paleoproterozoic subduction-collision dynamics between the Yinshan Massif and the Ordos Massif on the northern margin of the NCC [27]. The gneiss, granulite, khondalite series and late Paleozoic intermediate and acidic intrusive rocks in these mountains are proposed to be the main sources for sandstones in the Zhiluo Formation [2].
The age peaks of ~1850 Ma and ~2450 Ma are consistent with the two tectonic thermal events in the northern margin of the North China Craton [28] and the age peak of ~260 Ma may record the rapid subduction event of the Paleo-Asian Ocean beneath the northern margin of the North China Craton, respectively [29].

5.4. Origin of Uranium in the Zhiluo Formation

Previous studies have shown that the late Paleozoic granites in the northern Ordos Basin (i.e., source area) are highly enriched in uranium [8], e.g., the ~328 Ma Dahuabei pluton in the Ula Mountain has an average uranium content of 5.16 ppm [30] and the 253~254 Ma Chaganhua Mo-bearing granite in the eastern Wolf Mountain contains a uranium content of 5.2~20. 8 ppm [31]. These magmatic rocks were yielded in the source area of the Zhiluo Formation and it can be inferred that the uranium-abnormal properties of the Middle Jurassic Zhiluo Formation sandstones may have been caused by these late Paleozoic acidic uranium-rich magmatic rocks (Figure 8).
During the Middle Jurassic, the widely distributed, late Paleozoic uranium-rich intermediate and acidic magmatic rocks in the Ula–Daqing and Wolf mountains along the northern Ordos Basin may have suffered strong uplift and erosion processes [3]. The paleowater flow would carry abundant sediment supplies and the surface water would facilitate the migration of uranium (+6 U) into the basin. During the later reduction stage, the uranium is restored as U ore (+4U) by reducers like pyrite, coal and other organic matter [32].
As a product of the Paleo-Asian Ocean’s evolution, these Carboniferous–Permian uranium-rich intermediate and acidic magmatic rocks are mainly distributed along the northern margin of the North China Craton. As the evolution of these granites directly controls the development of uranium-rich sandstones, the distribution of these granites can be used as a valuable index for the prediction and evaluation of potential uranium resources in the Ordos basin [33].

6. Conclusions

  • Lithogeochemical features indicate that the source rocks of the Zhiluo Formation sandstones may have been formed in island arcs or active continental margins.
  • Heavy mineral assemblage shows that the sedimentary sources of the Zhiluo Formation are mainly from intermediate and acidic magmatic rocks with minor metamorphic rocks. The source areas are located in the northern part of the Ordos Basin, the Ula–Daqing Mountains and the eastern area of the Wolf Mountain.
  • Detrital zircons from the Zhiluo Formation sandstones show three age peaks, i.e., ~2450 Ma, ~1850 Ma and ~260 Ma, which appear to be related to two phases of Paleoproterozoic tectonic thermal events and the rapid subduction of the Paleo-Asian Ocean during the Early Carboniferous~Middle Permian, respectively.
  • The late Paleozoic uranium-rich magmatic rocks successively provide uranium for the Zhiluo Formation sandstones.

Author Contributions

Formal analysis, Q.Z.; Supervision, C.-J.X. and J.-W.Y.; Writing—original draft, G.-Y.L.; Writing—review and editing, X.-B.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This work was financially supported by the National Natural Science Foundation of China (92162212), China Scholarship Council (No. 202308570015), the Geological Survey Project of the China Geological Survey (12120113057300; DD20160129; DD20160014; DD20160039; DD20190119; DD20230027) and the Scientific Research and Technology Development Project of PetroChina Changqing Oilfield Company (2022DJ0611).

Data Availability Statement

Data is contained within the article.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Liu, C.Y.; Zhao, H.G.; Gui, X.J.; Yue, L.P.; Zhao, J.F.; Wang, J.Q. Space- Time coordinate of the evolution and reformation and mineralization response in Ordos Basin. Acta Geol. Sin. 2006, 80, 617–638, (In Chinese with English abstract). [Google Scholar]
  2. Yu, R.A.; Sima, X.Z.; Jin, R.S.; Miao, P.S.; Peng, S.L. Discovery of a large-size uranium deposit in Northeast Ordos Basin. Geol. China 2020, 47, 883–884. [Google Scholar]
  3. Zhu, Q.; Yu, R.A.; Feng, X.X.; Li, J.G.; SiMa, X.Z.; Tang, C.; Xu, Z.L.; Liu, X.X.; Si, Q.H.; Li, G.Y.; et al. Mineralogy, geochemistry, and fluid action process of uranium deposits in the Zhiluo Formation, Ordos Basin, China. Ore Geol. Rev. 2019, 111, 102984. [Google Scholar] [CrossRef]
  4. Zhu, Q.; Wu, Y.; Wen, S.B.; Wang, Y.; Li, G.Y.; Si, Q.H.; Zhao, H.L. Analysis and comparative research on metallogenic geo-logical characteristics of sandstone-type uranium deposits between Zhiluo Formation and Luohe Formation in Ordos Basin. North China Geol. 2022, 45, 28–37. [Google Scholar]
  5. Chen, L.L.; Chen, Y.; Feng, X.X.; Li, J.G.; Guo, H.; Miao, P.S.; Jin, R.S.; Tang, C.; Zhao, H.L.; Wang, G.; et al. Uranium occurrence state in the Tarangaole area of the Ordos Basin, China: Implications for enrichment and mineralization. Ore Geol. Rev. 2019, 115, 103034. [Google Scholar] [CrossRef]
  6. Chen, Y.; Luo, N.; Chen, L.L.; Miao, P.S.; Li, J.G.; Zhao, H.L.; Li, J.M. Geochemical characteristics of basalts in the northeastern Ordos Basin. North China Geol. 2022, 45, 1–20. [Google Scholar]
  7. Zhao, H.L.; Chen, L.L.; Feng, X.X.; Li, J.G.; Chen, Y.; Wang, G. Features of Clay Minerals in the Middle Jurassic Zhiluo Formation Sandstones of the Nalinggou Area in the Ordos Basin and a Preliminary Comparison with Adjacent Areas. Geol. J. China Univ. 2018, 24, 627–636. [Google Scholar]
  8. Zhang, L.; Wu, B.L.; Liu, C.Y.; Lei, K.Y.; Hou, H.Q.; Li, S.; Cun, X.N.; Wang, J.Q. Provenance Analysis of the Zhiluo Formation in the Sandstone-hosted Uranium Deposits of the northern Ordos Basin and Implications for Uranium mineralization. Acta Geol. Sin. 2016, 90, 3441–3453, (In Chinese with English abstract). [Google Scholar]
  9. Lei, K.Y.; Liu, C.Y.; Zhang, L.; Wu, B.L.; Wang, J.Q.; Cun, X.N.; Sun, L. Detrital Zircon U—Pb Dating of Middle-Late Mesozoic Strata in the Northern Ordos Basin: Implications for Tracing Sedim ent Sources. Acta Geol. Sin 2017, 91, 1522–1541. [Google Scholar]
  10. Jiao, Y.Q.; Chen, A.P.; Wang, M.F.; Wu, L.Q.; Yuan, H.T.; Zhang, C.Z.; Xu, Z.C. Genetic analysis of the bottom sandstone of Zhiluo Formation, Northeastern Ordos Basin: Predictive base of spatial orientation of sandstone-type uranium deposit. Acta Sedimentol. Sin. 2005, 3, 371–379, (In Chinese with English abstract). [Google Scholar]
  11. Yue, L.; Jiao, Y.; Wu, L.; Rong, H.; Tao, Z. In situ characterization of pyrite from multiple microenvironments in middle Jurassic strata, northeastern Ordos Basin, China: Evaluation of synsedimentary/diagenetic fluid evolution. Sediment. Geol. 2023, 452, 106412. [Google Scholar] [CrossRef]
  12. Jiao, Y.Q.; Wu, L.Q.; Rong, H.; Peng, Y.B.; Miao, A.S.; Wang, X.M. The Relationship between Jurassic coal measures and sandstone-type uranium deposits in the northeastern Ordos Basin, China. Acta Geol. Sin. (Engl. Ed.) 2016, 90, 2117–2132. [Google Scholar] [CrossRef]
  13. Li, H.K.; Geng, J.Z.; Hao, S.; Zhang, Y.Q.; Li, H.M. Zircon U-Pb dating technique using LA-MC-ICP-MS. Bull. Mineral. Petrol. Geochem. 2009, 28, 77. (In Chinese) [Google Scholar]
  14. Geng, J.Z.; Li, H.K.; Zhang, J.; Zhou, H.Y.; Li, H.M. Zircon Hf Isotope Analysis by Means of LA-MC-ICP-MS. Geol. Bull. China 2011, 30, 1508–1513, (In Chinese with English abstract). [Google Scholar]
