Fossilised Biomolecules and Biomarkers in Carbonate Concretions from Konservat-Lagerstätten
Abstract
:1. Introduction
2. Modes of Preservation
3. Molecules of Life in Concretions
4. Imaging Techniques
4.1. Nondestructive Tomographic Methods
4.2. Microbeam X-ray Fluorescence (XRF) Mapping
4.3. Optical and Scanning Electron Microscopy (SEM)
5. The Role of Biomarkers in Concretions
6. Biomarkers in Concretions vs. Host Sediments
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Briggs, D.E.G.; Crowther, P.R. Palaeobiology: A Synthesis; Blackwell Scientific Publications: Oxford, UK, 1990. [Google Scholar]
- Bottjer, D.J.; Etter, W.; Hagadorn, J.W.; Tang, C.M. Fossil-Lagerstätten: Jewels of the Fossil Record. In Exceptional Fossil Preservation: A Unique View on the Evolution of Marine Life; Bottjer, D.J., Etter, W., Hagadorn, J.W., Tang, C.M., Eds.; Columbia University Press: New York, NY, USA, 2002; pp. 1–10. [Google Scholar]
- Butterfield, N.J. Exceptional Fossil Preservation and the Cambrian Explosion. Integr. Comp. Biol. 2003, 43, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Greenwalt, D.E.; Goreva, Y.S.; Siljeström, S.M.; Rose, T.; Harbach, R.E. Hemoglobin-derived porphyrins preserved in a Middle Eocene blood-engorged mosquito. Proc. Natl Acad. Sci. USA 2013, 110, 18496–18500. [Google Scholar] [CrossRef] [PubMed]
- Bertazzo, S.; Maidment, S.C.R.; Kallepitis, C.; Fearn, S.; Stevens, M.M.; Xie, H.-n. Fibres and cellular structures preserved in 75-million–year-old dinosaur specimens. Nat. Commun. 2015, 6, 7352. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-C.; Chiang, C.-C.; Huang, P.-Y.; Chung, C.-Y.; Huang, T.D.; Wang, C.-C.; Chen, C.-I.; Chang, R.-S.; Liao, C.-H.; Reisz, R.R. Evidence of preserved collagen in an Early Jurassic sauropodomorph dinosaur revealed by synchrotron FTIR microspectroscopy. Nat. Commun. 2017, 8, 14220. [Google Scholar] [CrossRef] [PubMed]
- Wiemann, J.; Fabbri, M.; Yang, T.-R.; Stein, K.; Sander, P.M.; Norell, M.A.; Briggs, D.E.G. Fossilization transforms vertebrate hard tissue proteins into N-heterocyclic polymers. Nat. Commun. 2018, 9, 4741. [Google Scholar] [CrossRef] [PubMed]
- Plet, C.; Grice, K.; Pagès, A.; Verrall, M.; Coolen, M.J.L.; Ruebsam, W.; Rickard, W.D.A.; Schwark, L. Palaeobiology of red and white blood cell-like structures, collagen and cholesterol in an ichthyosaur bone. Sci. Rep. 2017, 7, 13776. [Google Scholar] [CrossRef] [PubMed]
- Melendez, I.; Grice, K.; Schwark, L. Exceptional preservation of Palaeozoic steroids in a diagenetic continuum. Sci. Rep. 2013, 3, 2768. [Google Scholar] [CrossRef] [PubMed]
- Melendez, I.; Grice, K.; Trinajstic, K.; Ladjavardi, M.; Greenwood, P.; Thompson, K. Biomarkers reveal the role of photic zone euxinia in exceptional fossil preservation: An organic geochemical perspective. Geology 2013, 41, 123–126. [Google Scholar] [CrossRef]
- Cohen, P.A.; Macdonald, F.A. The Proterozoic Record of Eukaryotes. Paleobiology 2015, 41, 610–632. [Google Scholar] [CrossRef]
- Muscente, A.D.; Schiffbauer, J.D.; Broce, J.; Laflamme, M.; O’Donnell, K.; Boag, T.H.; Meyer, M.; Hawkins, A.D.; Huntley, J.W.; McNamara, M.; et al. Exceptionally preserved fossil assemblages through geologic time and space. Gondwana Res. 2017, 48, 164–188. [Google Scholar] [CrossRef]
