Advances in Trace Element “Fingerprinting” of Gem Corundum, Ruby and Sapphire, Mogok Area, Myanmar
Abstract
:1. Introduction
1.1. Mogok Gem Corundum Sources
1.2. Trace Element Studies Background
1.3. Geological Background
Site | Longitude | Latitude | Sample #. | Color | δ18O | Origin |
---|---|---|---|---|---|---|
Htin-shu-taung | 96°28'40'' | 23°00'23.5'' | H-s-t 1 | Purple red | 21.0 | Placer |
2 | Purple red | |||||
Ohn-bin-ywe-htwet | 96°32'10'' | 22°54'30'' | O-b-y-h 1 | White | 22.9 | Placer |
2 | White | |||||
Kyauk-saung | 96°27'26'' | 22°55'50'' | K-sa 1 | Purple red | 22.7 | Primary |
2 | Purple red | |||||
3 | Purple red | |||||
Htayan-sho | 96°30'32'' | 22°57'51'' | H-s 1 | Blue/yellow | 18.1 | Primary |
2 | Blue/yellow | |||||
Chaung-gyi | 96°30'32'' | 22°57'51'' | C-g 1 | Pink red | NA | Placer |
2 | Mauve | |||||
Kolan | 96°26'33'' | 22°55'55'' | K 1 | Purple red | 22.1 | Primary |
Le-shuza-kone | 96°39'50'' | 22°58'30'' | L-s-k 1 | Blue | 10.5 | Primary |
2 | Blue | |||||
Kyauk-sin | 96°25'54.9'' | 22°57'27.7'' | K-si 1 | Pink red | 21.8 | Placer |
2 | Pink | |||||
Yadanar-kaday-kadar | 96°23'01'' | 22°54'30'' | Y-k-k (a) 1 | Red/Purple | 24.2 | Placer |
2 | Red | |||||
Y-k-k (b) 1 | Blue/yellow | 19.9 | Placer | |||
2 | Blue/yellow | |||||
Manar | 96°31'18'' | 22°58'16'' | M 1 | Blue | 16.0 | Placer |
2 | Mauve | |||||
Kyauk-poke (28) | 96°26'57'' | 22°56'19'' | K-p 1 | Red | 22.4 | Primary |
2 | Red | |||||
Le-U (29) | 96°31'28'' | 22°56'33'' | L-u 1 | Red | 20.4 | Placer |
2 | Red | |||||
3 | Red |
2. Sample Sites, Materials and Analytical Methods
2.1. Primary Sample Sites
- (l)
- The ruby bearing marble bands at the Dattaw mines lie near the summit of the hill. The bands are very coarse grained and usually associated with fracture zones. Within the Dattaw taung area, these bands alternate with phlogopite marble and titanite (sphene)-diopside marble bands and are white, blue (medium to coarse grained) and green/yellow (medium grained) and generally ~1.2 m wide by 0.3–0.5 m across. The indicator minerals in these quarry mines include light blue scapolite, apatite, pyrite and phlogopitic mica. Fracture-filled deposits and cave deposits (secondary deposits) also occur in this area.
- (2)
- In the Shwe-daing—Lin Yaung Chi group of mines, at Shwe-daing the upper portion of the ruby-bearing marble is blue marble and its lower portion is yellowish marble. Associated minerals are apatite and fuchsitic mica (Cr-rich mica). The ruby host is ~0.5 m thick. The lithology resembles that in the Dattaw area. At Lin Yaung Chi mine, along the tunnel (trending to the south) calc-silicate rocks are followed by yellowish marble and then medium grained ruby-bearing marble bands distributed along N 15° E and N 345° W directions. Primary ruby occurs in the marble and contact zone between yellowish marble and intrusive rocks, along with scapolite, diopside and phlogopitic mica.
- (3)
- At Kadoke-tat—Kyauk-saung mines, the ruby-bearing marble bands trend N 10° W. Their texture is medium to coarse grained and their colors are light blue and yellowish white. The bands are lenticular in shape and are mostly associated with titanite (sphene), pyrite, apatite and scapolite.
- (4)
- At Bawpadan—Kyauk-poke mines, the ruby-bearing marble bands usually lie between fine grained white marble and medium grained bluish and yellowish marble. The ruby-bearing bands are white to bluish white and ~1.4 m to 2.4 m wide. They are medium to coarse grained and other minerals include pyrite, diopside, apatite and titanite (sphene). At Kyauk-poke, ruby-bearing bands are coarse grained, bluish and reddish brown and include titanite (sphene), scapolite, pyrite and apatite.