  15. Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
  16. Ludwig, K.R. ISOPLOT/EX 3.0: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Centre Special Publication: Berkeley, CA, USA, 2003. [Google Scholar]
  17. Rudnick, R.L.; Gao, S. Composition of the Continental Crust. In The Crust; Rudnick, R.L., Ed.; Elsevier-Pergamon: Oxford, UK, 2003; pp. 1–64. [Google Scholar]
  18. Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publication: Oxford, UK, 1985. [Google Scholar]
  19. McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
  20. Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
  21. Wu, Y.B.; Zheng, Y.F. Mineralogy of Zircon genesis and its constraints on U-Pb age interpretation. Chin. Sci. Bull. 2004, 49, 1589–1604, (In Chinese with English abstract). [Google Scholar] [CrossRef]
  22. Sircombe, K.N. Tracing provenance through the isotope ages of littoral and sedimentary detrital zircon, eastern Australia. Sediment. Geol. 1999, 124, 47–67. [Google Scholar] [CrossRef]
  23. Vermeesch, P. On the visualisation of detrital age distributions. Chem. Geol. 2012, 312, 190–194. [Google Scholar] [CrossRef]
  24. Pearce, T.H.; Gorman, B.E.; Birkett, T.C. The relationship between major element chemistry and tectonic environment of basic and intermediate volcanic rocks. Earth Planet. Sci. Lett. 1977, 36, 121–132. [Google Scholar]
  25. Wang, M.; Luo, J.L.; Li, M.; Bai, X.; Cheng, C.; Yan, L. Provenance and Tectonic Setting of Sandstone-Type Uranium Deposit in Dongsheng Area, Ordos Basin: Evidence from U-Pb Age and Hf Isotopes of Detrital Zircons. Acta Petrol. Sin. 2013, 29, 2746–2758, (In Chinese with English abstract). [Google Scholar]
  26. Liu, P.H.; Liu, F.L.; Cai, J.; Liu, J.H.; Shi, J.R.; Wang, F. Geochronological and geochemical study of the lijiazi mafic granulites from the daqingshan-wulashan metamorphic complex, the central khondalite belt in the north china craton. Acta Petrol. Sin 2013, 29, 462–484, (In Chinese with English abstract). [Google Scholar]
  27. Cai, J.; Liu, F.L.; Liu, P.H.; Wang, F.; Shi, J.R. Geochronology of the Paleoproterozoic khondalite rocks from the Wulashan-Daqingshan area, the Khondalite Belt. Acta Petrol. Sin. 2015, 31, 3081–3106, (In Chinese with English abstract). [Google Scholar]
  28. Li, G.Y.; Li, Z.D.; Wang, J.Y.; Wen, S.B. Formation Age, Geochemical Signatures and Geological Significance of the Gaoyaohai BIF-Type Iron Deposit in the Guyang Greenstone Belt, Inner Mongolia. J. Jilin Univ. (Earth Sci. Ed.) 2019, 49, 1317–1326, (In Chinese with English abstract). [Google Scholar]
  29. Li, G.Y.; Qiu, L.; Li, Z.D.; Gao, L.; Fu, C.; Wang, J.Y.; Zhang, Q.; Tu, J.R.; Ge, T.F. Closure of the Eastern Paleo-Asian Ocean: Constraints from the Age and Geochemistry of Early Permian Zhaojinggou Pluton in Inner Mongolia (North China). Miner. 2022, 12, 738. [Google Scholar] [CrossRef]
  30. Wang, L.; Wang, G.H.; Lei, S.B.; Chang, C.J.; Hou, W.R.; Jia, L.Q.; Zhao, G.M.; Chen, H.J. Petrogenesis of Dahuabei Pluton from Wulashan, Inner Mongolia: Constraints from Geochemistry, Zircon U-Pb Dating and Sr-Nd-Hf Isotopes. Acta Petrol. Sin. 2015, 31, 1977–1994, (In Chinese with English abstract). [Google Scholar]
  31. Liu, Y.F.; Nie, F.J.; Jiang, S.H.; Xi, Z.; Zhang, Z.G.; Xiao, W.; Zhang, K.; Liu, Y. Ore-Forming Granites from Chaganhua Mo-lybdenum Deposit, Central Inner Mongolia, China: Geochemistry, Geochronology and Petrogenesis. Acta Petrol. Sin. 2012, 28, 409–420, (In Chinese with English abstract). [Google Scholar]
  32. Jiao, Y.Q.; Wu, L.Q.; Peng, Y.B.; Rong, H.; Ji, D.M.; Miao, A.S.; Li, H.L. Sedimentary tectonic setting of the deposition-type uranium deposits forming in the Paleo-Asian tectonic domain, North China. Earth Sci. Front. 2015, 22, 189–205, (In Chinese with English abstract). [Google Scholar]
  33. Jiao, Y.Q.; Wu, L.Q.; Rong, H. Model of inner and outer reductive media within uranium reservoir sandstone of sandstone-type uranium deposits and its ore-controlling mechanism: Case studies in Daying and Qianjiadian Uranium Deposits. Earth Sci. 2018, 2, 459–474, (In Chinese with English abstract). [Google Scholar]
Figure 1. Schematic tectonic map of the Ordos Basin (a) and regional geological map of research area (b) (modified from [3]).
Figure 1. Schematic tectonic map of the Ordos Basin (a) and regional geological map of research area (b) (modified from [3]).
Minerals 14 00429 g001
Figure 2. Field outcrops, drill core photographs and stratigraphic histogram of the Tarangaole uranium deposit. (a) Outcrops of the upper and lower subsection of the lower section from the Zhiluo Formation; (b) Outcrops of the Zhiluo and Yan’an formations; (c) Drilled cores from the upper section of the Zhiluo Formation; (d) Drilled cores from the lower section of the Zhiluo Formation; (e,f) Microscopic feature of the Zhiluo Formation greywacke; (g) Schematic stratigraphic column of the Zhiluo Formation. Qtz = quartz, Pl = plagioclase.
Figure 2. Field outcrops, drill core photographs and stratigraphic histogram of the Tarangaole uranium deposit. (a) Outcrops of the upper and lower subsection of the lower section from the Zhiluo Formation; (b) Outcrops of the Zhiluo and Yan’an formations; (c) Drilled cores from the upper section of the Zhiluo Formation; (d) Drilled cores from the lower section of the Zhiluo Formation; (e,f) Microscopic feature of the Zhiluo Formation greywacke; (g) Schematic stratigraphic column of the Zhiluo Formation. Qtz = quartz, Pl = plagioclase.
Minerals 14 00429 g002
Figure 3. MORB-normalized trace element spider diagram (a) (after [19]) and chondrite-normalized REE pattern (b) (after [20]) of sandstones from the Zhiluo Formation in study area.
Figure 3. MORB-normalized trace element spider diagram (a) (after [19]) and chondrite-normalized REE pattern (b) (after [20]) of sandstones from the Zhiluo Formation in study area.
Minerals 14 00429 g003
Figure 4. Comparison of heavy mineral contents within sandstones from Zhiluo Formation in the Tarangaole uranium deposit, Ordos Basin.
Figure 4. Comparison of heavy mineral contents within sandstones from Zhiluo Formation in the Tarangaole uranium deposit, Ordos Basin.
Minerals 14 00429 g004
Figure 5. Carhodoluminescence (CL) images of typical detrital zircon from sandstone samples (G26-1, G36-1, G41-1 and G43-1) of the Zhiluo Formation.
Figure 5. Carhodoluminescence (CL) images of typical detrital zircon from sandstone samples (G26-1, G36-1, G41-1 and G43-1) of the Zhiluo Formation.
Minerals 14 00429 g005
Figure 6. Concordia curves and age spectrum of detrital zircons of the sandstones (G26-1 (a,b), G36-1 (c,d), G41-1 (e,f) and G43-1 (g,h)) from the Zhiluo Formation in the study area (after [23]).
Figure 6. Concordia curves and age spectrum of detrital zircons of the sandstones (G26-1 (a,b), G36-1 (c,d), G41-1 (e,f) and G43-1 (g,h)) from the Zhiluo Formation in the study area (after [23]).
Minerals 14 00429 g006
Figure 7. The FeO-MgO-A12O3 discrimination diagram for sandstones samples from the Zhiluo Formation (after [24]).
Figure 7. The FeO-MgO-A12O3 discrimination diagram for sandstones samples from the Zhiluo Formation (after [24]).
Minerals 14 00429 g007
Figure 8. Schematic diagram for the source of sediments and uranium in the Zhiluo Formation, northern Ordos Basin (modifed after [2]; the age of magmatic rocks are from [9]).
Figure 8. Schematic diagram for the source of sediments and uranium in the Zhiluo Formation, northern Ordos Basin (modifed after [2]; the age of magmatic rocks are from [9]).
Minerals 14 00429 g008
Table 1. Major elements (%) of analytical data of the Zhiluo Formation sandstone in study area.