- Briggs, D.E.G. The role of decay and mineralization in the preservation of soft-bodied fossils. Annu. Rev. Earth Planet. Sci. 2003, 31, 275–301. [Google Scholar] [CrossRef]
- Declet, A.; Reyes, E.; Suárez, O.M. Calcium carbonate precipitation: A review of the carbonate crystallization process and applications in bioinspired composites. Rev. Adv. Mater. Sci. 2016, 44, 87–107. [Google Scholar]
- Rice, C.M.; Trewin, N.H.; Anderson, L.I. Geological setting of the Early Devonian Rhynie cherts, Aberdeenshire, Scotland: An early terrestrial hot spring system. J. Geol. Soc. Lond. 2002, 159, 203–214. [Google Scholar] [CrossRef]
- Sigleo, A.C. Organic geochemistry of silicified wood, Petrified Forest National Park, Arizona. Geochim. Cosmochim. Acta 1978, 42, 1397–1405. [Google Scholar] [CrossRef]
- Pawlowska, M.M.; Butterfield, N.J.; Brocks, J.J. Lipid taphonomy in the Proterozoic and the effect of microbial mats on biomarker preservation. Geology 2013, 41, 103–106. [Google Scholar] [CrossRef]
- Seilacher, A. Begriff und Bedeutung der Fossil-Lagerstätten. Neues Jahrbuch für Geologie und Paläontologie 1970, 1, 34–39. [Google Scholar]
- Parry, L.A.; Smithwick, F.; Nordén, K.K.; Saitta, E.T.; Lozano-Fernandez, J.; Tanner, A.R.; Caron, J.-B.; Edgecombe, G.D.; Briggs, D.E.G.; Vinther, J. Soft-Bodied Fossils Are Not Simply Rotten Carcasses—Toward a Holistic Understanding of Exceptional Fossil Preservation. BioEssays 2018, 40, 1700167. [Google Scholar] [CrossRef] [PubMed]
- Allison, P.A. Konservat-Lagerstaetten; cause and classification. Paleobiology 1988, 14, 331–344. [Google Scholar] [CrossRef]
- Gould, S.J. Wonderful Life: The Burgess Shale and the Nature of History; W. W. Norton & Company: New York, NY, USA, 1990. [Google Scholar]
- Selden, P.A.; Nudds, J.R. Evolution of Fossil Ecosystems; Manson Publishing: London, UK, 2012. [Google Scholar]
- Bobrovskiy, I.; Hope, J.M.; Ivantsov, A.; Nettersheim, B.J.; Hallmann, C.; Brocks, J.J. Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals. Science 2018, 361, 1246–1249. [Google Scholar] [CrossRef] [PubMed]
- Bobrovskiy, I.; Hope, J.M.; Krasnova, A.; Ivantsov, A.; Brocks, J.J. Molecular fossils from organically preserved Ediacara biota reveal cyanobacterial origin for Beltanelliformis. Nat. Ecol. Evol. 2018, 2, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Lerosey-Aubril, R.; Gaines, R.R.; Hegna, T.A.; Ortega-Hernández, J.; Van Roy, P.; Kier, C.; Bonino, E. The Weeks Formation Konservat-Lagerstätte and the evolutionary transition of Cambrian marine life. J. Geol. Soc. 2018, 175, 705–715. [Google Scholar] [CrossRef]
- Siveter, D.J. Ostracods in the Palaeozoic? Senckenbergiana lethaea 2008, 88, 1–9. [Google Scholar] [CrossRef]
- Siveter, D.J.; Aitchison, J.C.; Siveter, D.J.; Sutton, M.D. The Radiolaria of the Herefordshire Konservat-Lagerstätte (Silurian), England. J. Micropalaeontol. 2007, 26, 87–95. [Google Scholar] [CrossRef]
- Long, J.A.; Trinajstic, K. The Late Devonian Gogo Formation Lägerstatte of Western Australia: Exceptional Early Vertebrate Preservation and Diversity. Annu. Rev. Earth Planet. Sci. 2010, 38, 255–279. [Google Scholar] [CrossRef]
- Conway Morris, S.; Savoy, L.E.; Harris, A.G. An enigmatic organism from the "Exshaw" Formation (Devonian-Carboniferous), Alberta, Canada. Lethaia 1991, 24, 139–152. [Google Scholar] [CrossRef]