- (5)
- At the Kolan—Pyaung-pyin—Kyauk-sar-taung mines, primary ruby occurs in brecciated zones and ruby-bearing marble bands. The breccias lie within fractures between two yellowish white marble bands and between yellowish white marble and diopside marble bands. The ruby-bearing marble is medium to coarse grained, bluish white and follows structurally controlled directions. The band is 15 cm to 0.9 m. Thick and is associated with scapolite, titanite (sphene), pyrite and fuchsite mica.
- (6)
- At Pingu-taung mines, ruby-bearing marble bands, 0.6 to 1.5 m wide, lie between two fine grained white marble bands, as medium to coarse grained, yellowish white and bluish hosts. This area is famous for star ruby. Ruby also occurs at marble and syenite contacts in pockets or contact zones.
- (7)
- At Baw-lone-lay—Baw-lone-gyi mines, the ruby-bearing marble bands are situated between very coarse grained white marble and fine grained yellowish white marble bands. The ruby-bearing bands are medium grained, white to yellowish white and between 0.4 to 0.9 m thick. At Baw-lone-gyi, the ruby is mostly are pinkish in color. Associated minerals are fuchsitic mica, diopside and scapolite.
2.2. Materials
2.3. Analytical Methods
3. Results
3.1. V-Enrichment
3.2. Unusual Trace Element Enrichments
3.3. Diversity of Corundum Chemistry
Analysis/Site | No. (r/c) | Be9 | B11 | Mg24 | Si29 | Ca43 | Ti49 | V51 | Cr53 | Fe57 | Ni60 | Ga69 | Sn118 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H-s-t High V-ruby | 1.r | <0.21 | 1.8 | 19 | 484 | 356 | 43 | 162 | 935 | 1,214 | <0.19 | 136 | 0.4 |
1.c | <0.16 | <1.6 | 21 | 530 | 362 | 32 | 138 | 1,009 | 1,097 | <0.11 | 125 | 0.4 | |
2.r | <0.24 | 2.6 | 121 | 575 | 347 | 190 | 892 | 821 | 60 | <0.11 | 52 | 0.3 | |
2.c | <0.22 | 3.3 | 156 | 578 | 370 | 267 | 863 | 323 | 71 | <0.09 | 59 | 0.3 | |
O-b-y-h High V-sapphire S | 1.r | <7.78 | 64.9 | 4 | 4,199 | 3,846 | 5.8 | 114 | <0.98 | 0.6 | 9.3 | 292 | 23 |
1.c | <9.84 | 71.4 | 4 | 3,965 | 3,949 | 5.3 | 109 | <8.9 | 0.6 | 9.4 | 802 | 20 | |
2.r | <13.09 | <45.6 | 3 | 4,892 | 3,613 | 4.8 | 111 | <8.05 | 1.1 | 7.2 | 278 | 30 | |
2.c | <13.78 | 81.9 | 4 | 2,879 | 4,605 | 5.5 | 111 | <10.72 | 0.6 | 11.3 | 305 | 33 | |
K-sa High V-ruby | 1.r | <0.16 | 2.4 | 44 | 475 | 327 | 67 | 785 | 701 | 81 | <0.09 | 31 | 0.5 |
1.c | <0.21 | 2.8 | 48 | 251 | 432 | 72 | 1,373 | 1,603 | 73 | <0.08 | 54 | 0.9 | |
2.c | <0.21 | <2 | 66 | 293 | 333 | 99 | 197 | 4,078 | 81 | <0.17 | 28 | 0.5 | |
3.c | <0.21 | 2.3 | 15 | 439 | 320 | 27 | 202 | 4,778 | 83 | <0.09 | 29 | 0.4 | |
H-s High Fe sapphire | 1.c | 0.2 | 1.6 | 55 | 494 | 421 | 73 | 0.5 | 4.0 | 8,529 | <0.15 | 158 | 0.9 |