Table 1. Major elements (%) of analytical data of the Zhiluo Formation sandstone in study area.
SampleUZK2-31UZK13-43UZK13-38UZK13-40UZK13-58ZKC2016-1-40UZK38-23
SiO265.98 66.54 64.55 63.23 62.10 64.87 61.68
Al2O316.20 15.54 16.27 16.50 14.96 14.82 17.57
Fe2O32.26 2.90 3.38 4.22 3.86 4.94 2.93
FeO1.70 1.21 1.73 1.50 4.50 0.64 2.89
TFe2O34.15 4.24 5.30 5.89 8.86 5.65 6.14
CaO1.02 1.30 1.09 1.14 1.12 1.80 1.19
MgO2.24 2.02 2.19 2.44 3.05 2.36 2.67
K2O3.28 3.13 3.21 3.05 3.09 2.84 2.88
Na2O1.58 1.86 1.59 1.76 1.12 1.32 1.61
TiO20.77 0.79 0.83 0.87 0.75 0.77 0.86
P2O50.16 0.03 0.14 0.19 0.20 0.19 0.10
MnO0.05 0.06 0.06 0.06 0.08 0.05 0.07
LOI4.59 4.49 4.77 4.87 4.68 5.34 5.24
Totals99.8399.8799.8199.8399.5199.9499.69
CIA73.37 71.19 73.42 73.50 73.73 71.32 75.57
CIA indicates the chemical differentiation index of sedimentary rock sources; CIA = [Al2O3/(Al2O3 + CaO + Na2O + K2O)] × 100 and the content of each oxide in the formula is molar mass.
Table 2. Trace elements (weight-ppm) and rare earth elements (weight-ppm) analytical data of the Zhiluo Formation sandstone.
Table 2. Trace elements (weight-ppm) and rare earth elements (weight-ppm) analytical data of the Zhiluo Formation sandstone.
SampleUZK2-31UZK13-43UZK13-38UZK13-40UZK13-58ZKC2016-1-40UZK38-23
Cu16.5 30.6 36.8 31.2 34.8 22 36
Pb13.2 18.4 16.1 19.6 14.4 18.4 26.1
Zn77.4 82.5 79.8 89 88.1 60.4 91.8
Cr88.6 121. 111 103 79.5 215 98
Ni37.4 37 35.6 47.6 30.1 35.8 40.4
Co19.4 19.9 18.6 23 18 18 20.6
Cd0.03 0.03 0.03 0.04 0.04 0.08 0.11
Li42.2 25.7 31.5 33.6 35.6 23 57.6
Rb118 118 119 119 116 61.3 105
Cs5.06 5.73 5.63 6.3 5.34 3.24 7.23
W0.8 0.96 0.81 0.94 0.9 0.98 1.41
Mo0.32 1.89 0.47 1.62 0.41 8.25 0.58
Sb0.16 0.15 0.21 0.2 0.16 0.17 0.26
Bi0.13 0.1 0.22 0.28 0.12 0.12 0.46
Sr321 361 364 366 322 319 403
Ba929 814 840 787 786 820 720
V84.6 93. 99.5 118 127 102 120
Sc13.4 12.2 11 14.9 13.2 13.8 15.6
Be1.83 1.64 2 2.08 2.69 1.54 2.9
Ga20.6 21.3 21.5 23.2 24.7 19.2 24.1
U2.19 5.2 5.18 5.51 5.19 1.74 3.41
Th9.64 9.54 9.63 10.8 12.9 8.41 14.8
La36.8 41.2 42.5 48.4 52.4 40.6 56
Ce73.6 87 98.4 108 101 88.9 116
Pr8.06 8.97 9.52 10.7 10.7 9.17 11.6
Nd31.4 35.1 37.8 42.7 41.3 36.6 45.8
Sm5.89 6.48 6.85 8.12 7.54 6.86 8.64
Eu1.41 1.5 1.6 1.86 1.86 1.66 1.84
Gd5.37 5.99 6.21 7.72 7.09 6.23 8.04
Tb0.75 0.83 0.83 1.05 0.99 0.87 1.13
Dy4.13 4.61 4.41 5.74 5.54 4.72 6.24
Ho0.74 0.84 0.78 1.01 1.02 0.86 1.11
Er2.04 2.34 2.13 2.7 2.8 2.4 3.07
Tm0.33 0.38 0.34 0.42 0.45 0.38 0.5
Yb2.26 2.61 2.34 2.84 3.1 2.7 3.51
Lu0.34 0.41 0.35 0.44 0.49 0.42 0.54
Y19.3 22.4 19.9 25.2 26.5 21.3 28.3
∑REE192.42 220.66 233.96 266.9 262.78 223.67 292.32
LREE157.16 180.25 196.67 219.78 214.8 183.79 239.88
HREE35.26 40.41 37.29 47.12 47.98 39.88 52.44
LREE/HREE4.46 4.46 5.27 4.66 4.48 4.61 4.57
δEu0.75 0.72 0.74 0.71 0.77 0.76 0.66
(La/Yb)N11.68 11.32 13.03 12.22 12.12 10.79 11.44
(Gd/Yb)N1.97 1.9 2.2 2.25 1.89 1.91 1.89
δEu = 2EuN/(SmN + GdN); N after [20].
Table 3. U-Pb isotope test results of detrital zircon from the Zhiluo Formation sandstone (G26-1) in study area.
Table 3. U-Pb isotope test results of detrital zircon from the Zhiluo Formation sandstone (G26-1) in study area.
Point No. Content (×10−6)Isotope ratioAge (Ma)
PbThU207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238UConcordia
01177 52 262 0.1756 0.0035 11.9518 0.2516 0.4925 0.0047 2613 33 2601 20 2581 20 99%
0221 44 43 0.1121 0.0030 4.9818 0.1413 0.3226 0.0041 1835 49 1816 24 1803 20 99%
03192 132 218 0.2153 0.0036 17.3132 0.3987 0.5806 0.0091 2946 27 2952 22 2951 37 99%
0422 37 29 0.1644 0.0038 10.6738 0.2775 0.4705 0.0063 2502 39 2495 24 2486 28 99%
0575 85 125 0.1416 0.0025 8.3593 0.1814 0.4269 0.0058 2247 31 2271 20 2292 26 99%
06164 105 359 0.1196 0.0019 5.8697 0.1103 0.3550 0.0037 1950 29 1957 16 1958 18 99%
0737521611050.11700.00204.23230.09090.26160.003619113016801814981988%
0825 69 48 0.1110 0.0026 4.9106 0.1250 0.3203 0.0040 1817 42 1804 22 1791 20 99%
091172593640.16060.00274.90630.09930.22110.003124622718031712881766%
10158 230 242 0.1503 0.0023 9.0279 0.1472 0.4345 0.0035 2350 26 2341 15 2326 16 99%
1118 33 36 0.1182 0.0025 5.7714 0.1306 0.3545 0.0043 1929 33 1942 20 1956 20 99%
12145 208 194 0.16750.0031 11.0229 0.1961 0.4760 0.0055 2533 31 2525 17 2510 24 99%
13112 138 162 0.1631 0.0026 10.7611 0.1943 0.4766 0.0048 2489 28 2503 17 2512 21 99%
1434 79 41 0.1642 0.0032 10.8831 0.2434 0.4786 0.0059 2500 33 2513 21 2521 26 99%
1527 30 53 0.1267 0.0026 6.6853 0.1567 0.3821 0.0057 2054 36 2071 21 2086 26 99%
1640 66 51 0.1671 0.0035 11.2854 0.2820 0.4862 0.0069 2529 35 2547 23 2554 30 99%
17235 305 359 0.1628 0.0028 10.4647 0.1999 0.4640 0.0049 2487 28 2477 18 2457 22 99%
18210 227 350 0.1475 0.0023 8.9483 0.1632 0.4380 0.0048 2318 28 2333 17 2342 21 99%
196 113 106 0.0514 0.0023 0.2863 0.0130 0.0407 0.0007 257 106 256 10 257 4 99%
2051 48 100 0.1302 0.0022 7.1021 0.1404 0.3938 0.0045 2102 30 2124 18 2140 21 99%
21525 460 926 0.1419 0.0023 8.2255 0.1389 0.4193 0.0059 2250 23 2256 15 2257 27 99%