- Smith, M.G.; Bustin, R.M. Late Devonian and Early Mississippian Bakken and Exshaw Black Shale Source Rocks, Western Canada Sedimentary Basin: A Sequence Stratigraphic Interpretation. AAPG Bull. 2000, 84, 940–960. [Google Scholar] [CrossRef]
- Baird, G.C.; Sroka, S.D.; Shabica, C.W.; Kuecher, G.J. Taphonomy of Middle Pennsylvanian Mazon Creek area fossil localities, Northeast Illinois; significance of exceptional fossil preservation in syngenetic concretions. PALAIOS 1986, 1, 271–285. [Google Scholar] [CrossRef]
- Clements, T.; Purnell, M.; Gabbott, S. The Mazon Creek Lagerstätte: A diverse late Paleozoic ecosystem entombed within siderite concretions. J. Geol. Soc. 2019, 176, 1–11. [Google Scholar] [CrossRef]
- McCoy, V.E.; Young, R.T.; Briggs, D.E.G. Factors controlling exceptional preservation in concretions. Palaios 2015, 30, 272–280. [Google Scholar] [CrossRef]
- Fernandes, A.S. A Geobiological Investigation of the Mazon Creek Concretions of Northeastern Illinois, Mechanisms of Formation and Diagenesis. Master’s Thesis, The University of Western Ontario, London, ON, Canada, 2012. [Google Scholar]
- Plet, C.; Grice, K.; Pagès, A.; Ruebsam, W.; Coolen, M.J.L.; Schwark, L. Microbially-mediated fossil-bearing carbonate concretions and their significance for palaeoenvironmental reconstructions: A multi-proxy organic and inorganic geochemical appraisal. Chem. Geol. 2016, 426, 95–108. [Google Scholar] [CrossRef]
- Röhl, H.-J.; Schmid-Röhl, A.; Oschmann, W.; Frimmel, A.; Schwark, L. The Posidonia Shale (Lower Toarcian) of SW-Germany: An oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2001, 165, 27–52. [Google Scholar] [CrossRef]
- Brito, P.M.; Gallo, V. A new species of Lepidotes (Neopterygii: Semionotiformes: Semionotidae) from the Santana Formation, Lower Cretaceous of northeastern Brazil. J. Vertebr. Paleontol. 2003, 23, 47–53. [Google Scholar] [CrossRef]
- Fara, E.; Saraiva, A.Á.F.; de Almeida Campos, D.; Moreira, J.K.R.; de Carvalho Siebra, D.; Kellner, A.W.A. Controlled excavations in the Romualdo Member of the Santana Formation (Early Cretaceous, Araripe Basin, northeastern Brazil): Stratigraphic, palaeoenvironmental and palaeoecological implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 218, 145–160. [Google Scholar] [CrossRef]
- Heimhofer, U.; Hesselbo, S.P.; Pancost, R.D.; Martill, D.M.; Hochuli, P.A.; Guzzo, J.V.P. Evidence for photic-zone euxinia in the Early Albian Santana Formation (Araripe Basin, NE Brazil). Terra Nova 2008, 20, 347–354. [Google Scholar] [CrossRef]
- Rust, J. Fossil record of mass moth migration. Nature 2000, 405, 530–531. [Google Scholar] [CrossRef] [PubMed]
- Bertelli, S.; Lindow, B.E.K.; Dyke, G.J.; Chiappe, L.M. A well-preserved "charadriiform-like" fossil bird from the Early Eocene Fur Formation of Denmark. Palaeontology 2010, 53, 507–531. [Google Scholar] [CrossRef]
- Chen, P.-j.; Dong, Z.-m.; Zhen, S.-N. An exceptionally well-preserved theropod dinosaur from the Yixian Formation of China. Nature 1998, 391, 147–152. [Google Scholar] [CrossRef]
- Yang, W.; Li, S.; Jiang, B. New evidence for Cretaceous age of the feathered dinosaurs of Liaoning: Zircon U-Pb SHRIMP dating of the Yixian Formation in Sihetun, northeast China. Cretac. Res. 2007, 28, 177–182. [Google Scholar] [CrossRef]
- Mutterlose, J.; Böckel, B. The Barremian–Aptian interval in NW Germany: A review. Cretac. Res. 1998, 19, 539–568. [Google Scholar] [CrossRef]
- Mutterlose, J.; Pauly, S.; Steuber, T. Temperature controlled deposition of early Cretaceous (Barremian–early Aptian) black shales in an epicontinental sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 273, 330–345. [Google Scholar] [CrossRef]
- Ferber, C.T.; Wells, N.A. Paleolimnology and taphonomy of some fish deposits in “Fossil” and “Uinta” Lakes of the Eocene Green River Formation, Utah and Wyoming. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1995, 117, 185–210. [Google Scholar] [CrossRef]
- Conrad, J.L.; Head, J.J.; Carrano, M.T. Unusual Soft-Tissue Preservation of a Crocodile Lizard (Squamata, Shinisauria) From the Green River Formation (Eocene) and Shinisaur Relationships. Anat. Rec. 2014, 297, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Tissot, B.P.; Welte, D.H. Petroleum Formation and Occurence; Springer: Berlin, Germany, 1984. [Google Scholar]
- Nip, M.; Tegelaar, E.W.; Brinkhuis, H.; De Leeuw, J.W.; Schenck, P.A.; Holloway, P.J. Analysis of modern and fossil plant cuticles by Curie point Py-GC and Curie point Py-GC-MS: Recognition of a new, highly aliphatic and resistant biopolymer. Org. Geochem. 1986, 10, 769–778. [Google Scholar] [CrossRef]
- Goth, K.; de Leeuw, J.W.; Püttmann, W.; Tegelaar, E.W. Origin of Messel Oil Shale kerogen. Nature 1988, 336, 759–761. [Google Scholar] [CrossRef]
- Gelin, F.; de Leeuw, J.W.; Sinninghe Damsté, J.S.; Derenne, S.; Largeau, C.; Metzger, P. The similarity of chemical structures of soluble aliphatic polyaldehyde and insoluble algaenan in the green microalga Botryococcus braunii race A as revealed by analytical pyrolysis. Org. Geochem. 1994, 21, 423–435. [Google Scholar] [CrossRef]
- Grice, K.; Audino, M.; Boreham, C.J.; Alexander, R.; Kagi, R.I. Distributions and stable carbon isotopic compositions of biomarkers in torbanites from different palaeogeographical locations. Org. Geochem. 2001, 32, 1195–1210. [Google Scholar] [CrossRef]
- Grice, K.; Schouten, S.; Blokker, P.; Derenne, S.; Largeau, C.; Nissenbaum, A.; Damsté, J.S.S. Structural and isotopic analysis of kerogens in sediments rich in free sulfurised Botryococcus braunii biomarkers. Org. Geochem. 2003, 34, 471–482. [Google Scholar] [CrossRef]
- McCoy, V.E. Concretions as Agents of Soft-Tissue Preservation: A Review. Paleontol. Soc. Pap. 2014, 20, 147–162. [Google Scholar] [CrossRef]
- Marshall, J.D.; Pirrie, D. Carbonate concretions—explained. Geol. Today 2013, 29, 53–62. [Google Scholar] [CrossRef]
- Kiriakoulakis, K.; Marshall, J.D.; Wolff, G.A. Biomarkers in a Lower Jurassic concretion from Dorset (UK). J. Geol. Soc. 2000, 157, 207–220. [Google Scholar] [CrossRef]
- Gaines, R.R.; Vorhies, J.S. Growth mechanisms and geochemistry of carbonate concretions from the Cambrian Wheeler Formation (Utah, USA). Sedimentology 2016, 63, 662–698. [Google Scholar] [CrossRef]
- Zhu, T.; Dittrich, M. Carbonate Precipitation through Microbial Activities in Natural Environment, and Their Potential in Biotechnology: A Review. Front. Bioeng. Biotechnol. 2016, 4, 4. [Google Scholar] [CrossRef] [PubMed]
- Kremer, B.; Kazmierczak, J.; Stal, l.J. Calcium carbonate precipitation in cyanobacterial mats from sandy tidal flats of the North Sea. Geobiology 2008, 6, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Schwark, L. Exceptional preservation of microbial lipids in Paleozoic to Mesoproterozoic sediments. Geology 2013, 41, 287–288. [Google Scholar] [CrossRef]
- Coleman, M.L. Microbial processes: Controls on the shape and composition of carbonate concretions. Mar. Geol. 1993, 113, 127–140. [Google Scholar] [CrossRef]
- Raiswell, R.; Fisher, Q.J. Mudrock-hosted carbonate concretions: A review of growth mechanisms and their influence on chemical and isotopic composition. J. Geol. Soc. 2000, 157, 239–251. [Google Scholar] [CrossRef]
- Pye, K.; Dickson, J.A.D.; Schiavon, N.; Coleman, M.L.; Cox, M. Formation of siderite-Mg-calcite-iron sulphide concretions in intertidal marsh and sandflat sediments, north Norfolk, England. Sedimentology 1990, 37, 325–343. [Google Scholar] [CrossRef]
- Curtis, C.D.; Coleman, M.L.; Love, L.G. Pore water evolution during sediment burial from isotopic and mineral chemistry of calcite, dolomite and siderite concretions. Geochim. Cosmochim. Acta 1986, 50, 2321–2334. [Google Scholar] [CrossRef]
- Berner, R.A. Sulphate Reduction, Organic Matter Decomposition and Pyrite Formation. Phil. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1985, 315, 25–38. [Google Scholar] [CrossRef]
- Woodland, B.G.; Stenstrom, R.C. The occurrence and origin of siderite concretions in the Francis Creek Shale (Pennsylvanian) of northeastern Illinois. In Mazon Creek Fossils; Nitecki, M.H., Ed.; Academic Press: Cambridge, MA, USA, 1979; pp. 69–103. [Google Scholar]
- Curtis, C.D.; Spears, D.A. The formation of sedimentary iron minerals. Econ. Geol. 1968, 63, 257–270. [Google Scholar] [CrossRef]
- Ho, C.; Coleman, J.M. Consolidation and Cementation of Recent Sediments in the Atchafalaya Basin. GSA Bull. 1969, 80, 183–192. [Google Scholar] [CrossRef]
- Pye, K. SEM analysis of siderite cements in intertidal marsh sediments, Norfolk, England. Mar. Geol. 1984, 56, 1–12. [Google Scholar] [CrossRef]
- Brocks, J.J.; Pearson, A. Building the Biomarker Tree of Life. Rev. Mineral. Geochem. 2005, 59, 233–258. [Google Scholar] [CrossRef]
- Volkman, J.K. Lipid Markers for Marine Organic Matter. In Marine Organic Matter: Biomarkers, Isotopes and DNA; Volkman, J.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Pearson, A. Lipidomics for Geochemistry. In Treatise on Geochemistry (Second Edition) Volume 12: Organic Geochemistry; Falkowski, P.G., Freeman, K.H., Eds.; Elsevier: Oxford, UK, 2014; pp. 291–336. [Google Scholar]
- Maixner, F.; Overath, T.; Linke, D.; Janko, M.; Guerriero, G.; van den Berg, B.H.J.; Stade, B.; Leidinger, P.; Backes, C.; Jaremek, M.; et al. Paleoproteomic study of the Iceman’s brain tissue. Cell. Mol. Life Sci. 2013, 70, 3709–3722. [Google Scholar] [CrossRef] [PubMed]
- More, K.D.; Orsi, W.D.; Galy, V.; Giosan, L.; He, L.; Grice, K.; Coolen, M.J.L. A 43 kyr record of protist communities and their response to oxygen minimum zone variability in the Northeastern Arabian Sea. Earth Planet. Sci. Lett. 2018, 496, 248–256. [Google Scholar] [CrossRef]
- Orsi, W.D.; Coolen, M.J.L.; Wuchter, C.; He, L.; More, K.D.; Irigoien, X.; Chust, G.; Johnson, C.; Hemingway, J.D.; Lee, M.; et al. Climate oscillations reflected within the microbiome of Arabian Sea sediments. Sci. Rep. 2017, 7, 6040. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, J.A.; Rahman, I.A.; Lautenschlager, S.; Rayfield, E.J.; Donoghue, P.C.J. A virtual world of paleontology. Trends Ecol. Evol. 2014, 29, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Mietchen, D.; Aberhan, M.; Manz, B.; Hampe, O.; Mohr, B.; Neumann, C.; Volke, F. Three-dimensional Magnetic Resonance Imaging of fossils across taxa. Biogeosciences 2008, 5, 25–41. [Google Scholar] [CrossRef]
- Holgado, B.; Dalla Vecchia, F.M.; Fortuny, J.; Bernardini, F.; Tuniz, C. A Reappraisal of the Purported Gastric Pellet with Pterosaurian Bones from the Upper Triassic of Italy. PLOS ONE 2015, 10, e0141275. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.D.; Brett, C.E. Concretions as sources of exceptional preservation, and decay as a source of concretions: Examples from the Middle Devonian of New York. PALAIOS 2013, 28, 305–316. [Google Scholar] [CrossRef]
- Pradel, A.; Langer, M.; Maisey, J.G.; Geffard-Kuriyama, D.; Cloetens, P.; Janvier, P.; Tafforeau, P. Skull and brain of a 300-million-year-old chimaeroid fish revealed by synchrotron holotomography. Proc. Natl. Acad. Sci. USA 2009, 106, 5224–5228. [Google Scholar] [CrossRef] [PubMed]
- Garwood, R.J.; Dunlop, J.A.; Selden, P.A.; Spencer, A.R.T.; Atwood, R.C.; Vo, N.T.; Drakopoulos, M. Almost a spider: A 305-million-year-old fossil arachnid and spider origins. Proc. R. Soc. B Biol. Sci. 2016, 283, 20160125. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, S.; Ahlberg, P.E.; Trinajstic, K.M.; Mirone, A.; Tafforeau, P. Three-Dimensional Synchrotron Virtual Paleohistology: A New Insight into the World of Fossil Bone Microstructures. Microsc. Microanal. 2012, 18, 1095–1105. [Google Scholar] [CrossRef] [PubMed]
- Sutton, M.D. Tomographic techniques for the study of exceptionally preserved fossils. Proc. R. Soc. B Biol. Sci. 2008, 275, 1587–1593. [Google Scholar] [CrossRef] [PubMed]
- Sutton, M.D.; Rahman, I.A.; Garwood, R.J. Techniques for Virtual Palaeontology; John Wiley & Sons, Ltd.: Chichester, UK, 2014. [Google Scholar]
- Siveter, D.J.; Briggs, D.E.G.; Siveter, D.J.; Sutton, M.D.; Legg, D. A new crustacean from the Herefordshire (Silurian) Lagerstätte, UK, and its significance in malacostracan evolution. Proc. R. Soc. B Biol. Sci. 2017, 284, 20170279. [Google Scholar] [CrossRef] [PubMed]
- Bertsch, P.M.; Hunter, D.B. Applications of Synchrotron-Based X-ray Microprobes. Chem. Rev. 2001, 101, 1809–1842. [Google Scholar] [CrossRef] [PubMed]
- Mozley, P.S. Complex compositional zonation in concretionary siderite; implications for geochemical studies. J. Sediment. Res. 1989, 59, 815–818. [Google Scholar] [CrossRef]
- De Craen, M.; Swennen, R.; Keppens, E. Petrography and geochemistry of septarian carbonate concretions from the Boom Clay Formation (Oligocene, Belgium). Geol. Mijnb. 1998, 77, 63–76. [Google Scholar] [CrossRef]
- Danise, S.; Twitchett, R.J.; Matts, K. Ecological succession of a Jurassic shallow-water ichthyosaur fall. Nat. Commun. 2014, 5, 4789. [Google Scholar] [CrossRef] [PubMed]
- Vickerman, J.C. ToF-SIMS—An Overview. In ToF-SIMS: Surface Analysis by Mass Spectrometry; Vickerman, J.C., Briggs, D., Eds.; IM Publications: Chichester, UK, 2001; pp. 1–36. [Google Scholar]
- Thiel, V.; Sjövall, P. Using Time-of-Flight Secondary Ion Mass Spectrometry to Study Biomarkers. Annu. Rev. Earth Planet. Sci. 2011, 39, 125–156. [Google Scholar] [CrossRef]
- Abbott, G.D.; Fletcher, I.W.; Tardio, S.; Hack, E. Exploring the geochemical distribution of organic carbon in early land plants: A novel approach. Phil. Trans. R. Soc. B Biol. Sci. 2017, 373, 20160499. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, M.H.; Zheng, W.; Organ, C.L.; Avci, R.; Suo, Z.; Freimark, L.M.; Lebleu, V.S.; Duncan, M.B.; Vander Heiden, M.G.; Neveu, J.M.; et al. Biomolecular Characterization and Protein Sequences of the Campanian Hadrosaur B. canadensis. Science 2009, 324, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Thiel, V.; Blumenberg, M.; Kiel, S.; Leefmann, T.; Liebenau, K.; Lindgren, J.; Sjövall, P.; Treude, T.; Zilla, T. Occurrence and fate of fatty acyl biomarkers in an ancient whale bone (Oligocene, El Cien Formation, Mexico). Org. Geochem. 2014, 68, 71–81. [Google Scholar] [CrossRef]
- Lindgren, J.; Uvdal, P.; Sjövall, P.; Nilsson, D.E.; Engdahl, A.; Schultz, B.P.; Thiel, V. Molecular preservation of the pigment melanin in fossil melanosomes. Nat. Commun. 2012, 3, 824. [Google Scholar] [CrossRef] [PubMed]
- Colleary, C.; Dolocan, A.; Gardner, J.; Singh, S.; Wuttke, M.; Rabenstein, R.; Habersetzer, J.; Schaal, S.; Feseha, M.; Clemens, M.; et al. Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils. Proc. Natl. Acad. Sci. USA 2015, 112, 12592–12597. [Google Scholar] [CrossRef] [PubMed]
- Moyer, A.E.; Zheng, W.; Johnson, E.A.; Lamanna, M.C.; Li, D.-Q.; Lacovara, K.J.; Schweitzer, M.H. Melanosomes or Microbes: Testing an Alternative Hypothesis for the Origin of Microbodies in Fossil Feathers. Sci. Rep. 2014, 4, 4233. [Google Scholar] [CrossRef] [PubMed]
- Grice, K.; Eiserbeck, C. The Analysis and Application of Biomarkers. In Treatise on Geochemistry (Second Edition) Volume 12: Organic Geochemistry; Falkowski, P.G., Freeman, K.H., Eds.; Elsevier: Oxford, UK, 2014; pp. 47–78. [Google Scholar]
- Lengger, S.K.; Melendez, I.M.; Summons, R.E.; Grice, K. Mudstones and embedded concretions show differences in lithology-related, but not source-related biomarker distributions. Org. Geochem. 2017, 113, 67–74. [Google Scholar] [CrossRef]
- Briggs, D.E.G.; Summons, R.E. Ancient biomolecules: Their origins, fossilization, and role in revealing the history of life. BioEssays 2014, 36, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Jarrett, A.J.M.; Cox, G.M.; Brocks, J.J.; Grosjean, E.; Boreham, C.J.; Edwards, D.S. Microbial assemblage and palaeoenvironmental reconstruction of the 1.38 Ga Velkerri Formation, McArthur Basin, northern Australia. Geobiology 2019, in press. [Google Scholar] [CrossRef] [PubMed]
- Canfield, D.E.; Farquhar, J. The global sulfur cycle. In Fundamentals of Geobiology; Knoll, A.H., Canfield, D.E., Konhauser, K.O., Eds.; Blackwell Publishing Ltd.: Chichester, UK, 2012; pp. 49–64. [Google Scholar]
- Grice, K.; Cao, C.; Love, G.D.; Böttcher, M.E.; Twitchett, R.J.; Grosjean, E.; Summons, R.E.; Turgeon, S.C.; Dunning, W.; Jin, Y. Photic zone euxinia during the Permian-Triassic superanoxic event. Science 2005, 307, 706–709. [Google Scholar] [CrossRef] [PubMed]
- Grice, K.; Schaeffer, P.; Schwark, L.; Maxwell, J.R. Molecular indicators of palaeoenvironmental conditions in an immature Permian shale (Kupferschiefer, Lower Rhine Basin, north-west Germany) from free and S-bound lipids. Org. Geochem. 1996, 25, 131–147. [Google Scholar] [CrossRef]
- Summons, R.E.; Powell, T.G. Chlorobiaceae in Palaeozoic seas revealed by biological markers, isotopes and geology. Nature 1986, 319, 763–765. [Google Scholar] [CrossRef]
- Volkman, J.K. A review of sterol markers for marine and terrigenous organic matter. Org. Geochem. 1986, 9, 83–99. [Google Scholar] [CrossRef]
- Volkman, J.K. Sterols in microorganisms. Appl. Microbiol. Biotechnol. 2003, 60, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Thiel, V.; Hoppert, M. Fatty acids and other biomarkers in two Early Jurassic concretions and their immediate host rocks (Lias δ, Buttenheim clay pit, Bavaria, Germany). Org. Geochem. 2018, 120, 42–55. [Google Scholar] [CrossRef]
Site | Age | Description | References |
---|---|---|---|
White Sea (Russia) | Ediacaran | Exceptional preservation of Ediacaran biota including Beltanelliformis and Dickinsonia | [23,24] |
Burgess Shale (British Columbia) | Cambrian | Well-preserved soft tissues from marine arthropod groups (e.g., trilobites and crustaceans); role of cyanobacterial mats in preservation and extinction | [21] |
Weeks Fm (Utah, USA) | Cambrian | Diverse fauna: animal community living in open marine distal shelf environment | [25] |
Herefordshire (UK) | Silurian | Radiolarians: worms, molluscs, starfish, brachiopods, arthropods and other fossils of unknown affinity | [26,27] |
Gogo Fm (Western Australia) | Devonian | Three-dimensional preservation of fish (including placoderms), crustaceans and other marine organisms | [9,10,28] |
Exshaw Fm (Western Canada) | Devonian | Preserved soft-body fossils of uncertain assignment, potentially hydrozoan | [29,30] |
Mazon Creek (Illinois) | Carboniferous | Terrestrial and aquatic flora and fauna including extinct seed ferns; early evolution, fire and stress markers | [31,32,33,34] |
Posidonia Shale (Southwest Germany) | Early Jurassic | Exceptionally well-preserved marine fossil skeletons including ichthyosaurs, ammonites and crinoids; adaptation to environment, e.g., low O2 levels (blood cell morphology of ichthyosaurs) | [8,35,36] |
Santana Fm (Brazil) | Cretaceous | Assemblages of fossilised flora, arthropods, insects, fish, turtles, snakes and dinosaurs | [37,38,39] |
Fur Fm (Denmark) | Cretaceous | Remains of birds, reptiles, fish, insects, crustaceans, molluscs and diatoms | [40,41] |
Yixian Fm (China) | Cretaceous | Well-preserved feathered dinosaurs and birds, along with a selection of non-theropod dinosaurs | [42,43] |
Blätterton Fm (Germany) | Cretaceous | Carbonate, siderite and phosphorate concretions, all of which have been shown to yield fossils | [44,45] |
Green River Fm (Wyoming) | Eocene | Fish, birds, insects and leaves | [46,47] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grice, K.; Holman, A.I.; Plet, C.; Tripp, M. Fossilised Biomolecules and Biomarkers in Carbonate Concretions from Konservat-Lagerstätten. Minerals 2019, 9, 158. https://doi.org/10.3390/min9030158
Grice K, Holman AI, Plet C, Tripp M. Fossilised Biomolecules and Biomarkers in Carbonate Concretions from Konservat-Lagerstätten. Minerals. 2019; 9(3):158. https://doi.org/10.3390/min9030158
Chicago/Turabian StyleGrice, Kliti, Alex I. Holman, Chloe Plet, and Madison Tripp. 2019. "Fossilised Biomolecules and Biomarkers in Carbonate Concretions from Konservat-Lagerstätten" Minerals 9, no. 3: 158. https://doi.org/10.3390/min9030158
APA StyleGrice, K., Holman, A. I., Plet, C., & Tripp, M. (2019). Fossilised Biomolecules and Biomarkers in Carbonate Concretions from Konservat-Lagerstätten. Minerals, 9(3), 158. https://doi.org/10.3390/min9030158