1.r | <0.18 | 2.0 | 56 | 458 | 290 | 80 | 0.5 | 3.2 | 8,243 | <0.1 | 156 | 0.8 | |
2.r | <0.16 | 2.5 | 17 | 435 | 443 | 28 | 1.5 | <0.66 | 6,357 | <0.11 | 127 | 0.3 | |
2.c | <0.19 | 2.2 | 17 | 270 | 319 | 29 | 1.5 | <0.69 | 6,463 | <0.08 | 130 | 0.3 | |
C-g High V-ruby | 1.r | <0.18 | 1.4 | 24 | 505 | 304 | 38 | 366 | 784 | 50 | <0.07 | 19 | 0.4 |
1.c | <0.16 | <1.4 | 20 | 366 | 370 | 29 | 367 | 619 | 52 | <0.1 | 21 | 0.3 | |
2.r | <0.19 | 2.4 | 70 | 416 | 245 | 149 | 107 | 107 | 159 | <0.11 | 162 | 0.5 | |
2.c | <0.21 | 1.5 | 79 | 420 | 268 | 123 | 123 | 235 | 165 | <0.14 | 176 | 0.4 | |
K Ruby | 1.r | <0.21 | 8.7 | 126 | 604 | 170 | 262 | 47 | 663 | 477 | <0.16 | 84 | 0.2 |
1.c | <0.27 | 10.7 | 125 | 569 | 297 | 257 | 47 | 682 | 496 | <0.24 | 84 | 0.2 | |
L-s-k sapphire | 1.r | <0.21 | <6.8 | 54 | 482 | 245 | 190 | 1.8 | <0.52 | 5,307 | <0.2 | 101 | 0.3 |
1.c | <0.25 | 9.1 | 48 | 682 | 262 | 100 | 1.5 | <0.57 | 4,831 | <0.27 | 97 | 0.2 | |
K-si High V-ruby | 1.r | <0.17 | <1.4 | 12 | 397 | 236 | 85 | 86 | 442 | 75 | <0.09 | 123 | 0.5 |
1.c | <0.18 | <1.6 | 13 | 418 | 379 | 77 | 89 | 486 | 82 | <0.15 | 133 | 0.6 | |
2.r | <0.21 | 2.4 | 30 | 424 | 249 | 46 | 230 | 757 | 19 | <0.07 | 94 | 0.4 | |
2.c | <0.2 | 2.0 | 32 | 185 | 412 | 52 | 231 | 786 | 24 | <0.12 | 97 | 0.3 | |
Y-k-k (a) High V-ruby/sapphire | 1.r | <0.22 | <1.4 | 58 | 487 | 314 | 91 | 874 | 1,900 | 70 | <0.14 | 57 | 0.4 |
1.c | <0.21 | 2.8 | 34 | 559 | 319 | 484 | 1,084 | 7.8 | 57 | <0.1 | 22 | 2.9 | |
2.r | <0.18 | 1.7 | 65 | 455 | 440 | 101 | 558 | 124 | 71 | <0.09 | 29 | 0.5 | |
2.c | <0.21 | 2.6 | 59 | 504 | 326 | 95 | 908 | 118 | 47 | <0.15 | 27 | 0.6 | |
Y-k-k (b) High V-sapphire | 1.r | <0.19 | <1.4 | 34 | 418 | 282 | 57 | 47 | 338 | 2,202 | 0.3 | 118 | 0.5 |
1.c | <0.16 | 1.7 | 34 | 255 | 319 | 56 | 46 | 345 | 2,258 | 0.3 | 122 | 0.5 | |
2.r | <0.21 | <1.5 | 276 | 391 | 303 | 597 | 68 | 0.9 | 607 | <0.17 | 39 | 0.7 | |
2.c | <0.23 | 2.3 | 261 | 464 | 411 | 659 | 70 | <0.73 | 612 | <0.1 | 41 | 1.0 | |
M sapphire | 1.r | <0.12 | 1.8 | 31 | 275 | 300 | 49 | 68 | 9.4 | 1,417 | <0.14 | 75 | 0.3 |
1.c | <0.22 | 2.0 | 31 | 381 | 325 | 53 | 74 | 8.5 | 1,558 | 0.1 | 80 | 0.6 | |
2.r | <0.15 | 2.0 | 70 | 528 | 259 | 195 | 2.2 | <0.51 | 1,519 | <0.07 | 61 | 0.7 | |
2.c | <0.17 | 1.8 | 91 | 559 | 254 | 299 | 2.6 | 1.0 | 1,724 | <0.09 | 66 | 1.0 | |
K-p High V-ruby | 1.r | <0.15 | 1.7 | 78 | 551 | 306 | 124 | 312 | 995 | 55 | <0.1 | 82 | 0.4 |
1.c | <0.19 | 2.3 | 43 | 454 | 367 | 65 | 329 | 1,173 | 93 | <0.08 | 83 | 0.6 | |
2.r | <0.15 | 2.2 | 44 | 365 | 345 | 66 | 842 | 6,068 | 135 | <0.12 | 121 | 0.5 | |
2.c | <0.17 | 3.4 | 58 | 1,826 | 803 | 78 | 1016 | 3,319 | 134 | <0.12 | 113 | 0.6 | |