22119 167 202 0.1470 0.0022 8.7093 0.1586 0.4278 0.0050 2322 25 2308 17 2296 22 99%
2347 49 63 0.1817 0.0035 12.7379 0.2575 0.5074 0.0053 2668 32 2660 19 2645 23 99%
24204 220 334 0.1470 0.0023 8.7236 0.1581 0.4288 0.0047 2322 27 2310 17 2300 21 99%
2518 35 49 0.0957 0.0026 3.6207 0.0945 0.2743 0.0030 1543 46 1554 21 1563 15 99%
26213 245 349 0.1495 0.0022 9.0416 0.1757 0.4370 0.0064 2340 25 2342 18 2337 29 99%
27200 180 315 0.1601 0.0022 10.4757 0.1943 0.4736 0.0078 2457 23 2478 17 2500 34 99%
2814 225 227 0.0516 0.0032 0.3126 0.0192 0.0439 0.0008 333 143 276 15 277 5 99%
2920 242 371 0.0508 0.0012 0.2902 0.0071 0.0413 0.0004 232 56 259 6 261 3 99%
308 71 119 0.0524 0.0051 0.3837 0.0394 0.0526 0.0013 306 229 330 29 330 8 99%
3127 40 56 0.1159 0.0021 5.5991 0.1152 0.3495 0.0045 1894 33 1916 18 1932 22 99%
3251685410760.15050.00246.73550.11910.32260.003223523220771618021685%
33146 112 301 0.1286 0.0019 6.7466 0.1219 0.3785 0.0049 2080 26 2079 16 2069 23 99%
34157 224 248 0.1523 0.0021 9.2912 0.1425 0.4405 0.0043 2371 22 2367 14 2353 19 99%
35170 143 249 0.1715 0.0022 11.6570 0.2174 0.4899 0.0069 2572 22 2577 18 2570 30 99%
364 34 55 0.0561 0.0073 0.4152 0.0439 0.0557 0.0021 457 262 353 31 349 13 99%
37422 428 647 0.1598 0.0023 10.1828 0.1655 0.4603 0.0062 2454 24 2452 15 2441 27 99%
38208 215 365 0.1477 0.0020 8.7802 0.1432 0.4294 0.0048 2319 22 2315 15 2303 22 99%
3945 74 67 0.1557 0.0027 9.7907 0.2446 0.4538 0.0081 2409 25 2415 23 2412 36 99%
4087 78 139 0.1598 0.0026 10.3088 0.2010 0.4665 0.0062 2454 28 2463 18 2468 27 99%
4189 102 130 0.1646 0.0024 11.0402 0.1873 0.4847 0.0052 2503 24 2527 16 2548 23 99%
4223 69 43 0.1143 0.0024 5.2691 0.1231 0.3333 0.0038 1869 39 1864 20 1855 18 99%
43243 85 434 0.1497 0.0035 8.9756 0.2301 0.4332 0.0114 2342 41 2336 23 2320 51 99%
44118 66 271 0.1193 0.0018 5.8959 0.1149 0.3572 0.0050 1946 27 1961 17 1969 24 99%
4521 62 48 0.1085 0.0022 4.6236 0.0968 0.3103 0.0040 1776 37 1754 18 1742 20 99%
4662 75 93 0.1626 0.0025 10.7826 0.2194 0.4788 0.0070 2483 26 2505 19 2522 30 99%
4781 93 128 0.1592 0.0024 10.0285 0.1773 0.4553 0.0050 2447 26 2437 16 2419 22 99%
48240 367 322 0.1654 0.0025 10.7398 0.1867 0.4688 0.0050 2522 26 2501 16 2478 22 99%
4992 110 210 0.1151 0.0019 5.3521 0.1061 0.3350 0.0042 1883 36 1877 17 1863 20 99%
5046 47 103 0.1175 0.0022 5.6177 0.1125 0.3450 0.0041 1920 33 1919 17 1911 20 99%
51395 131 777 0.1352 0.0024 7.4352 0.1349 0.3959 0.0039 2166 31 2165 16 2150 18 99%
5215 26 30 0.1174 0.0038 5.5211 0.1821 0.3392 0.0042 1916 58 1904 28 1883 20 98%
53209 135 343 0.1563 0.0031 9.8205 0.1940 0.4525 0.0047 2416 34 2418 18 2406 21 99%
5469 112 151 0.1123 0.0026 5.1306 0.1219 0.3284 0.0041 1839 42 1841 20 1831 20 99%
55203 95 303 0.1795 0.0044 12.5131 0.3047 0.5005 0.0061 2650 40 2644 23 2616 26 98%
56245 442 377 0.1371 0.0039 7.4986 0.2109 0.3936 0.0065 2190 49 2173 25 2139 30 98%
5714 210 255 0.0506 0.0020 0.2650 0.0105 0.0379 0.0007 220 91 239 8 240 4 99%
58229 207 337 0.1628 0.0033 10.5508 0.2059 0.4669 0.0043 2485 35 2484 18 2470 19 99%
59221 179 371 0.1469 0.0027 8.8598 0.1641 0.4351 0.0046 2310 30 2324 17 2329 21 99%
6054 46 123 0.1222 0.0022 6.2166 0.1730 0.3631 0.0067 1989 27 2007 24 1997 32 99%
61134 214 279 0.1125 0.0018 5.1407 0.0824 0.3302 0.0029 1840 29 1843 14 1839 14 99%
6265 51 106 0.1583 0.0025 10.1500 0.1868 0.4643 0.0060 2439 27 2449 17 2459 26 99%
6364621760.11230.00334.30550.11850.27750.004118395216942315792192%
64184 132 274 0.1638 0.0025 10.8860 0.1886 0.4809 0.0054 2496 26 2513 16 2531 24 99%
65204 189 338 0.1504 0.0022 9.0793 0.1482 0.4370 0.0048 2350 25 2346 15 2337 22 99%
66171 249 611 0.0855 0.0013 2.6479 0.0575 0.2242 0.0044 1328 29 1314 16 1304 23 99%
6717 171 319 0.0516 0.0015 0.3016 0.0086 0.0426 0.0005 333 60 268 7 269 3 99%
686 50 109 0.0522 0.0024 0.2962 0.0132 0.0416 0.0008 300 104 263 10 263 5 99%
6914 188 243 0.0516 0.0023 0.2916 0.0136 0.0408 0.0004 333 100 260 11 258 3 99%
7036 39 54 0.1614 0.0025 10.5088 0.1818 0.4717 0.0051 2470 26 2481 16 2491 22 99%
7144 93 114 0.1006 0.0017 3.9404 0.0788 0.2836 0.0039 1635 31 1622 16 1610 20 99%
7220 22 35 0.1421 0.0059 8.0971 0.3333 0.4133 0.0078 2254 72 2242 37 2230 36 99%
737 74 103 0.0539 0.0036 0.3806 0.0243 0.0516 0.0015 369 156 327 18 325 9 99%
7444 54 70 0.1558 0.0022 9.9388 0.2034 0.4602 0.0069 2410 24 2429 19 2440 31 99%
75132 223 171 0.1649 0.0024 10.8707 0.1661 0.4768 0.0050 2506 24 2512 14 2513 22 99%
76207 107 465 0.1214 0.0016 5.9429 0.0805 0.3543 0.0032 1977 23 1968 12 1955 15 99%
7718 320 300 0.0521 0.0017 0.2923 0.0093 0.0410 0.0006 300 74 260 7 259 4 99%
78106 102 157 0.1677 0.0023 11.2668 0.2135 0.4853 0.0068 2535 17 2545 18 2550 29 99%
7914 218 223 0.0511 0.0019 0.3094 0.0117 0.0437 0.0005 256 81 274 9 276 3 99%
80121 112 271 0.1171 0.0017 5.5104 0.0915 0.3399 0.0031 1913 26 1902 14 1886 15 99%
Table 4. U-Pb isotope test results of detrital zircon from the Zhiluo Formation sandstone (G36-1) in study area.
Table 4. U-Pb isotope test results of detrital zircon from the Zhiluo Formation sandstone (G36-1) in study area.
Point No.Content (×10−6)Isotope ratioAge (Ma)
PbThU207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238UConcordia
01488 176 840 0.1571 0.0023 9.8159 0.2343 0.4515 0.0079 2424 25 2418 22 2402 35 99%
0224 44 54 0.1105 0.0021 4.8660 0.1005 0.3193 0.0040 1809 33 1796 17 1786 20 99%
0378 65 180 0.1198 0.0016 5.8288 0.0877 0.3530 0.0042 1954 24 1951 13 1949 20 99%
0420 39 47 0.1080 0.0019 4.7050 0.1024 0.3153 0.0044 1766 33 1768 18 1767 22 99%
0536 48 79 0.1172 0.0017 5.6549 0.0960 0.3490 0.0036 1915 27 1925 15 1930 17 99%
0611 33 23 0.1100 0.0029 4.8790 0.1385 0.3210 0.0043 1811 48 1799 24 1795 21 99%
07128 35 301 0.1227 0.0016 6.2534 0.1137 0.3681 0.0049 1995 24 2012 16 2021 23 99%
0873 114 171 0.1101 0.0016 5.0067 0.0946 0.3284 0.0043 1811 26 1820 16 1830 21 99%
0926 270 534 0.0510 0.0011 0.2904 0.0075 0.0412 0.0006 243 55 259 6 260 4 99%
104 101 66 0.0515 0.0025 0.3205 0.0160 0.0451 0.0007 261 111 282 12 284 4 99%
11167 188 276 0.1545 0.0023 9.4657 0.1705 0.4432 0.0057 2398 25 2384 17 2365 26 99%
126 101 170 0.0503 0.0027 0.2004 0.0102 0.0292 0.0004 206 126 185 9 186 2 99%
13126 213 264 0.1197 0.0015 5.8538 0.0882 0.3541 0.0037 1952 22 1954 13 1954 18 99%
1422 43 48 0.1144 0.0022 5.2557 0.1169 0.3329 0.0046 1872 34 1862 19 1853 22 99%
15164 192 257 0.1607 0.0021 10.5018 0.1902 0.4733 0.0064 2465 22 2480 17 2498 28 99%
165 49 90 0.0521 0.0023 0.3235 0.0153 0.0449 0.0008 287 99 285 12 283 5 99%
17156 129 253 0.1606 0.0020 10.1918 0.1518 0.4597 0.0045 2462 20 2452 14 2438 20 99%
1818 34 39 0.1154 0.0020 5.3586 0.1112 0.3374 0.0048 1887 31 1878 18 1874 23 99%
1972 99 156 0.1194 0.0016 5.8072 0.1011 0.3521 0.0042 1948 24 1947 15 1944 20 99%
20137 344 291 0.1118 0.0013 5.0658 0.0811 0.3281 0.0039 1829 20 1830 14 1829 19 99%
2142 33 63 0.1692 0.0029 11.0568 0.2192 0.4755 0.0081 2550 34 2528 19 2507 36 99%
2223 62 47 0.1132 0.0020 5.0877 0.1126 0.3260 0.0048 1852 32 1834 19 1819 23 99%
2313 130 245 0.0520 0.0012 0.3253 0.0090 0.0454 0.0008 287 54 286 7 286 5 99%
2439 66 90 0.1120 0.0018 5.0770 0.1042 0.3286 0.0046 1832 29 1832 17 1831 22 99%
2586 78 193 0.1210 0.0016 6.0484 0.1181 0.3620 0.0055 1972 24 1983 17 1992 26 99%
2615 36 33 0.1137 0.0022 5.1126 0.1132 0.3264 0.0047 1859 35 1838 19 1821 23 99%
2718 47 36 0.1131 0.0023 5.0581 0.1168 0.3258 0.0054 1850 37 1829 20 1818 26 99%
28441 396 692 0.1638 0.0018 10.3949 0.1518 0.4593 0.0045 2495 19 2471 14 2436 20 98%
29124 154 323 0.1079 0.0014 4.4603 0.0735 0.2995 0.0033 1765 24 1724 14 1689 16 97%
3042 65 113 0.1010 0.0015 3.9510 0.0775 0.2836 0.0038 1643 29 1624 16 1609 19 99%
3129 13 48 0.1674 0.0026 10.6014 0.2031 0.4596 0.0062 2532 26 2489 18 2438 27 97%
3218 65 34 0.1094 0.0025 4.7339 0.1207 0.3142 0.0041 1791 42 1773 21 1761 20 99%
3323 26 43 0.1356 0.0022 7.3477 0.1412 0.3934 0.0047 2172 34 2155 17 2139 22 99%
3470 147 163 0.1040 0.0014 4.2115 0.0679 0.2939 0.0030 1698 25 1676 13 1661 15 99%
359 111 160 0.0512 0.0027 0.2994 0.0160 0.0425 0.0005 256 122 266 12 268 3 99%
36124 176 246 0.1245 0.0017 6.4151 0.1630 0.3701 0.0065 2022 29 2034 22 2030 31 99%
37176 229 269 0.1667 0.0019 11.0306 0.2273 0.4801 0.0084 2524 19 2526 19 2528 37 99%
3833 69 43 0.1661 0.0025 10.9145 0.2212 0.4767 0.0067 2518 24 2516 19 2513 29 99%
3920 43 40 0.1145 0.0021 5.3444 0.1173 0.3394 0.0048 1872 33 1876 19 1884 23 99%
402 33 57 0.0510 0.0045 0.1960 0.0162 0.0283 0.0007 243 199 182 14 180 5 99%
4123 468 281 0.0530 0.0012 0.3703 0.0096 0.0506 0.0006 328 56 320 7 318 4 99%
4235 686 516 0.0520 0.0013 0.3296 0.0091 0.0459 0.0006 287 56 289 7 289 4 99%
4312 16 18 0.1551 0.0031 9.6243 0.2091 0.4506 0.0058 2403 34 2399 20 2398 26 99%
4410 74 203 0.0514 0.0019 0.2973 0.0112 0.0421 0.0006 257 87 264 9 266 4 99%
456 92 101 0.0519 0.0018 0.3154 0.0112 0.0445 0.0007 280 84 278 9 281 4 99%
4649 74 116 0.1102 0.0016 4.9360 0.0877 0.3246 0.0042 1803 26 1808 15 1812 21 99%
477 85 126 0.0523 0.0016 0.3318 0.0108 0.0461 0.0007 302 70 291 8 290 4 99%
4819 150 388 0.0510 0.0011 0.2986 0.0079 0.0424 0.0007 239 56 265 6 268 4 99%
4957 28 87 0.1828 0.0025 12.7917 0.2656 0.5061 0.0082 2680 23 2664 20 2640 35 99%
5031 410 428 0.0531 0.0014 0.3774 0.0103 0.0514 0.0006 332 59 325 8 323 4 99%
5158 109 118 0.1198 0.0017 5.7565 0.0924 0.3478 0.0035 1953 30 1940 14 1924 17 99%
5274 76 107 0.1706 0.0020 11.3943 0.1606 0.4835 0.0049 2565 20 2556 13 2542 21 99%
5379 22 182 0.1234 0.0016 6.1875 0.1238 0.3624 0.0058 2006 23 2003 18 1994 28 99%
5440 56 82 0.1254 0.0018 6.3719 0.1115 0.3679 0.0044 2035 26 2028 15 2020 21 99%
5554 67 119 0.1213 0.0017 5.9798 0.1028 0.3565 0.0042 1976 58 1973 15 1965 20 99%
56296 240 459 0.1669 0.0020 11.0846 0.1649 0.4800 0.0047 2527 20 2530 14 2527 20 99%
57151 262 231 0.1542 0.0020 9.7970 0.1718 0.4600 0.0062 2394 21 2416 16 2439 27 99%
5815 47 26 0.1185 0.0031 5.7141 0.1550 0.3500 0.0048 1944 46 1934 23 1935 23 99%
59159 207 235 0.1644 0.0022 10.6572 0.2133 0.4691 0.0073 2502 22 2494 19 2479 32 99%
6078 98 118 0.1626 0.0020 10.4680 0.1578 0.4667 0.0052 2483 21 2477 14 2469 23 99%
6128 70 60 0.1138 0.0020 5.1783 0.1040 0.3301 0.0038 1861 33 1849 17 1839 18 99%
6236 766 509 0.0526 0.0009 0.3386 0.0069 0.0467 0.0006 309 8 296 5 294 3 99%
6317 198 324 0.0514 0.0012 0.2968 0.0078 0.0420 0.0006 257 49 264 6 265 4 99%
6423 69 47 0.1137 0.0022 5.1604 0.1237 0.3292 0.0051 1861 35 1846 20 1834 25 99%
65120 75 279 0.1207 0.0016 6.0511 0.1116 0.3635 0.0052 1969 24 1983 16 1999 24 99%
6645 48 76 0.1519 0.0020 9.2625 0.1777 0.4419 0.0062 2369 23 2364 18 2359 28 99%
6712 80 137 0.0551 0.0014 0.5395 0.0162 0.0710 0.0012 417 56 438 11 442 7 99%
68146 124 244 0.1589 0.0018 9.9790 0.1539 0.4553 0.0049 2444 19 2433 14 2419 22 99%
69305 573 621 0.1177 0.0014 5.5608 0.0949 0.3422 0.0040 1921 20 1910 15 1897 19 99%
7022 196 442 0.0522 0.0011 0.3031 0.0069 0.0423 0.0005 295 44 269 5 267 3 99%