L-u High V-ruby S | 1.r | <1.31 | 11.1 | 2 | 1,061 | 1,822 | 3.3 | 446 | 8,016 | 0.5 | <0.45 | 371 | 2.4 |
1.c | <1.96 | 15.2 | 1 | 2,473 | 2,338 | 3.5 | 63 | 2,066 | 0.1 | <1.24 | 521 | 4.2 | |
2.r | <2.64 | 24.4 | 11 | 4,282 | 1,797 | 5.5 | 203 | 21,036 | 3.3 | <1.22 | 506 | 7.8 | |
2.c | <4.66 | <25.5 | 4 | 2,596 | 2,750 | 5.5 | 209 | 22,256 | 3.1 | <1.74 | 596 | 5.5 | |
3.r | <4.42 | 34.3 | 3 | 2,550 | 1,822 | 4.2 | 212 | 31,674 | 0.8 | <1.77 | 717 | 9.5 | |
3.c | <3.85 | 34.0 | 2 | 4,132 | 1,884 | 10.7 | 495 | 2,112 | 1.1 | 16.8 | 600 | 18.1 |
3.4. Corundum Chromophore Element Results
- (1)
- low Fe-bearing corundum (Fe/Fe + V + Cr < 0.2), which includes high and low V-types and the unusual Si-Ca-Ga-rich ruby/sapphire;
- (2)
- moderate Fe-bearing corundum (Fe 0.30–0.55, Cr 0.25–0.60, V 0. 00–0.30), which includes pink and mauve sapphire;
- (3)
- high Fe-bearing corundum (Fe 0.85–1.00, Cr 0.00–0.12, V 0.00–0.11), which includes dark blue and blue/yellow sapphires.
4. Discussion
4.1. “Skarn” Signatures?
4.2. Metamorphic/Magmatic Corundum Distinctions
4.3. Trace Element Diversity in Mogok gem Corundum Suites
4.4. Geographic Typing of Gem Corundum on Geochemistry
5. Conclusions
Acknowledgments
Author Contributions
Appendix
Site | No. (r/c) | V + Cr | V/Cr | V; Cr; Fe | (V + Cr)/Ga | Ga/Mg | Fe/Mg |
---|---|---|---|---|---|---|---|
H-s-t (4) | 1.r | 1,097 | 0.17 | 0.070; 0.405; 0.525 | 8.1 | 7.2 | 63.9 |
1.c | 1,147 | 0.14 | 0.062; 0.450; 0.488 | 9.2 | 6.0 | 52.2 | |
2.r | 1,713 | 1.09 | 0.487; 0.463; 0.034 | 32.9 | 0.43 | 0.50 | |
2.c | 1,186 | 2.67 | 0.687; 0.257; 0.057 | 20.1 | 0.38 | 0.46 | |
O-b-y-h (5) | 1.r | 115 | 11.6 | 0.986; 0.008; 0.005 | 0.39 | 73.0 | 0.15 |
1.c | 118 | 12.4 | 0.920; 0.075; 0.005 | 0.15 | 201 | 0.15 | |
2.r | 119 | 13.8 | 0.924; 0.067; 0.009 | 0.43 | 92.7 | 0.37 | |
2.c | 122 | 10.4 | 0.907; 0.087; 0.005 | 0.40 | 76.3 | 0.15 | |
K-sa (25) | 1.r | 1,486 | 1.12 | 0.501; 0.447; 0.052 | 47.9 | 0.70 | 1.8 |
1.c | 2,946 | 0.86 | 0.450; 0.526; 0.024 | 54.6 | 1.1 | 1.5 | |
2.c | 4,275 | 0.05 | 0.045; 0.937; 0.018 | 153 | 0.42 | 1.2 | |
3.c | 4,980 | 0.04 | 0.039; 0.944; 0.016 | 172 | 1.9 | 5.5 | |
H-s (22) | 1.c | 4.5 | 0.13 | 0.000; 0.000; 0.999 | 0.03 | 2.9 | 155 |
1.r | 3.7 | 0.16 | 0.000; 0.000; 0.999 | 0.02 | 2.4 | 127 | |
2.r | 2.5 | 2.27 | 0.000; 0.000; 0.999 | 0.02 | 7.5 | 374 | |
2.c | 2.5 | 2.17 | 0.000; 0.000; 0.999 | 0.02 | 7.7 | 380 | |
C-g (9) | 1.r | 1,150 | 0.47 | 0.305; 0.653; 0.042 | 60.5 | 0.79 | 2.1 |
1.c | 1,046 | 0.54 | 0.334; 0.618; 0.047 | 49.8 | 1.1 | 2.6 | |
2.r | 214 | 1.00 | 0.287; 0.287; 0.426 | 1.3 | 2.3 | 2.3 | |