7114 172 255 0.0518 0.0014 0.3066 0.0086 0.0432 0.0006 276 66 272 7 272 4 99%
7214 97 246 0.0528 0.0019 0.3411 0.0121 0.0472 0.0007 320 80 298 9 297 4 99%
7341 98 53 0.1633 0.0025 10.5875 0.2052 0.4701 0.0058 2490 26 2488 18 2484 25 99%
7417 45 35 0.1138 0.0024 5.1327 0.1189 0.3286 0.0048 1861 33 1842 20 1832 23 99%
75410140.11640.00443.51850.16920.21700.005119026915313812662781%
76391 498 607 0.1542 0.0018 9.6251 0.1452 0.4531 0.0051 2392 20 2400 14 2409 23 99%
7761 58 138 0.1216 0.0015 5.9852 0.1006 0.3572 0.0043 1980 22 1974 15 1969 20 99%
7852 91 101 0.1248 0.0016 6.3038 0.1180 0.3672 0.0056 2026 24 2019 16 2016 27 99%
7924 48 62 0.1026 0.0018 4.1261 0.0870 0.2925 0.0041 1672 33 1659 17 1654 21 99%
8024 591 297 0.0532 0.0012 0.3494 0.0085 0.0479 0.0006 345 52 304 6 302 4 99%
8124 46 54 0.1133 0.0020 5.0858 0.1104 0.3253 0.0041 1854 32 1834 18 1816 20 99%
8253 44 82 0.1726 0.0023 11.6939 0.2096 0.4912 0.0066 2584 23 2580 17 2576 29 99%
8312 166 173 0.0526 0.0013 0.3573 0.0098 0.0493 0.0007 309 56 310 7 310 4 99%
8422 8 50 0.1238 0.0018 6.2817 0.1255 0.3677 0.0056 2013 27 2016 18 2019 26 99%
859 16 22 0.1070 0.0030 4.5098 0.1313 0.3062 0.0047 1750 50 1733 24 1722 23 99%
86222 518 232 0.1893 0.0032 13.6934 0.3950 0.5210 0.0125 2736 28 2729 27 2703 53 99%
8715 34 30 0.1137 0.0023 5.2162 0.1270 0.3321 0.0049 1859 37 1855 21 1848 24 99%
8850 156 95 0.1125 0.0018 5.0032 0.0911 0.3223 0.0044 1840 28 1820 15 1801 21 98%
8916 160 288 0.0515 0.0013 0.3023 0.0082 0.0426 0.0006 261 53 268 6 269 4 99%
9027 281 337 0.0540 0.0028 0.4282 0.0209 0.0576 0.0008 372 115 362 15 361 5 99%
91231 276 423 0.1435 0.0016 8.2821 0.1448 0.4174 0.0062 2270 25 2262 16 2249 28 99%
9237 45 82 0.1165 0.0022 5.4617 0.1264 0.3385 0.0046 1906 34 1895 20 1879 22 99%
9320 128 193 0.0564 0.0018 0.6215 0.0210 0.0796 0.0009 478 103 491 13 493 5 99%
9432 57 72 0.1158 0.0020 5.3692 0.1117 0.3350 0.0042 1894 31 1880 18 1863 20 99%
9545 59 73 0.1532 0.0023 9.3550 0.1780 0.4417 0.0056 2383 21 2373 18 2358 25 99%
Table 5. U-Pb isotope test results of detrital zircon from the Zhiluo Formation sandstone (G41-1) in study area.
Table 5. U-Pb isotope test results of detrital zircon from the Zhiluo Formation sandstone (G41-1) in study area.
Point No.Content (×10−6)Isotope ratioAge (Ma)
PbThU207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238UConcordia
01134 121 255 0.1333 0.0020 7.2283 0.1221 0.3918 0.0045 2142 26 2140 15 2131 21 99%
02153 49 252 0.1686 0.0023 11.2753 0.2067 0.4820 0.0061 2544 23 2546 17 2536 26 99%
0390 153 154 0.1339 0.0019 7.3196 0.1148 0.3949 0.0037 2150 24 2151 14 2146 17 99%
0419 359 240 0.0520 0.0017 0.3318 0.0108 0.0462 0.0005 283 79 291 8 291 3 99%
0561 66 108 0.1332 0.0021 7.3286 0.1275 0.3974 0.0036 2143 28 2152 16 2157 17 99%
06101 36 232 0.1154 0.0017 5.5290 0.1070 0.3478 0.0058 1887 32 1905 17 1924 28 99%
072 14 28 0.0591 0.0064 0.3865 0.0320 0.0533 0.0012 572 237 332 23 335 7 99%
087 99 118 0.0521 0.0026 0.2990 0.0154 0.0418 0.0007 300 149 266 12 264 4 99%
095 47 85 0.0544 0.0027 0.3717 0.0183 0.0505 0.0010 387 109 321 14 318 6 99%
1088 137 186 0.1139 0.0034 5.1450 0.1368 0.3275 0.0051 1862 53 1844 23 1826 25 99%
11249 290 538 0.1179 0.0014 5.6079 0.0811 0.3442 0.0033 1924 22 1917 13 1907 16 99%
12165 143 257 0.1594 0.0035 9.8932 0.1711 0.4493 0.0066 2450 37 2425 16 2392 30 98%
1369 29 101 0.1757 0.0048 11.9957 0.3162 0.4945 0.0075 2613 44 2604 25 2590 32 99%
14199 98 463 0.1185 0.0017 5.5671 0.0904 0.3395 0.0034 1944 26 1911 14 1884 16 98%
15202 222 295 0.1667 0.0023 11.1095 0.2052 0.4816 0.0064 2525 23 2532 17 2534 28 99%
166 14 12 0.1135 0.0043 4.9444 0.1848 0.3193 0.0050 1857 69 1810 32 1786 24 98%
1723 53 41 0.1202 0.0038 5.6912 0.1746 0.3443 0.0047 1958 56 1930 27 1907 23 98%
1855 73 70 0.1790 0.0039 12.2672 0.2812 0.4951 0.0052 2644 36 2625 22 2593 23 98%
1968 77 108 0.1519 0.0022 9.1758 0.1576 0.4365 0.0047 2368 25 2356 16 2335 21 99%
2023 38 48 0.1149 0.0055 5.1782 0.2583 0.3260 0.0069 1880 85 1849 42 1819 33 98%
2128 72 88 0.0876 0.0016 2.7733 0.0562 0.2291 0.0026 1374 35 1348 15 1330 14 98%
22165 52 261 0.1714 0.0024 11.2825 0.1890 0.4759 0.0054 2571 24 2547 16 2509 24 98%
2341 62 55 0.1679 0.0028 10.7871 0.2178 0.4637 0.0058 2537 28 2505 19 2456 25 98%
2437 49 85 0.1090 0.0042 4.7631 0.1968 0.3153 0.0043 1783 70 1778 35 1767 21 99%
25299 295 418 0.1701 0.0026 11.2625 0.1907 0.4783 0.0050 2558 25 2545 16 2520 22 99%
2640 51 56 0.1621 0.0042 10.3666 0.2620 0.4634 0.0060 2477 44 2468 23 2455 27 99%
2760 71 91 0.1543 0.0052 9.5164 0.2509 0.4478 0.0071 2394 57 2389 24 2385 31 99%
28166 160 249 0.1584 0.0023 9.9869 0.1508 0.4558 0.0039 2439 25 2434 14 2421 17 99%
2944 92 91 0.1106 0.0019 4.9417 0.1014 0.3224 0.0036 1810 27 1809 17 1802 18 99%
30123 48 298 0.1120 0.0022 5.0586 0.1113 0.3264 0.0039 1832 69 1829 19 1821 19 99%
31182 349 350 0.1184 0.0016 5.8058 0.0935 0.3544 0.0036 1932 24 1947 14 1956 17 99%
3216 33 31 0.1151 0.0031 5.2231 0.1407 0.3310 0.0045 1881 48 1856 23 1843 22 99%
33152 196 243 0.1547 0.0082 9.1262 0.3445 0.4259 0.0073 2399 90 2351 35 2287 33 97%
34168 56 381 0.1209 0.0017 5.9643 0.1105 0.3564 0.0052 1970 25 1971 16 1965 25 99%
3545 49 56 0.1771 0.0030 12.4666 0.3502 0.5053 0.0110 2628 28 2640 26 2636 47 99%
3653 62 90 0.1442 0.0022 8.4019 0.1616 0.4203 0.0050 2280 26 2275 18 2262 23 99%
3735855520060.14110.00183.03370.07390.15530.00332243231416199311958%
3875 141 170 0.1118 0.0018 5.0270 0.0944 0.3250 0.0035 1829 30 1824 16 1814 17 99%
3956 52 112 0.1225 0.0042 6.2902 0.2412 0.3702 0.0053 1994 61 2017 34 2030 25 99%
4028 297 432 0.0532 0.0012 0.3682 0.0087 0.0501 0.0006 339 50 318 6 315 4 99%
41131 41 215 0.1642 0.0026 10.7765 0.1752 0.4734 0.0043 2500 26 2504 15 2499 19 99%
42109 111 160 0.1690 0.0024 11.3348 0.1975 0.4830 0.0056 2548 24 2551 16 2540 24 99%
43124 73 193 0.1688 0.0023 11.2730 0.1921 0.4804 0.0055 2546 22 2546 16 2529 24 99%
44123 206 210 0.1303 0.0064 6.9618 0.3474 0.3842 0.0063 2102 86 2107 44 2096 29 99%
45190 326 328 0.1316 0.0020 7.2232 0.1357 0.3940 0.0049 2120 27 2139 17 2141 23 99%
4658 101 85 0.1578 0.0029 9.7556 0.1815 0.4445 0.0045 2433 32 2412 17 2371 20 98%
47196 169 354 0.1399 0.0026 7.7811 0.1472 0.3992 0.0042 2228 31 2206 17 2165 19 98%
48182 169 277 0.1559 0.0035 9.8419 0.2247 0.4525 0.0050 2413 38 2420 21 2406 22 99%
4974 61 114 0.1622 0.0031 10.6696 0.2021 0.4721 0.0047 2479 32 2495 18 2493 21 99%
5025 11 34 0.1937 0.0036 14.5594 0.2840 0.5404 0.0063 2774 31 2787 19 2785 27 99%
51131 214 253 0.1132 0.0022 5.5366 0.1822 0.3501 0.0090 1852 35 1906 28 1935 43 98%
52167 162 253 0.1553 0.0038 10.0653 0.2403 0.4651 0.0049 2405 40 2441 22 2462 22 99%
5361 119 82 0.1547 0.0028 9.8963 0.1759 0.4602 0.0047 2398 30 2425 16 2441 21 99%
54166 226 325 0.1211 0.0020 6.1808 0.1026 0.3665 0.0034 1972 29 2002 15 2013 16 99%
55103 110 213 0.1195 0.0021 6.0702 0.1143 0.3645 0.0040 1950 32 1986 16 2003 19 99%
56281 404 468 0.1310 0.0052 7.4192 0.2590 0.4069 0.0088 2122 68 2163 31 2201 40 98%
57251 173 481 0.1355 0.0023 7.8863 0.1359 0.4189 0.0046 2172 35 2218 16 2256 21 98%
5815 169 234 0.0521 0.0016 0.3608 0.0114 0.0500 0.0009 300 75 313 9 315 5 99%
595 2 12 0.1218 0.0039 6.2485 0.2048 0.3728 0.0055 1983 58 2011 29 2043 26 98%
6039 67 90 0.1090 0.0023 5.1806 0.1164 0.3428 0.0042 1784 45 1849 19 1900 20 97%
6116 122 304 0.0528 0.0043 0.3346 0.0266 0.0457 0.0010 320 187 293 20 288 6 98%
6219 59 38 0.1096 0.0028 5.1636 0.1419 0.3401 0.0051 1794 46 1847 23 1887 24 97%
63290 90 494 0.1581 0.0032 10.7580 0.2125 0.4904 0.0050 2436 34 2502 18 2572 22 97%
6421 37 44 0.1124 0.0031 5.5711 0.1583 0.3573 0.0043 1839 50 1912 24 1969 20 97%
65188 104 264 0.1989 0.0041 14.8638 0.3076 0.5391 0.0063 2817 34 2807 20 2780 26 99%
6671 131 160 0.1139 0.0021 5.2068 0.1039 0.3304 0.0042 1863 33 1854 17 1840 20 99%
67117743370.10920.00304.32820.13310.28570.003917874916992516202095%
68117 32 295 0.1170 0.0025 5.4865 0.1118 0.3392 0.0043 1910 39 1898 18 1883 21 99%
694161369180.16680.00258.68910.15410.37590.004425282523061620572188%
70160 166 227 0.1696 0.0027 11.5183 0.2029 0.4900 0.0052 2553 26 2566 17 2571 23 99%
71178 86 403 0.1232 0.0022 6.0996 0.1193 0.3578 0.0052 2003 31 1990 17 1972 25 99%
72102 35 249 0.1198 0.0021 6.0216 0.1507 0.3611 0.0062 1954 31 1979 22 1987 29 99%
7392 52 146 0.1727 0.0027 11.6684 0.2021 0.4877 0.0051 2584 26 2578 16 2561 22 99%
74113 99 242 0.1201 0.0023 5.8382 0.1149 0.3507 0.0036 1958 33 1952 17 1938 17 99%
75170 91 244 0.1816 0.0026 12.8460 0.1936 0.5104 0.0043 2668 24 2668 14 2658 18 99%
7627 44 54 0.1155 0.0028 5.5237 0.1367 0.3448 0.0035 1889 38 1904 21 1910 17 99%
77115 207 154 0.1574 0.0024 9.9282 0.1625 0.4547 0.0036 2427 26 2428 15 2416 16 99%
7842 77 79 0.1209 0.0023 6.0092 0.1246 0.3594 0.0044 1969 31 1977 18 1979 21 99%
79103 101 159 0.1561 0.0024 9.8995 0.1708 0.4578 0.0048 2414 27 2425 16 2430 21 99%
8021 69 32 0.1280 0.0048 6.6865 0.2840 0.3761 0.0068 2070 98 2071 38 2058 32 99%
81172 278 361 0.1214 0.0019 6.1170 0.1195 0.3641 0.0048 1976 29 1993 17 2002 23 99%
8268 45 97 0.1746 0.0030 12.0000 0.2132 0.4971 0.0057 2602 29 2604 17 2601 25 99%
8368 59 142 0.1244 0.0021 6.3130 0.1201 0.3662 0.0039 2020 31 2020 17 2012 18 99%
844 63 64 0.0538 0.0027 0.3179 0.0143 0.0441 0.0007 361 111 280 11 278 4 99%
85239 98 409 0.1588 0.0022 10.1076 0.1673 0.4589 0.0050 2444 23 2445 15 2435 22 99%
8626 45 54 0.1146 0.0027 5.3184 0.1300 0.3359 0.0046 1876 43 1872 21 1867 22 99%
8732 439 466 0.0526 0.0012 0.3486 0.0082 0.0479 0.0005 309 50 304 6 301 3 99%
88117 27 261 0.1210 0.0023 6.1453 0.1329 0.3662 0.0047 1972 34 1997 19 2011 22 99%
Table 6. U-Pb isotope test results of detrital zircon from the Zhiluo Formation sandstone (G43-1) in study area.
Table 6. U-Pb isotope test results of detrital zircon from the Zhiluo Formation sandstone (G43-1) in study area.
Point No.Content (×10−6)Isotope ratioAge (Ma)
PbThU207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238UConcordia
0169 78 98 0.1587 0.0023 10.3449 0.1724 0.4713 0.0049 2443 25 2466 16 2489 21 99%
02154 23 260 0.1534 0.0019 9.6150 0.1318 0.4533 0.0042 2384 21 2399 13 2410 18 99%
0374 69 122 0.1497 0.0019 9.1027 0.1381 0.4395 0.0046 2343 22 2348 14 2349 21 99%
04137 107 297 0.1192 0.0014 5.9713 0.0928 0.3618 0.0041 1944 21 1972 14 1991 20 99%
0513 25 24 0.1159 0.0028 5.5273 0.1426 0.3454 0.0042 1894 44 1905 22 1913 20 99%
06372888780.12500.00200.58880.01580.03400.000720292947010215525%
0732 470 432 0.0534 0.0020 0.3693 0.0109 0.0502 0.0011 343 88 319 8 316 7 99%
08119 37 223 0.1431 0.0029 8.2509 0.1783 0.4158 0.0049 2265 35 2259 20 2242 22 99%
09291 90 476 0.1658 0.0049 10.6827 0.1777 0.4655 0.0131 2517 50 2496 16 2464 57 98%
10144 43 238 0.1596 0.0053 10.0935 0.2801 0.4577 0.0090 2451 56 2443 26 2430 40 99%
1150 94 67 0.1687 0.0025 11.1227 0.1966 0.4763 0.0051 2546 25 2533 17 2511 22 99%
12529 660 652 0.1693 0.0019 11.2791 0.1578 0.4809 0.0045 2551 19 2546 13 2531 19 99%
1381 75 164 0.1207 0.0018 6.0937 0.0974 0.3645 0.0030 1969 26 1989 14 2004 14 99%
1423 141 19 0.1202 0.0034 6.0013 0.1817 0.3620 0.0049 1961 50 1976 26 1992 23 99%
15146 166 209 0.1568 0.0022 9.8306 0.2030 0.4514 0.0060 2421 29 2419 19 2401 27 99%
1632 58 71 0.1149 0.0019 5.2789 0.1023 0.3328 0.0039 1880 31 1865 17 1852 19 99%
1737 8 82 0.1233 0.0023 6.3174 0.1255 0.3713 0.0040 2006 32 2021 17 2036 19 99%
18313 209 500 0.1605 0.0023 10.2578 0.1807 0.4622 0.0045 2461 24 2458 16 2449 20 99%
1919 51 37 0.1104 0.0031 4.9358 0.1386 0.3259 0.0049 1806 52 1808 24 1818 24 99%
20227 82 355 0.1741 0.0020 11.7385 0.1524 0.4881 0.0036 2597 14 2584 12 2562 16 99%
2122 27 41 0.1335 0.0025 7.3044 0.1437 0.3995 0.0055 2144 33 2149 18 2167 25 99%