2.c | 358 | 0.52 | 0.235; 0.449; 0.315 | 2.0 | 2.2 | 2.1 | |
K (10) | 1.r | 710 | 0.07 | 0.040; 0.559; 0.409 | 8.5 | 0.67 | 3.8 |
1.c | 729 | 0.07 | 0.038; 0.557; 0.405 | 8.7 | 0.67 | 4.0 | |
L-s-k (OM) | 1.r | 2.8 | 3.46 | 0.000; 0.000; 1.000 | 0.03 | 1.9 | 98.3 |
1.c | 2.5 | 2.63 | 0.000; 0.000; 1.000 | 0.03 | 2.0 | 101 | |
K-si (22) | 1.r | 528 | 0.19 | 0.143; 0.733; 0.124 | 4.3 | 10.3 | 6.3 |
1.c | 575 | 0.18 | 0.135; 0.740; 0.125 | 4.3 | 10.3 | 6.3 | |
2.r | 987 | 0.30 | 0.229; 0.752; 0.019 | 10.5 | 3.1 | 0.63 | |
2.c | 1,017 | 0.29 | 0.222; 0.755; 0.023 | 10.5 | 3.0 | 0.75 | |
Y-k-k (a) (26) | 1.r | 2,774 | 0.46 | 0.307; 0.668; 0.025 | 48.7 | 0.98 | 1.2 |
1.c | 1,092 | 139 | 0.944; 0.007; 0.050 | 49.6 | 0.65 | 1.7 | |
2.r | 682 | 4.50 | 0.741; 0.165; 0.094 | 23.5 | 0.45 | 1.1 | |
2.c | 1,026 | 7.69 | 0.846; 0.110; 0.044 | 38.0 | 0.46 | 0.80 | |
Y-k-k (b) (26) | 1.r | 385 | 0.14 | 0.046; 0.006; 0.948; | 3.3 | 3.5 | 64.7 |
1.c | 391 | 0.13 | 0.045; 0.005; 0.950 | 3.2 | 3.6 | 66.4 | |
2.r | 69 | 75.6 | 0.000; 0.000; 1.000 | 1.8 | 0.14 | 2.2 | |
2.c | 71 | 95.9 | 0.002; 0.000; 0.998 | 1.7 | 0.16 | 2.3 | |
M (27) | 1.r | 78 | 7.23 | 0.018; 0.131; 0.851 | 1.0 | 2.4 | 45.7 |
1.c | 83 | 8.71 | 0.017; 0.130; 0.852 | 1.0 | 2.6 | 50.3 | |
2.r | 3 | 4.31 | 0.101; 0.001; 0.198 | 0.05 | 0.87 | 21.7 | |
2.c | 4 | 2.60 | 0.103; 0.001; 0.896 | 0.06 | 0.73 | 19.0 | |
K-p (28) | 1.r | 1,307 | 0.31 | 0.229; 0.731; 0.040 | 15.9 | 1.1 | 0.71 |
1.c | 1,502 | 0.28 | 0.206; 0.735; 0.058 | 18.1 | 1.9 | 2.2 | |
2.r | 6,928 | 0.14 | 0.119; 0.862; 0.019 | 57.3 | 2.8 | 3.1 | |
2.c | 4,335 | 0.31 | 0.227; 0.743; 0.030 | 38.4 | 2.0 | 2.3 | |
L-u (29) | 1.r | 8,462 | 0.06 | 0.053; 0.947; 0.000 | 22.8 | 186 | 0.25 |
1.c | 2,129 | 0.03 | 0.030; 0.970; 0.000 | 4.1 | 521 | 0.10 | |
2.r | 21,239 | 0.01 | 0.010; 0.990; 0.000 | 42.0 | 46.0 | 0.30 | |
2.c | 22,465 | 0.01 | 0.009; 0.991; 0.000 | 37.7 | 149 | 0.78 | |
3.r | 31,886 | 0.01 | 0.007; 0.993; 0.000 | 44.5 | 239 | 0.27 | |
3.c | 2,607 | 0.23 | 0.190; 0.810; 0.000 | 4.5 | 300 | 0.55 |
Conflicts of Interest
References
- Themelis, T. Gems and Mines of Mogok; A & T Publishing: Los Angeles, CA, USA, 2008; p. 356. [Google Scholar]
- Hughes, R.W. Ruby & Sapphire: A Collectors Guide; Gem & Jewelry Institute of Thailand: Bangkok, Thailand, 2014; p. 384. [Google Scholar]
- The Gem and Jewelry Institute of Thailand (Public Organization). GIT Exploring Ruby and Sapphires Deposit of the Mogok Stone Tract, Myanmar; GIT’s Geologist Team under CLMV Project. Available online: http://www.git.or.th/2014/eng/testing_center_en/lab_notes_en/glab_en/2013/2013_git_exploring_ruby_sapphire.pdf (accessed on 22 December 2014).
- Peretti, A. GRS expedition to the Mogok ruby, sapphire and spinel mines. Jewel. News Asia 2013, 54–58. [Google Scholar]
- Harlow, G.E.; Bender, W. A study of ruby (corundum) compositions from the Mogok Belt, Myanmar: Searching for chemical fingerprints. Am. Miner. 2013, 98, 1120–2013. [Google Scholar] [CrossRef]
- Khin, Z.; Sutherland, L.; Yui, T.F.; Meffre, S.; Thu, K. Vanadium-rich ruby and sapphire within Mogok Gemfield, Myanmar: Implications for gem color and genesis. Miner. Depos. 2014. [Google Scholar] [CrossRef]
- Peucat, J.J.; Ruffault, P.; Fritsch, E.; Bouhnik-Le, E.; Simonet, C.; Lasnier, B. Ga/Mg ratio as a new geochemical tool to differentiate magmatic from metamorphic blue sapphires. Lithos 2007, 98, 261–274. [Google Scholar] [CrossRef]
- Giuliani, G.; Ohnenstetter, D.; Fallick, A.E.; Groat, L.; Fagan, A.J. The geology and genesis of gem corundum deposits. In Geology of Gem Deposits, 2nd ed.; Mineralogical Association of Canada Short Course; Mineralogical Association of Canada: Quebec, QC, Canada, 2014; Volume 44, pp. 23–78. [Google Scholar]
- Carter, L.E. Ruby and sapphire from Marosely, Madagascar. J. Gemmol. 2009, 31, 171–180. [Google Scholar] [CrossRef]
- Giuliani, G.; Ohnenstetter, D.; Fallick, A.E.; Feneyrol, J. State of the art in the formation of high-value colored stones. Gems Gemol. 2011, 47, 109–110. [Google Scholar]
- Giuliani, G.; Fallick, A.; Rakatondrazafy, M.; Ohnenstetter, D.; Andriamamonjy, A.; Ralantarison, T.H.; Offant, Y.; Garnier, V.; Dunbigre, C.H.; Schwarz, D.; et al. Oxygen isotope systematics of gem corundum deposits in Madagascar. Miner. Depos. 2007, 42, 251–270. [Google Scholar] [CrossRef]
- Giuliani, G.; Fallick, A.E.; Ohnenstetter, D.; Pegre, G. Oxygen isotope composition of sapphire from the French Massif Central: Implications for the origin of gem corundum in basalt fields. Miner. Depos. 2009, 44, 221–231. [Google Scholar] [CrossRef]
- Sutherland, F.L.; Zaw, K.; Meffre, S.; Giuliani, G.; Fallick, A.E.; Graham, I.T.; Webb, G.B. Gem corundum megacrysts from East Australia basalt fields: Trace elements, O isotopes and origins. Aust. J. Earth Sci. 2009, 56, 1003–1020. [Google Scholar] [CrossRef]
- Izokh, A.E.; Smirnov, S.V.; Egorova, V.V.; Anh, T.T.; Kovyazin, S.V.; Phong, N.T.; Kalinina, V.V. The conditions of formation of sapphire and zircon in the areas of alkali-basaltoid volcanism in Central Vietnam. Russ. Geol. Geophys. 2010, 51, 719–735. [Google Scholar] [CrossRef]
- Uher, P.; Giuliani, G.; Szakáll, S.; Fallick, A.; Strunga, V.; Vaculovič, T.; Ozdin, D.; Grégaňová, M. Sapphires related to alkali basalts from Cerová Highlands, Western Carpathians (southern Slovakia): Composition and origin. Geol. Carpath. 2012, 63, 71–82. [Google Scholar] [CrossRef]
- Sutherland, F.L.; Abduriyim, A. Geographic typing of gem corundum: A test case from Australia. J. Gemmol. 2009, 31, 203–210. [Google Scholar] [CrossRef]
- Giuliani, G.; Ohnenstetter, D.; Fallick, A.E.; Feneyrol, J. Les Isotopes de l’oxygèn, un tracer des origins gééologique et/ou géographique de gemmes. Rev. Assoc. Fr. Gemmol. 2012, 179, 11–16. (In French) [Google Scholar]
- Guliani, G.; Ohnenstetter, D.; Fallick, A.E.; Groat, L.A. Geographic origin of gems tied to their geologic history. InColor 2012, 19, 16–27. [Google Scholar]
- Kan-Nyunt, H.P.; Karampelas, S.; Link, K.; Thu, K.; Kiefert, L.; Hardy, P. Blue sapphires from the Baw Mar Mine in Mogok. Gems Gemol. 2013, 49, 223–232. [Google Scholar]
- Zaw, K.; Sutherland, F.L.; Meffre, S.; Yui, T.F.; Thu, K. Distinctive geochemistry among placer ruby suites, Mogok gemfield, Myanmar. In proceedings of the 34th International Geological Congress, Brisbane, Australia, 5–10 August 2012.
- Zahirovic, S.; Müller, R.D.; Seton, M.; Flament, M. Insights on the kinematics of the Indian-Eurasia collision from global geodynamic models. Geochem. Geophys. Geosyst. (G3) 2012, 13, 1–25. [Google Scholar] [CrossRef]
- Thein, M. Modes of occurrence and origin of precious gemstone deposits of Mogok Stone Tract. J. Myanmar Geosci. Soc. 2008, 1, 75–84. [Google Scholar]
- Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S; Bull, S.; Scott, R.; Embsbo, P.; Thomas, H.; et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ. Geol. 2009, 104, 635–668. [Google Scholar] [CrossRef]
- Yui, T.F. Preliminary results on CO2 laser-fluorination system for O-isotope micro-analysis of silicate/oxide grain separates. J. Geol. Soc. China 2000, 43, 237–246. [Google Scholar]
- Valley, J.W.; Matthew, N.M.; Kohn, J.; Niendorf, C.R.; Spicuzza, N.M. WG-2, a garnet standard for oxygen isotope ratios: Strategies for high precision accuracy with laser heating. Geochim. Cosmochim. Acta 1995, 59, 5223–5231. [Google Scholar] [CrossRef]
- Pirajno, F. Skarn Systems. In Hydrothermal Processes and Mineral Systems; Springer: Berlin, Germany, 2009; pp. 535–580. [Google Scholar]
- Mulmeister, S.; Fritsch, E.; Shigley, J.E.; Devourd, B.; Laurs, B.M. Separating natural and synthetic rubies on the basis of trace-element chemistry. Gems Gemol. 1998, 34, 80–101. [Google Scholar] [CrossRef]
- Calligaro, T.; Poirot, J.P.; Querré, G. Trace element fingerprinting of jewelry rubies by external beam. J. Nucl. Instrum. Methods Phys. Res. 1999, B150, 628–634. [Google Scholar] [CrossRef]
- Mittermayr, F.; Konzett, J.; Hausenberger, C.; Kaindl, R.; Schmiderer, A. Trace element distribution, solid- and fluid inclusions in untreated Mong Hsu rubies. Geophys. Res. Abs. 2008, 10. EGU-A-1076. [Google Scholar]
- Parikh, P.; Bhardwaj, D.M.; Gupta, R.P.; Saini, N.L.; Fernandes, S.; Singhal, R.K.; Jain, D.C.; Garg, K.B. Comparative study of the electronic structure of natural and synthetic rubies using XAFS and EDAX analyses. Bull. Mater. Sci. 2002, 25, 653–656. [Google Scholar] [CrossRef]
- Voudouris, P.; Graham, I.; Melfos, V.; Zaw, K.; Sutherland, L.; Giuliani, G.; Fallick, A.; Ionescu, M. Gem corundum deposits of Greece: Diversity, chemistry and origins. In Proceedings of the 13th Quadrennial IAGOD Symposium, Adelaide, Australia, 6–9 April 2010; pp. 429–430.
- Wongkokua, W.; Pongrapan, S.; Darautana, P.; Theinprasert, J.T.; Wathanakul, P. X-ray absorbtion near edge structure of chromium ions in a-Al2O3. J. Phys. Conf. Ser. 2009, 185, 1–4. [Google Scholar] [CrossRef]
- Pornwilard, M.M.; Hansawek, R.; Shiowatana, J.; Siripinyanond, A. Geographical origin of gem corundum using elemental fingerprinting analysis by laser ablation inductively coupled plasma mass spectrometry. Int. J. Mass Spectr. 2011, 306, 57–62. [Google Scholar] [CrossRef]
- Pardieu, V.; Sangsawong, S.; Muyal, J.; Chauvré, B.; Massi, L.; Sturman, N. Rubies from the Montepuez Area (Mozambique); GIA News from Research; 5 October 2013. Available online: http://www.giathai.net (accessed on 2 December 2014).
- Sorokina, E.S.; Ozhogina, E.G.; Jacob, D.E.; Hofmeister, W. Some features of corundum ontogeny and the quality of ruby from Snezhnoye Deposit, Tajikistan (The Eastern Parmirs). Zap. PMQ 2012, 6, 95–103. [Google Scholar]
- Giuliani, G.; University of Lorraine, Vandoevre-les-Nancy, France. Personal communication, 2014.
- Breitner, K.; Gardenová, N.; Kanickẏ, V.; Vaculovič, T. Gallium and germanium geochemistry during magmatic fractionation and post-magmatic alteration in different types of granitoids: A case study from the Bohemian Massif (Czech Republic). Geol. Carpath. 2013, 64, 171180b. [Google Scholar]
- Abduriyim, A.B.; Kitwaki, H. Determination of the origin of blue sapphire using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). J. Gemmol. 2006, 30, 23–26. [Google Scholar]
- Webb, G. Ruby suites from New South Wales. Aust. Gemmol. 2007, 23, 99–117. [Google Scholar]
- Gaudrey, E.; Sainctavit, P.; Julliot, F.; Bondioli, F.; Ohresser, P.; Letard, I. From the green colour of eskolite to the red colour of ruby, an X-ray absorption study. Phys. Chem. Miner. 2006, 32, 710–720. [Google Scholar] [CrossRef]
- Keulen, N.; Kalvig, P. Fingerprinting of corundum (ruby) from Fiskenaesset, West Greenland. GEUS Geol. Surv. Den. Greenl. Bull. 2013, 28, 53–56. [Google Scholar]
- Stern, R.J.; Tsujimori, T.; Harlow, G.E.; Groat, L. Plate tectonic gemstones. Geology 2013, 71, 723–726. [Google Scholar] [CrossRef]
- Maury, R.C.; Pubellier, M.; Rangin, C.; Wulput, L.; Cotten, J.; Socquet, A.; Bellon, H.; Guillaud, J.P.; Htun, H.M. Quaternary calc-alkaline and alkaline volcanism in an hyper-oblique convergence setting, central Myanmar and western Yunnan. Bull. Soc. Géol. Fr. 2004, 175, 461–472. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sutherland, F.L.; Zaw, K.; Meffre, S.; Yui, T.-F.; Thu, K. Advances in Trace Element “Fingerprinting” of Gem Corundum, Ruby and Sapphire, Mogok Area, Myanmar. Minerals 2015, 5, 61-79. https://doi.org/10.3390/min5010061
Sutherland FL, Zaw K, Meffre S, Yui T-F, Thu K. Advances in Trace Element “Fingerprinting” of Gem Corundum, Ruby and Sapphire, Mogok Area, Myanmar. Minerals. 2015; 5(1):61-79. https://doi.org/10.3390/min5010061
Chicago/Turabian StyleSutherland, F. Lin, Khin Zaw, Sebastien Meffre, Tzen-Fui Yui, and Kyaw Thu. 2015. "Advances in Trace Element “Fingerprinting” of Gem Corundum, Ruby and Sapphire, Mogok Area, Myanmar" Minerals 5, no. 1: 61-79. https://doi.org/10.3390/min5010061
APA StyleSutherland, F. L., Zaw, K., Meffre, S., Yui, T. -F., & Thu, K. (2015). Advances in Trace Element “Fingerprinting” of Gem Corundum, Ruby and Sapphire, Mogok Area, Myanmar. Minerals, 5(1), 61-79. https://doi.org/10.3390/min5010061