22664 507 1490 0.1170 0.0018 5.5966 0.1197 0.3462 0.0068 1911 28 1916 18 1916 33 99%
23105 77 165 0.1636 0.0025 10.5022 0.1786 0.4653 0.0054 2494 20 2480 16 2463 24 99%
241493964990.10970.00173.19030.05760.21060.002317942714551412321283%
25133 152 202 0.1607 0.0021 10.4623 0.1666 0.4711 0.0048 2463 21 2477 15 2488 21 99%
2638189514470.17110.00214.95350.12990.20940.005025691918112212262761%
2794 134 134 0.1588 0.0038 10.0546 0.2167 0.4595 0.0064 2443 40 2440 20 2437 28 99%
28144 95 233 0.1597 0.0020 10.3857 0.1619 0.4704 0.0051 2454 21 2470 15 2485 22 99%
29219 90 387 0.1503 0.0037 9.0866 0.5203 0.4363 0.0152 2350 42 2347 52 2334 68 99%
3036 48 54 0.1582 0.0024 9.9020 0.1750 0.4529 0.0048 2436 26 2426 16 2408 22 99%
311713065480.14490.00214.39610.16580.21890.007622873017123112764070%
32210 272 302 0.1656 0.0025 10.9060 0.1960 0.4757 0.0056 2514 25 2515 17 2508 24 99%
3397 95 135 0.1739 0.0029 11.8131 0.1965 0.4915 0.0053 2595 33 2590 16 2577 23 99%
34219 144 359 0.1591 0.0020 10.0706 0.1513 0.4573 0.0047 2446 26 2441 14 2427 21 99%
35143 119 279 0.1290 0.0019 6.8017 0.1118 0.3805 0.0037 2085 26 2086 15 2079 18 99%
3631 16 67 0.1257 0.0019 6.5931 0.1106 0.3799 0.0043 2039 26 2058 15 2076 20 99%
3771 78 95 0.1812 0.0027 12.9273 0.2124 0.5155 0.0053 2665 24 2674 16 2680 22 99%
38145 148 262 0.1273 0.0016 6.7579 0.1472 0.3803 0.0060 2061 22 2080 19 2078 28 99%
3928 394 441 0.0524 0.0012 0.3265 0.0077 0.0453 0.0005 302 49 287 6 285 3 99%
4054 35 115 0.1201 0.0017 6.0533 0.1098 0.3637 0.0046 1958 25 1984 16 2000 22 99%
411702184810.13400.00174.90280.06900.26420.002221502318031215111182%
4297 102 134 0.1731 0.0023 11.7763 0.1721 0.4917 0.0048 2588 23 2587 14 2578 21 99%
43212 122 498 0.1176 0.0013 5.6383 0.0749 0.3461 0.0031 1920 20 1922 12 1916 15 99%
44127 149 208 0.1505 0.0017 9.3482 0.1380 0.4485 0.0048 2352 20 2373 14 2389 21 99%
45379 291 656 0.1441 0.0018 8.5558 0.1211 0.4285 0.0040 2277 21 2292 13 2299 18 99%
4621 58 43 0.1092 0.0023 4.8300 0.1045 0.3213 0.0037 1787 43 1790 18 1796 18 99%
4751 80 73 0.1597 0.0026 10.4376 0.1835 0.4732 0.0052 2454 28 2474 16 2498 23 99%
4812 121 220 0.0509 0.0015 0.3064 0.0090 0.0435 0.0005 239 69 271 7 275 3 98%
49104 152 172 0.1362 0.0024 7.6426 0.1585 0.4043 0.0051 2179 30 2190 19 2189 23 99%
50111 69 166 0.1727 0.0025 12.0059 0.2138 0.5013 0.0061 2584 24 2605 17 2619 26 99%
51460 122 772 0.1684 0.0025 11.2747 0.1968 0.4824 0.0054 2542 26 2546 16 2538 24 99%
52255 62 505 0.1309 0.0024 7.3821 0.1819 0.4025 0.0058 2110 33 2159 22 2180 27 99%
5341 47 61 0.1577 0.0032 9.9268 0.2093 0.4538 0.0049 2431 34 2428 20 2412 22 99%
54213 285 350 0.1375 0.0030 7.9253 0.1752 0.4154 0.0042 2196 38 2223 20 2239 19 99%
558 70 110 0.0508 0.0025 0.3667 0.0186 0.0519 0.0008 232 110 317 14 326 5 97%
5658 58 83 0.1595 0.0044 10.4545 0.2844 0.4734 0.0060 2450 48 2476 25 2498 26 99%
573842159990.13950.00325.52350.13500.28540.003722214019042116181983%
5897 104 143 0.1640 0.0034 10.5507 0.2581 0.4644 0.0074 2498 35 2484 23 2459 32 98%
59196 109 474 0.1137 0.0021 5.1768 0.1029 0.3284 0.0035 1861 33 1849 17 1831 17 99%
60111 94 258 0.1107 0.0020 5.0155 0.0930 0.3269 0.0028 1813 27 1822 16 1823 14 99%
6146 48 71 0.1625 0.0029 10.2332 0.1963 0.4556 0.0050 2483 35 2456 18 2420 22 98%
624352811780.13350.00215.41020.10500.29160.003221462718861716501686%
631043847420.15380.00272.06500.14220.09650.00632389301137475943737%
6425 84 51 0.1074 0.0022 4.6085 0.1045 0.3111 0.0040 1767 38 1751 19 1746 20 99%
65282 283 463 0.1434 0.0047 8.3858 0.5515 0.4216 0.0159 2269 57 2274 60 2268 72 99%
6624 52 47 0.1124 0.0020 5.1665 0.0998 0.3336 0.0041 1839 33 1847 16 1856 20 99%
6797 49 226 0.1197 0.0016 5.7717 0.1163 0.3484 0.0054 1954 24 1942 17 1927 26 99%
6876 141 103 0.1548 0.0032 9.5403 0.1896 0.4461 0.0051 2400 35 2391 18 2378 23 99%
69117 122 190 0.1544 0.0020 9.6092 0.1526 0.4498 0.0050 2395 22 2398 15 2394 22 99%
7025 51 54 0.1112 0.0020 5.0086 0.0954 0.3272 0.0039 1820 32 1821 16 1825 19 99%
71104 112 161 0.1642 0.0023 10.9465 0.2019 0.4817 0.0066 2499 23 2519 17 2534 29 99%
72275 205 398 0.1757 0.0024 12.1544 0.2016 0.4990 0.0054 2613 23 2616 16 2610 23 99%
73256 287 392 0.1593 0.0054 10.0735 0.3990 0.4559 0.0061 2448 57 2442 37 2421 27 99%
74100 87 163 0.1593 0.0020 10.1826 0.1704 0.4616 0.0060 2448 21 2452 16 2447 26 99%
75127 129 191 0.1659 0.0020 11.0626 0.1810 0.4804 0.0055 2517 20 2528 15 2529 24 99%
7696 96 212 0.1218 0.0018 6.0450 0.1296 0.3589 0.0066 1983 21 1982 19 1977 32 99%
7781 263 133 0.1205 0.0018 6.0735 0.1074 0.3647 0.0046 1965 27 1986 15 2005 22 99%
78164 196 289 0.1378 0.0024 7.8449 0.1617 0.4104 0.0057 2211 30 2213 19 2217 26 99%
79163 446 283 0.1187 0.0017 5.8080 0.0908 0.3533 0.0036 1937 25 1948 14 1950 17 99%
8020 57 38 0.1099 0.0028 4.9793 0.1357 0.3285 0.0047 1798 47 1816 23 1831 23 99%
Table 3, Table 4, Table 5 and Table 6 uncertainty of 1 sigma.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Li, G.-Y.; Xue, C.-J.; Zhu, Q.; Yang, J.-W.; Zhao, X.-B. Identification of the Sedimentary Sources and Origin of Uranium for Zhiluo Formation of the Tarangaole U Deposit, Northeastern Ordos Basin. Minerals 2024, 14, 429. https://doi.org/10.3390/min14040429

AMA Style

Li G-Y, Xue C-J, Zhu Q, Yang J-W, Zhao X-B. Identification of the Sedimentary Sources and Origin of Uranium for Zhiluo Formation of the Tarangaole U Deposit, Northeastern Ordos Basin. Minerals. 2024; 14(4):429. https://doi.org/10.3390/min14040429

Chicago/Turabian Style

Li, Guang-Yao, Chun-Ji Xue, Qiang Zhu, Jian-Wen Yang, and Xiao-Bo Zhao. 2024. "Identification of the Sedimentary Sources and Origin of Uranium for Zhiluo Formation of the Tarangaole U Deposit, Northeastern Ordos Basin" Minerals 14, no. 4: 429. https://doi.org/10.3390/min14040429

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop