Next Article in Journal
Chen–Ricci Inequality for Isotropic Submanifolds in Locally Metallic Product Space Forms
Previous Article in Journal
Kantorovich Version of Vector-Valued Shepard Operators
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Nontrivial Solutions for a Class of Quasilinear Schrödinger Systems

1
College of Mathematics Science, Inner Mongolia Normal University, Hohhot 010011, China
2
Key Laboratory of Infinite-Dimensional Hamiltonian System and Its Algorithm Application, Ministry of Education, Inner Mongolia Normal University, Hohhot 010011, China
3
Center for Applied Mathematics Inner Mongolia, Inner Mongolia Normal University, Hohhot 010011, China
*
Author to whom correspondence should be addressed.
Axioms 2024, 13(3), 182; https://doi.org/10.3390/axioms13030182
Submission received: 4 February 2024 / Revised: 4 March 2024 / Accepted: 5 March 2024 / Published: 11 March 2024

Abstract

:
In this thesis, we research quasilinear Schrödinger system as follows in which 3 < N R , 2 < p < N , 2 < q < N , V 1 ( x ) , V 2 ( x ) are continuous functions, k , ι are parameters with k , ι > 0 , and nonlinear terms f , h C ( R N × R 2 , R ) . We find a nontrivial solution ( u , v ) for all ι > ι 1 ( k ) by means of the mountain-pass theorem and change of variable theorem. Our main novelty of the thesis is that we extend Δ to Δ p and Δ q to find the existence of a nontrivial solution.
MSC:
35A01; 35J10; 35J50

1. Introduction

We concerned the following quasilinear Schrödinger system for this paper
Δ p u + V 1 ( x ) | u | p 2 u + k 2 [ Δ p | u | 2 ] u = ι f ( x , u , v ) , x R N , Δ q v + V 2 ( x ) | v | q 2 v + k 2 [ Δ q | v | 2 ] v = ι h ( x , u , v ) , x R N ,
in which 3 < N R , 2 < p < N , 2 < q < N , V 1 ( x ) , V 2 ( x ) are continuous positive functions, k is a sufficiently large positive parameter, ι is a positive parameter, and f , h C ( R N × R 2 , R ) .
For a quasilinear Schrödinger system (1), by the symmetric mountain-pass theorem, ref. [1] found infinite solutions, for given nonlinear terms f , h . When k = 2 , ref. [2] proved that it had nontrivial solutions.
The above quasilinear Schrödinger system for p = q = 2 is inspired by the quasilinear Schrödinger equation as below
i ϵ z = ϵ Δ z + V ( x ) z k ( | z | 2 ) z l ϵ Δ h ( | z | 2 ) h ( | z | 2 ) z , for x R N ,
in which V ( x ) is fixed potential, l is a constant, and k and h are real functions. In [3,4,5], Equation (2) is used to study several physical phenomenon with different h.
For h ( t ) = t , l ( t ) = μ t p 1 2 and k > 0 , let z ( s , x ) = e x p ( i F s ) u ( x ) , an equivalent elliptic equation with variational structure is obtained
ϵ Δ u + E ( x ) u ϵ k ( Δ ( | u | 2 ) ) u = μ | u | p 1 u , u > 0 x R N , N > 2 ,
in which E ( x ) = V ( x ) F is also the potential function. There is a lot of research for problems similar to problem (3). Ref. [6] studied a problem that had multiple solutions by dual-approach techniques and variational methods when k > 0 is small enough. Ref. [7] used a minimization argument established on the ground states of soliton solutions. The symmetric critical principle and the mountain-pass theorem were used for finding solutions in [8]. In [9], for a type of quasilinear Schrödinger equation like (3), the author used the method developed by [10,11] to study ground state solutions. In addition, refs. [12,13,14] have also conducted research on equations of this type.
There is a large amount of research on system (1) for p = q = 2 . In [15], Pohožaev manifold and Moser iteration were used for obtaining a ground state solution. By a suitable Nehari–Pohožaev-type constraint set and analyzing relational minimization issues, Wang and Huang found the ground state solutions for the same class system in [16]. In the Orlicz space, the concentration compactness principle and Nehari manifold method were used for finding a ground state solution in [17]. Ref. [18] used the monotonicity trick and the Moser iteration to obtain the result of positive solutions. In [19], Chen and Zhang found ground state solutions through minimization principle. By applying innovative application of variable transformation and the mountain-pass theorem, ref. [20] proved that quasilinear Schrödinger systems have a nontrivial solution.
Many papers mention replacing Δ with Δ p to study the properties of the equation or system after changes, such as [1,13,21]. In fact, Δ is a special case of Δ p , that is Δ p = Δ if p = 2 . What we are interested in is the nontrivial solution to system (1) when k > 0 is large enough.
Throughout this paper, we need some assumptions. Firstly, we make V 1 ( x ) , V 2 ( x ) C ( R N , R ) and encounter the ensuing properties.
( V 1 )
V ˜ : = min { inf x R N V 1 ( x ) , inf x R N V 2 ( x ) } and 0 < V ˜ ;
( V 2 )
V 0 > 0 , ∀ V V 0 , m { x R N : V i ( X ) V } is bounded, where i = 1 , 2 , m is defined as the Lebesgue measure in R N .
Meanwhile, assume that the terms f , h conform to the properties as follows:
( f 1 )
f ( x , s , t ) | ( s , t ) | 0 , h ( x , s , t ) | ( s , t ) | 0 , as ( s , t ) ( 0 , 0 ) ;
( f 2 )
C 0 > 0 , which makes ζ ( x , s , t ) , ( s , t ) C 0 | ( s , t ) | ( p 1 , q 1 ) + | ( s , t ) | ( l p 1 , l q 1 ) , s , t R , p < l p < p * , q < l q < q * , where | ( s , t ) | ( l p , l q ) = s l p + t l q , p * = N p N p , q * = N q N q ;
( f 3 )
θ > 0 satisfying 0 < θ ζ ( x , s , t ) ( s , t ) ζ ( x , s , t ) , and u f ( x , u , v ) 0 , v h ( x , u , v ) 0 , in which ζ ( x , s , t ) = f ( x , s , t ) , h ( x , s , t ) .
The paper’s core result is given below.
Theorem 1.
For given k > 0 , there is ι 1 ( k ) > 0 for all ι > ι 1 ( k ) , when ( V 1 ) , ( V 2 ) , and ( h 1 ) ( h 3 ) are true, in that system (1) has a nontrivial solution ( u , v ) H and max x R N | ( u ( x ) , v ( x ) ) | ( 1 2 p 3 k ) 1 p , ( 1 2 q 3 k ) 1 q .
Let me introduce the basic framework of this paper. Preparation work was completed in Section 2. In Section 3, we consider issues related to the solution of the modified system. We acquire the solution for the first system (1) by use of the Morse iteration technique in Section 4. Section 5 makes a conclusion.
In this article, we use C to denote dissimilar positive constants, and B R 0 stands for a ball with its radius R > 0 and center at the origin. The operation ( x 1 , x 2 ) ( y 1 , y 2 ) = x 1 y 1 + x 2 y 2 , and the operation ( x 1 , x 2 ) ( y 1 , y 2 ) = x 1 y 1 + x 2 y 2 .

2. Preliminary Work

The corresponding Euler–Lagrange functional for (1) is as follows:
J k ( u , v ) = 1 p R N ( 1 k 2 p 2 | u | p ) | u | p d x + 1 p R N V 1 ( x ) | u | p d x + 1 q R N ( 1 k 2 q 2 | v | q ) | v | q d x + 1 q R N V 2 ( x ) | v | q d x ι R N ζ ( x , u , v ) d x .
The functional J k has quasilinear terms, and it is difficult to consider the critical points in the Sobolev spaces.
We stipulate that D = D 1 × D 2 and
( u , v ) = u + v ,
in which
D 1 = { u W 1 , p ( R N ) : R N V 1 ( x ) | u | p d x < + }
given the norm
u = R N ( | u | p + V 1 ( x ) | u | p ) d x 1 p
and
D 2 = { v W 1 , q ( R N ) : R N V 2 ( x ) | v | q d x < + }
given the norm
v = R N ( | v | q + V 2 ( x ) | v | q ) d x 1 q ,
W 1 , p ( R N ) and W 1 , q ( R N ) are the Sobolev space.
To make ( u , v ) a solution for (1), if ∀ φ , ψ C 0 ( R N ) , ( u , v ) H satisfies
R N ( 1 2 ( p 2 ) k | u | p ) | u | p 1 φ 2 ( p 2 ) k | u | p | u | p 1 φ d x + R N V 1 ( x ) | u | p 2 u φ d x + R N ( 1 2 ( q 2 ) k | v | q ) | v | q 1 ψ 2 ( q 2 ) k | v | q | v | q 1 ψ d x + R N V 2 ( x ) | v | q 2 v ψ d x = ι R N f ( x , u , v ) φ + h ( x , u , v ) ψ d x .
Let 1 2 p 2 k | u | p > 0 , we define the functions as follows:
y u ( u ) = y u ( u ) , t < 0 , ( 1 2 ( p 2 ) k | u | p ) 1 p , 0 u < ( 1 2 ( p 3 ) k ) 1 p , 1 2 ( 1 p + p 2 ) k u p + 2 ( 1 p 1 ) , u ( 1 2 ( p 3 ) k ) 1 p ,
and
y v ( v ) = y v ( v ) , t < 0 , ( 1 2 ( q 2 ) k | v | q ) 1 q , 0 v < ( 1 2 ( q 3 ) k ) 1 q , 1 2 ( 1 q + q 2 ) k v q + 2 ( 1 q 1 ) , v ( 1 2 ( q 3 ) k ) 1 q .
Then, y i ( i ) C 1 ( R , ( 2 ( 1 q 1 ) , 1 ] ) , i = u , v , y i is even and a convex function.
Affected by [22], we handle the following modified quasilinear Schrödinger system,
d i v ( y u p ( u ) | u | p 1 ) + y u p 1 ( u ) y u ( u ) | u | p + V 1 ( x ) | u | p 1 = ι f ( x , u , v ) , x R N , d i v ( y v q ( v ) | v | q 1 ) + y v q 1 ( v ) y v ( v ) | v | q + V 2 ( x ) | v | q 1 = ι h ( x , u , v ) , x R N .
Clearly, ∀ φ , ψ C 0 ( R N ) and ( u , v ) H , ( u , v ) is a weak solution for (5), if it holds
R N y u p ( u ) | u | p 1 φ + y u p 1 ( u ) y u ( u ) | u | p φ + V 1 ( x ) | u | p 1 φ d x + R N y v q ( v ) | v | q 1 ψ + y v q 1 ( v ) y v ( v ) | v | q ψ + V 2 ( x ) | v | q 1 ψ d x = ι R N f ( x , u , v ) φ + h ( x , u , v ) ψ d x .
Obviously, if ( u , v ) ( 1 2 ( p 3 ) k ) 1 p , ( 1 2 ( q 3 ) k ) 1 q and ( u , v ) is a solution for (5), so this particular solution ( u , v ) also satisfies system (1). Utilize the change of variable as follows:
z = Y ( u ) = 0 u y u ( t ) d t , w = Y ( w ) = 0 w y v ( t ) d t ;
then, the issue (5) can be simplified as:
Δ p z + V 1 ( x ) ( Y 1 ( z ) ) p 1 y u ( Y 1 ( z ) ) = ι f ( x , Y 1 ( z ) , Y 1 ( w ) ) Y 1 ( z ) , x R N , Δ q w + V 2 ( x ) ( Y 1 ( w ) ) q 1 y v ( Y 1 ( w ) ) = ι h ( x , Y 1 ( z ) , Y 1 ( w ) ) Y 1 ( w ) , x R N ,
among them Y 1 and Y are inverse functions of each other, respectively. The corresponding function about (7) is
I k ( z , w ) = 1 p R N | z | p d x + 1 p R N V 1 ( x ) | Y 1 ( z ) | p d x + 1 q R N | w | q d x + 1 q R N V 2 ( x ) | Y 1 ( w ) | q d x ι R N ζ ( x , Y 1 ( z ) , Y 1 ( w ) ) d x .
Obviously, I k has a good definition in D, and we can obtain the following lemma that are similar to [23].
Lemma 1.
The functions y u ( u ) , y v ( v ) , Y ( u ) , Y ( v ) , Y 1 ( z ) , Y 1 ( w ) satisfy these conditions as follows:
(i)
Y ( i ) and its inverse function Y 1 ( z ) , Y 1 ( w ) are odd, where i = u , v ;
(ii)
1 u y u ( u ) y u ( u ) 0 , 1 v y v ( v ) y v ( v ) 0 for all u , v R ;
(iii)
| z | | Y 1 ( z ) | 2 ( 1 p 1 ) | z | , | w | | Y 1 ( w ) | 2 ( 1 q 1 ) | w | for every z , w R ;
(iv)
lim i 0 Y 1 ( i ) i = 1 , lim z Y 1 ( z ) z = 2 ( 1 p 1 ) , lim w Y 1 ( w ) w = 2 ( 1 q 1 ) , where i = z , w ;
(v)
y u ( Y 1 ( z ) ) z Y 1 ( z ) , y v ( Y 1 ( w ) ) w Y 1 ( w ) for all z , w R .
Proof. 
Clearly, ( i ) is established. The definition of y u and y v include
lim z 0 Y 1 ( z ) z = lim z 0 1 y u ( Y 1 ( z ) ) = 1 y ( 0 ) = 1 ,
lim w 0 Y 1 ( w ) w = lim w 0 1 y v ( Y 1 ( w ) ) = 1 y ( 0 ) = 1 ,
lim z Y 1 ( z ) z = lim i 1 y u ( Y 1 ( z ) ) = 2 ( 1 p 1 ) ,
lim w Y 1 ( w ) w = lim i 1 y v ( Y 1 ( w ) ) = 2 ( 1 q 1 ) .
Thus, ( i v ) is proven. Since y u , y v are decreasing in | u | , | v | , we obtain
Y ( u ) u y u ( u ) 0 , u 0 and Y ( u ) u y u ( u ) < 0 , u < 0 ,
Y ( v ) v y v ( v ) 0 , v 0 and Y ( v ) v y v ( v ) < 0 , v < 0 ,
and ( v ) has also been proven. From
d d z Y 1 ( z ) z = z Y 1 ( z ) y u ( Y 1 ( z ) ) y u ( Y 1 ( z ) ) z 2 0 , z 0 , < 0 , z < 0 ,
d d w Y 1 ( w ) w = w Y 1 ( w ) y v ( Y 1 ( w ) ) y v ( Y 1 ( w ) ) w 2 0 , w 0 , < 0 , w < 0 ,
and ( i v ) , we obtain ( i i i ) . Next, we prove ( i i ) . We consider u , v 0 . u y u ( u ) y u ( u ) 0 and v y v ( v ) y v ( v ) 0 are clear. For 0 u < ( 1 2 ( p 3 ) k ) 1 p and 0 v < ( 1 2 ( q 3 ) k ) 1 q , we have
u y u ( u ) y u ( u ) = 2 ( p 2 ) k u p 2 ( p 2 ) k 1 ,
and
v y v ( v ) y v ( v ) = 2 ( q 2 ) k v q 2 ( q 2 ) k 1 .
For u ( 1 2 ( p 3 ) k ) 1 p and v ( 1 2 ( q 3 ) k ) 1 q , we have
u y u ( u ) y u ( u ) = 2 ( 1 p p + 2 ) k 1 p 2 ( 2 p 1 p ) k 1 + 2 ( 1 p 1 ) u p 1 ,
and
v y v ( v ) y v ( v ) = 2 ( 1 q q + 2 ) k 1 q 2 ( 2 q 1 q ) k 1 + 2 ( 1 q 1 ) v q 1 .
When u , v < 0 , the proof method is similar to this. □
Lemma 2.
Let ( V 1 ) , ( V 2 ) and ( f 1 ) ( f 3 ) be true. To make ( u , v ) = ( Y 1 ( z ) , Y 1 ( w ) ) a solution for (5), it is required that ( z , w ) D is a critical point of J k .
Proof. 
Because ( z , w ) D is a critical point of I k , ∀ ( φ , ψ ) D , we have
R N | z | p 2 z φ d x + R N V 1 ( x ) | Y 1 ( z ) | p 1 y u ( Y 1 ( z ) ) φ d x + R N | w | q 2 w ψ d x + R N V 2 ( x ) | Y 1 ( w ) | q 1 y v ( Y 1 ( w ) ) ψ d x = ι R N f ( x , Y 1 ( z ) , Y 1 ( w ) ) y u ( Y 1 ( z ) ) φ + h ( x , Y 1 ( z ) , Y 1 ( w ) ) y v ( Y 1 ( w ) ) ψ d x .
By Lemma 1, we know ( u , v ) : = ( Y 1 ( z ) , Y 1 ( w ) ) D . Arbitrary to φ 0 , ψ 0 C 0 ( R N ) , let ( φ , ψ ) : = ( y u ( u ) φ 0 , y v ( v ) ψ 0 ) D in (9) simplify to
R N | z | p 2 z ( y u ( u ) φ 0 u + y u ( u ) φ 0 ) d x + R N V 1 ( x ) | u | p 1 y u ( u ) g u ( u ) φ 0 d x + R N | w | q 2 w ( y v ( v ) ψ 0 v + y v ( v ) ψ 0 ) d x + R N V 2 ( x ) | v | q 1 y v ( v ) y v ( v ) ψ 0 d x = ι R N f ( x , u , v ) y u ( u ) y u ( u ) φ 0 + h ( x , u , v ) y v ( v ) y v ( v ) ψ 0 d x .
Applying the fact that z = Y ( u ) , w = Y ( v ) , z = y u ( u ) u and w = y v ( v ) v , after calculation, obtaining (6), thus, ( u , v ) is a weak solution of (5). □
Lemma 3.
Make ( V 1 ) , ( V 2 ) real. In D 1 , D 2 , { z n } , { w n } are bounded, then, there is z D 1 L r 1 and w D 2 L r 2 , up to a subsequence, z n z in L r 1 , r 1 [ p , p * ) , w n w in L r 2 , r 2 [ q , q * ) .
Proof. 
The proof process is as shown in reference [1]. □

3. The Solution of the Modified System

Now, we study the modified system (5) and find its solution.
Lemma 4.
If ( f 1 ) ( f 3 ) are accurate, in that way
( i )
there are ρ , π > 0 makes I k ( z , w ) π valid for every ( z , w ) with ( z , w ) = ρ ;
( i i )
the existence of ( z , w ) D { ( 0 , 0 ) } makes I k ( z , w ) 0 vaild.
Proof. 
( i ) By ( f 2 ) , ∀ ϵ > 0 , ∃ C 0 > 0 settle for
ζ ( x , s , t ) , ( s , t ) ϵ | ( s , t ) | ( p 1 , q 1 ) + C 0 | ( s , t ) | ( l p 1 , l q 1 ) ,
where p < l p < p * and q < l q < q * . Then,
ζ ( x , s , t ) ϵ ( 1 p , 1 q ) | ( s , t ) | ( p , q ) + C ( 1 l p , 1 l q ) | ( s , t ) | ( l p , l q ) .
Let ϵ = min { 2 1 p V 1 ( x ) ι , 2 1 q V 2 ( x ) ι } , by Sobolev inequality, the Lemma 1 ( i i i ) and (11), assuming that 1 2 p z p > 1 2 q w q , 2 ( l p p l p ) C l p l p z l p > 2 ( l q q l q ) C l q l q w l q , we have
I k ( z , w ) 1 p R N | z | p d x + 1 p R N V 1 ( x ) | z | p d x + 1 q R N | w | q d x + 1 q R N V 2 ( x ) | w | q d x ι R N ϵ ( 1 p , 1 q ) | ( Y 1 ( z ) , Y 1 ( w ) ) | ( p , q ) + C ( 1 l p , 1 l q ) | ( Y 1 ( z ) , Y 1 ( w ) ) | ( l p , l q ) d x 1 p R N | z | p d x + 1 p R N V 1 ( x ) | z | p d x + 1 q R N | w | q d x + 1 q R N V 2 ( x ) | w | q d x ι R N ϵ p 2 ( 1 p ) | z | p + ϵ q 2 ( 1 q ) | w | q + C l p 2 ( l p p l p ) | z | l p + C l q 2 ( l q q l q ) | w | l q d x .
For 1 2 p z p + 1 2 q w q , when z 1 , w 1 , p > q ,
1 2 p z p + 1 2 q w q 1 2 p 1 2 q ( z , w ) q ,
when z 1 , w 1 , p < q ,
1 2 p z p + 1 2 q w q 1 2 q 1 2 p ( z , w ) p ,
when z 1 , w < 1 , p > q ,
1 2 p z p + 1 2 q w q 1 2 p 1 2 q ( z , w ) q ,
when z 1 , w < 1 , 2 < p < q ,
1 2 p z p + 1 2 q w q 1 2 p z p 1 2 p ,
when z < 1 , w 1 , p > q ,
1 2 p z p + 1 2 q w q 1 2 q w q 1 2 q ,
when z < 1 , w 1 , p < q ,
1 2 p z p + 1 2 q w q 1 2 q 1 2 q ( z , w ) q ,
when z < 1 , w < 1 , p > q ,
1 2 p z p + 1 2 q w q 1 2 p 1 2 q ( z , w ) q ,
when z < 1 , w < 1 , p < q ,
1 2 p z p + 1 2 q w q 1 2 q 1 2 p ( z , w ) p .
For z l p + w l q , when z 1 , w 1 , l p > l q ,
z l p + w l q ( z , w ) l p ,
when z 1 , w 1 , l p < l q ,
z l p + w l q ( z , w ) l q ,
when z 1 , w < 1 , l p > l q > q ,
z l p + w l q z l p + w ( z , w ) l p + ( z , w ) ,
when z 1 , w < 1 , l p < l q ,
z l p + w l q ( z , w ) l q ,
when z < 1 , w 1 , p < l p < l q ,
z l p + w l q z + w l q ( z , w ) l q + ( z , w ) ,
when z < 1 , w 1 , l p > l q ,
z l p + w l q ( z , w ) l p ,
when z < 1 , w < 1 , l p < l q ,
z l p + w l q ( z , w ) l p ,
when z < 1 , w < 1 , l p > l q ,
z l p + w l q ( z , w ) l q .
Hence,
I k ( z , w ) min { 1 2 p 1 2 q ( z , w ) q , 1 2 p 1 2 p ( z , w ) p , 1 2 q 1 2 p ( z , w ) p , 1 2 q 1 2 q ( z , w ) q , 1 2 p , 1 2 q } max { ( z , w ) l p l s + ( z , w ) l s , ( z , w ) l q l s + ( z , w ) l s } ,
where l s : = max { ι C l p 2 ( l p p l p ) C l p , ι C l q 2 ( l q q l q ) C l q } . Take ( z , w ) = ρ small enough to satisfy
I k , ι ( z , w ) π : = min { 1 2 p 1 2 q ρ q , 1 2 p 1 2 p ρ p , 1 2 q 1 2 p ρ p , 1 2 q 1 2 q ρ q , 1 2 p , 1 2 q } max { ρ l p l s + ρ l s , ρ l q l s + ρ l s } .
( i i ) Choose ( τ 1 , τ 2 ) D with τ 1 , τ 2 > 0 , from Lemma 1 ( i i i ) , we obtain
| τ 1 | p | Y 1 ( t τ 1 ) | p t p 2 ( p 1 ) | τ 1 | p , | τ 2 | q | Y 1 ( t τ 2 ) | q t q 2 ( q 1 ) | τ 2 | q .
By ( f 3 ) , we know lim | ( s 1 , s 2 ) | + ζ ( x , s 1 , s 2 ) | ( s 1 , s 2 ) | p = + . Therefore, for p > q , we have
I k ( t τ 1 , t τ 2 ) t p 1 p R N | τ 1 | p d x + 2 ( p 1 ) p R N V 1 ( x ) | τ 1 | p d x + 1 q R N | τ 2 | q d x + 2 ( q 1 ) q R N V 2 ( x ) | τ 2 | q d x ι R N ζ ( x , Y 1 ( t τ 1 ) , Y 1 ( t τ 2 ) ) ( Y 1 ( t τ 1 ) , Y 1 ( t τ 2 ) ) p ( Y 1 ( t τ 1 ) , Y 1 ( t τ 2 ) ) p t p d x , as t + .
In the same way, for p < q , as t + , we have
I k ( t τ 1 , t τ 2 ) t q .
Hence, ∃ t 0 > 0 large enough, such that ( z , w ) = ( t 0 τ 1 , t 0 τ 2 ) with I k ( z , w ) 0 . □
To sum up, the ( P S ) c sequence exists and is denoted as ( z n , w n ) D , therefore, as n , we obtain
I k ( z n , w n ) c , I k ( z n , w n ) 0
and
c = inf γ Γ sup t [ 0 , 1 ] I k ( z t , w t ) ,
Γ = { ( z t , w t ) C ( [ 0 , 1 ] × [ 0 , 1 ] , D ) : ( z 0 , w 0 ) = ( 0 , 0 ) , ( z 1 , w 1 ) ( 0 , 0 ) , I k ( z 1 , w 1 ) < 0 } .
Lemma 5.
If ( f 3 ) are accurate, in that way for all ( P S ) c sequence ( z n , w n ) is bounded in D.
Proof. 
For p < q , combining (13) and Lemma 1 ( i i ) , ( i i i ) with ( f 3 ) , there is
c + 1 + o n ( 1 ) ( z n , w n ) I k ( z n , w n ) 1 θ I k ( z n , w n ) , ( Y 1 ( z n ) y u ( Y 1 ( z n ) ) , Y 1 ( w n ) y v ( Y 1 ( w n ) ) ) = ( 1 p 1 θ ) R N | z n | p d x 1 θ R N | z n | p Y 1 ( z n ) y u ( Y 1 ( z n ) ) y u ( Y 1 ( z n ) ) d x + ( 1 p 1 θ ) R N V 1 ( x ) | Y 1 ( z n ) | p d x + ( 1 q 1 θ ) R N | w n | q d x 1 θ R N | w n | q Y 1 ( w n ) y v ( Y 1 ( w n ) ) y v ( Y 1 ( w n ) ) d x + ( 1 q 1 θ ) R N V 2 ( x ) | Y 1 ( w n ) | q d x + R N ( 1 θ ζ ( x , Y 1 ( z n ) , Y 1 ( w n ) ) , ( Y 1 ( z n ) y u ( Y 1 ( z n ) ) , Y 1 ( w n ) y v ( Y 1 ( w n ) ) ) ζ ( x , Y 1 ( z n ) , Y 1 ( w n ) ) ) d x ( 1 p 1 θ ) R N | z n | q + V 1 ( x ) | z n | p d x + ( 1 q 1 θ ) R N | w n | q + V 2 ( x ) | w n | q d x = ( 1 p 1 θ ) ( z n p + w n q ) ,
when z n 1 , w n 1 ,
( 1 p 1 θ ) ( z n p + w n q ) ( 1 p 1 θ ) ( z n p + w n p ) 1 2 p ( z n , w n ) p ,
when z n 1 , w n < 1 ,
( 1 p 1 θ ) ( z n p + w n q ) ( 1 p 1 θ ) z n ,
when z n < 1 , w n 1 ,
( 1 p 1 θ ) ( z n p + w n q ) ( 1 p 1 θ ) w n ,
when z n < 1 , w n < 1 ,
( 1 p 1 θ ) ( z n p + w n q ) ( 1 p 1 θ ) ( z n q + w n q ) 1 2 q ( z n , w n ) q .
Overall, for p < q , ( z n , w n ) D is bounded; similarly, for p > q , ( z n , w n ) D is also bounded. □
Since, ( P S ) c sequence ( z n , w n ) D is bounded, there is ( z , w ) , and ( z n , w n ) have a subsequence recorded as ( z n , w n ) meet
( z n , w n ) ( z , w ) in D , ( z n ( x ) , w n ( x ) ) ( z ( x ) , w ( x ) ) a . e . in R N × R N , ( z n , w n ) ( z , w ) in L r , L r = L r 1 × L r 2 .
I k of (8) also is defined as
I k ( z n , w n ) = 1 p R N | z n | p d x + 1 p R N V 1 ( x ) | z n | p d x + 1 q R N | w n | q d x + 1 q R N V 2 ( x ) | w n | q d x ι R N η ( x , z n , w n ) d x ,
and
η ( x , z n , w n ) = 1 p V 1 ( x ) | z n | p | Y 1 ( z n ) | p + 1 q V 2 ( x ) | w n | q | Y 1 ( w n ) | q + ι ζ x , Y 1 ( z n ) , Y 1 ( w n ) ,
in the same
η ( x , z n , w n ) , ( z n , w n ) = V 1 ( x ) ( | z n | p | Y 1 ( z n ) | p 1 y u ( Y 1 ( z n ) ) ) + ι f ( x , Y 1 ( z n ) , Y 1 ( w n ) ) y u ( Y 1 ( z n ) ) z n + V 2 ( x ) ( | w n | q | Y 1 ( w n ) | q 1 y v ( Y 1 ( w n ) ) ) + ι h ( x , Y 1 ( w n ) , Y 1 ( z n ) ) y v ( y 1 ( w n ) ) w n .
Lemma 6.
If ( f 1 ) , ( f 2 ) , ( V 1 ) , and ( V 2 ) are accurate, ( z n , w n ) is a ( P S ) c sequence, and ( z n , w n ) ( z , w ) in D, as n , in that way
lim n R N η ( x , z n , w n ) , ( z n , w n ) d x = R N η ( x , z , w ) , ( z , w ) d x ,
lim n R N η ( x , z n , w n ) , ( z , w ) d x = R N η ( x , z , w ) , ( z , w ) d x .
Proof. 
From Lemma 3, since z n z in L r 1 , w n w in L r 2 , r 1 [ p , p * ) , r 2 [ q , q * ) , for ε > 0 , there is R 1 > 0 satisfied
B R 1 c | z n | p d x ε , B R 1 c | z | p d x ε , B R 1 c | w n | q d x ε , B R 1 c | w | q d x ε .
Then,
B R 1 c V 1 ( x ) | z n | p d x C ε , B R 1 c V 1 ( x ) | z | p d x C ε , B R 1 c V 2 ( x ) | w n | q d x C ε , B R 1 c V 2 ( x ) | w | q d x C ε .
It is from (15) that
lim n B R 1 V 1 ( x ) | z n | p d x = B R 1 V 1 ( x ) | z | p d x , lim n B R 1 V 2 ( x ) | w n | q d x = B R 1 V 2 ( x ) | w | q d x .
By (20) and (21), we obtain
lim n R N V 1 ( x ) | z n | p d x = R N V 1 ( x ) | z | p d x , lim n R N V 2 ( x ) | w n | q d x = R N V 2 ( x ) | w | q d x .
Deriving from Lemma 1 ( i i ) and ( i i i ) that
| Y 1 ( z n ) | p 1 y u ( Y 1 ( z n ) ) z n 2 ( p 1 ) ( p + 1 ) p | z n | p 1 , | Y 1 ( w n ) | q 1 y v ( Y 1 ( w n ) ) w n 2 ( q 1 ) ( q + 1 ) q | w n | q 1 ,
it follows from (22), (20) and (21) that
lim n R N V 1 ( x ) | Y 1 ( z n ) | p 1 y u ( Y 1 ( z n ) ) z n d x = R N V 1 ( x ) | Y 1 ( z ) | p 1 y u ( Y 1 ( z ) ) z d x , lim n R N V 2 ( x ) | Y 1 ( w n ) | q 1 y v ( Y 1 ( w n ) ) w n d x = R N V 2 ( x ) | Y 1 ( w ) | q 1 y v ( Y 1 ( w ) ) w d x .
By (10), Lemma 1 ( i i i ) and Hölder inequality,
| f ( x , Y 1 ( z n ) , Y 1 ( w n ) ) y u ( Y 1 ( z n ) ) z n + h ( x , Y 1 ( w n ) , Y 1 ( z n ) ) y v ( Y 1 ( w n ) ) w n | = | ζ ( x , z n , w n ) , ( z n , w n ) | 2 ( ( p + 1 ) ( p 1 ) p ) ϵ | z n | p + 2 ( ( q + 1 ) ( q 1 ) q ) ϵ | w n | q + 2 ( ( p + 1 ) ( l p 1 ) p ) C | z n | l p + 2 ( ( q + 1 ) ( l q 1 ) q ) C | w n | l q .
By (19), we obtain
B R 1 c | z n | l p d x C ε , B R 1 c | z | l p d x C ε , B R 1 c | w n | l q d x C ε , B R 1 c | w | l q d x C ε .
Thus,
B R 1 c | ζ ( x , Y 1 ( z n ) , Y 1 ( w n ) ) , ( z n , w n ) | d x 2 ( ( p + 1 ) ( p 1 ) p ) ϵ B R 1 c | z n | p d x + 2 ( ( q + 1 ) ( q 1 ) q ) ϵ B R 1 c | w n | q d x + 2 ( ( p + 1 ) ( l p 1 ) p ) C B R 1 c | z n | l p d x + 2 ( ( q + 1 ) ( l q 1 ) q ) C B R 1 c | w n | l q d x = ( 2 ( ( p + 1 ) ( p 1 ) p ) ϵ + 2 ( ( q + 1 ) ( q 1 ) q ) ϵ + 2 ( ( p + 1 ) ( l p 1 ) p ) C + 2 ( ( q + 1 ) ( l q 1 ) q ) C ) ε .
By (15),
lim n B R 1 | ζ ( x , Y 1 ( z n ) , Y 1 ( w n ) ) , ( z n , w n ) | d x = B R 1 | ζ ( x , Y 1 ( z ) , Y 1 ( w ) ) , ( z , w ) | d x .
By (25) and (26),
lim n R N ζ ( x , Y 1 ( z n ) , Y 1 ( w n ) ) , ( z n , w n ) d x = lim n R N f ( x , Y 1 ( z n ) , Y 1 ( w n ) ) y u ( Y 1 ( z n ) ) z n + h ( x , Y 1 ( w n ) , Y 1 ( z n ) ) y v ( Y 1 ( w n ) ) w n d x = R N f ( x , Y 1 ( z ) , Y 1 ( w ) ) y u ( Y 1 ( z ) ) z + h ( x , Y 1 ( w ) , Y 1 ( z ) ) y v ( Y 1 ( w ) ) w d x .
Combining (22), (23) and (27), it is easy to obtain (17). Similarly, (18) can also be obtained. □
Lemma 7.
If ( f 1 ) , ( f 2 ) , ( V 1 ) and ( V 2 ) are satisfied, then, in D, any ( P S ) c sequence ( z n , w n ) received in (13) exhibits a robust subsequence of convergence.
Proof. 
It follows from Lemma 5 that ( z n , w n ) is bounded in D and its subsequences ( z n , w n ) , as n satisfy ( z n , w n ) ( z , w ) D and I k ( z n , w n ) , ( z n , w n ) = o n ( 1 ) , adding Lemma 6 to reveal
lim n ( z n p + w n q ) = R N η ( x , z , w ) , ( z , w ) d x .
From I k ( z n , w n ) , ( z , w ) = o n ( 1 ) ,
lim n ( R N | z n | p 1 z d x + R N V 1 ( x ) | z n | p 1 z d x + R N | w n | q 1 w d x + R N V 2 ( x ) | w n | q 1 w d x ) = R N η ( x , z , w ) d x + o n ( 1 ) ,
equivalent to
lim n ( z n p + w n q ) = z p + w q .
Therefore, ( z n , w n ) ( z , w ) in D. □
From Lemmas 4–7, similar to [20], Theorem 2 can be concluded.
Theorem 2.
( z , w ) is nontrivial solution of the problem (7), if ( V 1 ) , ( V 2 ) and ( f 1 ) ( f 3 ) is true.

4. Proof of Main Result

Now, we try to prove that the solution ( u , v ) = ( Y 1 ( z ) , Y 1 ( w ) ) is solution of (1).
Lemma 8.
( z , w ) is a nontrivial critical point of I k , the critical value is c, in that, K R with K > 0 unrelated to ι make
z p + w q K c .
Proof. 
Add (14) from Lemma 1 ( i i ) , ( i i i ) and ( f 3 ) , there is
θ c = θ I k ( z , w ) I k ( z , w ) , ( Y 1 ( z ) y u ( Y 1 ( z ) ) , Y 1 ( w ) y v ( Y 1 ( w ) ) ) ( 1 p 1 θ ) ( z p + w q ) .
Hence,
z p + w q θ p c θ p = K c .
The proof is completed. □
Lemma 9.
( z , w ) is the critical point of the function I k ( z , w ) , in that, C R with C > 0 , and C is unrelated to ι makes
z C ι 1 p * l p z p * , w C ι 1 q * l q w q * .
Proof. 
For every n 0 N , taking β > 1 be the given constant, let
A n 0 = { x R N : | z | β 1 n 0 , | w | β 1 n 0 } , B n 0 = R N A n 0 ,
( u n 0 , v n 0 ) = ( z | z | p ( β 1 ) , w | w | q ( β 1 ) ) , x A n 0 , n 0 2 ( z , w ) , x B n 0
as well as
( z n 0 , w n 0 ) = ( z | z | β 1 , w | w | β 1 ) , x A n 0 , ( n 0 2 p , n 0 2 q ) ( z , w ) , x B n 0 .
Apparently, ( u n 0 , v n 0 ) , ( z n 0 , w n 0 ) D . For ( z , w ) is a nontrivial solution of (7), in that
R N | z | p 2 z u n 0 + V 1 ( x ) | Y 1 ( z ) | p 1 y u ( Y 1 ( z ) ) u n 0 d x + R N | w | q 2 w v n 0 + V 2 ( x ) | Y 1 ( w ) | q 1 y v ( Y 1 ( w ) ) v n 0 d x = ι R N f ( x , Y 1 ( z ) , Y 1 ( w ) ) y u ( Y 1 ( z ) ) u n 0 + h ( x , Y 1 ( z ) , Y 1 ( w ) ) y v ( Y 1 ( w ) ) v n 0 d x .
Furthermore,
R N | z | p 1 u n 0 d x + R N | w | q 1 v n 0 d x = ( p β p + 1 ) A n 0 | z | p | z | p ( β 1 ) d x + ( q β q + 1 ) A n 0 | w | q | w | q ( β 1 ) d x + n 0 2 B n 0 | z | p d x + n 0 2 B n 0 | w | q d x ,
R N | z n 0 | p d x + R N | w n 0 | q d x = β p A n 0 | z | p | z | p ( β 1 ) d x + β q A n 0 | w | q | w | q ( β 1 ) d x + n 0 2 B n 0 | z | p d x + n 0 2 B n 0 | w | q d x .
Therefore, we have
R N | z | p 1 u n 0 d x + R N | w | q 1 v n 0 d x n 0 2 B n 0 | z | p d x n 0 2 B n 0 | w | q d x A n 0 | z | p | z | p ( β 1 ) d x + A n 0 | w | q | w | q ( β 1 ) d x .
From (31) and (32), let β c = max { β p , β q } , we obtain
R N | z n 0 | p d x + R N | w n 0 | q d x β c R N | z | p 1 u n 0 d x + β c R N | w | q 1 v n 0 d x n 0 2 β c B n 0 | z | p d x n 0 2 β c B n 0 | w | q d x + n 0 2 B n 0 | z | p d x + n 0 2 B n 0 | w | q d x β c R N | z | p 1 u n 0 d x + β c R N | w | q 1 v n 0 d x .
It follows from (33) and β > 1 that
R N | z n 0 | p d x + R N | w n 0 | q d x + β c R N V 1 ( x ) | Y 1 ( z ) | p 1 y u ( Y 1 ( z ) ) u n 0 + V 2 ( x ) | Y 1 ( w ) | q 1 y v ( Y 1 ( w ) ) v n 0 d x β c R N | z | p 1 u n 0 d x + β c R N | w | q 1 v n 0 d x + β c R N V 1 ( x ) | Y 1 ( z ) | p 1 y u ( Y 1 ( z ) ) u n 0 + V 2 ( x ) | Y 1 ( w ) | q 1 y v ( Y 1 ( w ) ) v n 0 d x = β c ι R N f ( x , Y 1 ( z ) , Y 1 ( w ) ) y u ( Y 1 ( z ) ) u n 0 + h ( x , Y 1 ( z ) , Y 1 ( w ) ) y v ( Y 1 ( w ) ) v n 0 d x β c ι R N ϵ ( Y 1 ( z ) ) p 1 y u ( Y 1 ( z ) ) u n 0 + ( Y 1 ( w ) ) q 1 y v ( Y 1 ( w ) ) v n 0 d x + β c ι R N C ( Y 1 ( z ) ) l p 1 y u ( Y 1 ( z ) ) u n 0 + ( Y 1 ( w ) ) l q 1 y v ( Y 1 ( w ) ) v n 0 d x β c R N V 1 ( x ) ( Y 1 ( z ) ) p 1 y u ( Y 1 ( z ) ) u n 0 + V 2 ( x ) ( Y 1 ( w ) ) q 1 y v ( Y 1 ( w ) ) v n 0 d x + β c ι R N C ( Y 1 ( z ) ) l p 1 y u ( Y 1 ( z ) ) u n 0 + ( Y 1 ( w ) ) l q 1 y v ( Y 1 ( w ) ) v n 0 d x ,
where 0 < ϵ < min { V 1 ( x ) ι , V 1 ( x ) ι } . By Lemma ( i i i ) and the fact of z p 1 u n 0 = z n 0 p and w q 1 v n 0 = w n 0 q , we can obtain
R N | z n 0 | p d x + R N | w n 0 | q d x β c ι C R N ( Y 1 ( z ) ) l p 1 y u ( Y 1 ( z ) ) u n 0 + ( Y 1 ( w ) ) l q 1 y v ( Y 1 ( w ) ) v n 0 d x β c ι C R N 2 ( l p ( p + 1 ) p ) | z | l p p z n 0 p + 2 ( l q ( q + 1 ) q ) | w | l q q w n 0 q d x β c ι C R N | z | l p p z n 0 p + | w | l q q w n 0 q d x .
If J ( a ) + J ( b ) L ( a ) + L ( b ) , we have J ( a ) L ( a ) , J ( b ) L ( b ) . It follows from (35) that
R N | z n 0 | p d x β c ι C R N | z | l p p z n 0 p d x ,
R N | w n 0 | q d x β c ι C R N | w | l q q w n 0 q d x .
From the Sobolev inequality, when S > 0 , we have
( A n 0 | z n 0 | p * d x ) N p N S R N | z n 0 | p d x ,
combining (36) and Hölder inequality, we can obtain
( A n 0 | z n 0 | p * d x ) N p N β c ι S C z p 2 l p p z p 1 p ,
where p p 1 + l p p p * = 1 . Note that | z n 0 | = | z | β in A n 0 and | z n 0 | | z | β , thus
( A n 0 | z n 0 | p * β d x ) N p N β c ι S C z p 2 l p p z p 1 β p β .
Action n 0 on the above equation, with
z β p * β c p β ι 1 p β S 1 p β C 1 p β z p 2 ( l p p ) 1 p β z p 1 β .
Denoting σ = p * p 1 and let β = σ in (38), we can obtain
z σ p * σ c p σ ι 1 p σ S 1 p σ C 1 p σ z p 2 ( l p p ) 1 p σ z p * .
Taking β = σ 2 , we see that
z σ 2 p * σ 2 c p σ 2 ι 1 p σ 2 S 1 p σ 2 C 1 p σ 2 z p 2 ( l p p ) 1 p σ 2 z p * σ .
From (39) and (40), we have
z σ 2 p * σ c p ( 1 σ + 2 σ 2 ) ι 1 p ( 1 σ + 1 σ 2 ) S 1 p ( 1 σ + 1 σ 2 ) C 1 p ( 1 σ + 1 σ 2 ) z p 2 ( l p p ) 1 p ( 1 σ + 1 σ 2 ) z p * .
For (38), continuing this approch by taking β = σ j ( j = 1 , 2 , ) , then
z σ i p * σ c p j = 1 i i σ j ( ι 1 p S 1 p C 1 p z p 2 ( l p p ) 1 p ) j = 1 i 1 σ j z p * .
Setting i + and using the Sobolev inequality, then
z σ c p ( σ 1 ) 2 ( ι 1 p S 1 p C 1 p C ) 1 ( σ 1 ) z p * = C ι 1 p ( σ 1 ) z p * = C ι 1 p * l p z p * ,
in which C is not related to ι . Similarly, we have
w C ι 1 q * l q w q * ,
where C is not related to ι . □
Proof of Theorem 1.
Let χ > 0 and
T = { x R N : ϕ 1 ( x ) χ } { x R N : ϕ 2 ( x ) χ }
be a nonempty set. From ( f 2 ) and ( f 3 ) , for x T , there is C > 0 , which makes
ζ ( x , s , t ) C | ( s , t ) | ( l p , l q ) .
Supposing that ( z , w ) be a critical point of I k with the critical value c. By Theorem 2 and (42), we obtain
c max t > 0 I k ( t ϕ 1 , t ϕ 2 ) max t > 0 ( t p p R N | ϕ 1 | p d x + t p p R N 2 ( 1 p ) V 1 ( x ) | ϕ 1 | p d x + t q q R N | ϕ 2 | q d x + t q q R N 2 ( 1 q ) V 2 ( x ) | ϕ 2 | q d x ι t l p C 2 ( p + 1 ) l p p R N | ϕ 1 | l p d x ι t l q C 2 ( q + 1 ) l q q R N | ϕ 2 | l q d x ) C ι p l p p .
From (28), (29) and the continuous embedding D 1 L r 1 , D 2 L r 2 , we obtain
z C ι 1 p * l p z p * C ι 1 p * l p z C ι 1 p * l p ( K c ) 1 p C ι 1 p * l p ( K ι p l p p ) 1 p C 1 ι 2 l p p * p ( p * l p ) ( l p p ) ,
where C 1 is a constant. Since p < l p < p * , for given k > 0 , there is ι 1 ( k ) = ( 2 3 k C 1 p ) ( p * l p ) ( l p p ) p ( p * 2 l p + p ) , which makes for each ι > ι 1 ( k ) , it satisfies
u = Y 1 ( z ) 2 1 p 1 ( z 2 1 p 1 C 1 ι 2 l p p * p ( p * l p ) ( l p p ) ( 1 2 p 3 k ) 1 p .
Similarly, we may obtain v ( 1 2 q 3 k ) 1 q . Hence, the system (1) has a nontrivial solution ( u , v ) = ( Y 1 ( z ) , Y 1 ( w ) ) . □

5. Conclusions

We study the related problem of the quasilinear Schrödinger system containing the operator Δ p and Δ q . By using the variable transformation to process quasilinear terms, combined with the mountain-pass theorem, we received a nontrivial solution of the system. It is worth considering whether the variable exponent has an impact on the above conclusion, and trying to extend p and q to p ( x ) and q ( x ) is also a meaningful issue.

Author Contributions

Writing—original draft, X.Z.; Writing—review & editing, J.Z. The authors declare that they have contributed equally to the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

Jing Zhang was supported by the Natural Science Foundation of Inner Mongolia Autonomous Region (No. 2022MS01001), Key Laboratory of Infinite-dimensional Hamiltonian System and Its Algorithm Application (Inner Mongolia Normal University), Ministry of Education (No. 2023KFZD01), Research Program of science and technology at Universities of Inner Mongolia Autonomous Region (No. NJYT23100), Mathematics First-class Disciplines Cultivation Fund of Inner Mongolia Normal University (No. 2024YLKY14) and the Fundamental Research Funds for the Inner Mongolia Normal University (No. 2022JBQN072). Xue Zhang was supported by the Fundamental Research Funds for the Inner Mongolia Normal University (2022JBXC03) and Graduate students’ research Innovation fund of Inner Mongolia Normal University (CXJJS22100).

Data Availability Statement

Data are contained within the article.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Chen, C.; Yang, H. Multiple Solutions for a Class of Quasilinear Schrödinger Systems in R N . Bull. Malays. Math. Sci. Soc. 2019, 42, 611–636. [Google Scholar] [CrossRef]
  2. Severo, U.; Silva, E. On the existence of standing wave solutions for a class of quasilinear Schr?dinger systems. J. Math. Anal. Appl. 2014, 412, 763–775. [Google Scholar] [CrossRef]
  3. Laedke, E.W.; Spatschek, K.H.; Stenflo, L. Evolution theorem for a class of perturbed envelope soliton solutions. J. Math. Phys. 1983, 24, 2764–2769. [Google Scholar] [CrossRef]
  4. Lange, H.; Toomire, B.; Zweifel, P.F. Time-dependent dissipation in nonlinear Schrödinger systems. J. Math. Phys. 1995, 36, 1274–1283. [Google Scholar] [CrossRef]
  5. Ritchie, B. Relativistic self-focusing and channel formation in laser-plasma interactions. Phys. Rev. E 1994, 50, 687–689. [Google Scholar] [CrossRef]
  6. Chen, J.; Huang, X.; Cheng, B.; Zhu, C. Some results on standing wave solutions for a class of quasilinear Schrödinger equations. J. Math. Phys. 2019, 60, 091506. [Google Scholar] [CrossRef]
  7. Liu, J.Q.; Wang, Z.Q. Soliton solutions for quasilinear Schrödinger equations I. Proc. Am. Math. Soc. 2002, 131, 441–448. [Google Scholar] [CrossRef]
  8. Severo, U.B. Symmetric and nonsymmetric solutions for a class of quasilinear Schrödinger equations. Adv. Nonlinear Stud. 2008, 8, 375–389. [Google Scholar] [CrossRef]
  9. Chen, J.; Chen, B.; Huang, X. Ground state solutions for a class of quasilinear Schrödinger equations with Choquard type nonlinearity. Appl. Math. Lett. 2020, 102, 106141. [Google Scholar] [CrossRef]
  10. Jeanjean, L. On the existence of bounded Palais–Smale sequences and application to a Landesman-Lazer type problem set on R N . Proc. R. Soc. Edinb. Sect. A 1999, 129, 787–809. [Google Scholar] [CrossRef]
  11. Yang, X.; Zhang, W.; Zhao, F. Existence and multiplicity of solutions for a quasilinear Choquard equation via perturbation method. J. Math. Phys. 2018, 59, 081503. [Google Scholar] [CrossRef]
  12. Alves, C.O.; de Morais Filho, D.C. Existence of concentration of positive solutions for a Schrödinger logarithmic equation. Z. Angew. Math. Phys. 2018, 69, 144. [Google Scholar] [CrossRef]
  13. Duan, S.Z.; Wu, X. An existence result for a class of p-Laplacian elliptic systems involving homogeneous nonlinearities in R N . Nonlinear Anal. 2011, 74, 4723–4737. [Google Scholar] [CrossRef]
  14. Moameni, A. Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in R N . Differ. Equ. 2006, 229, 570–587. [Google Scholar] [CrossRef]
  15. Chen, J.; Zhang, Q. Existence of positive ground state solutions for quasilinear Schrödinger system with positive parameter. Appl. Anal. 2022, 102, 2676–2691. [Google Scholar] [CrossRef]
  16. Wang, Y.; Huang, X. Ground states of Nehari-Pohožaev type for a quasilinear Schrödinger system with superlinear reaction. Electron. Res. Arch. 2023, 31, 2071–2094. [Google Scholar] [CrossRef]
  17. Guo, Y.; Tang, Z. Ground state solutions for quasilinear Schrödinger systems. J. Math. Anal. Appl. 2012, 389, 322–339. [Google Scholar] [CrossRef]
  18. Chen, J.; Zhang, Q. Positive solutions for quasilinear Schrödinger system with positive parameter. Z. Angew. Math. Phys. 2022, 73, 144. [Google Scholar] [CrossRef]
  19. Chen, J.; Zhang, Q. Ground state solution of Nehari-Pohožaev type for periodic quasilinear Schrödinger system. J. Math. Phys. 2020, 61, 101510. [Google Scholar] [CrossRef]
  20. Li, G. On the existence of nontrivial solutions for quasilinear Schrödinger systems. Bound. Value Probl. 2022, 2022, 40. [Google Scholar] [CrossRef]
  21. Szulkin, A.; Weth, T. The method of Nehari manifold. In Handbook of Nonconvex Analysis and Applications; Gao, D.Y., Motreanu, D., Eds.; International Press: Boston, MA, USA, 2010; pp. 2314–2351. [Google Scholar]
  22. Alves, C.O.; Wang, Y.; Shen, Y. Soliton solutions for a class of quasilinear Schrödinger equations with a parameter. J. Differ. Equ. 2015, 259, 318–343. [Google Scholar] [CrossRef]
  23. Wang, Y.; Li, Z. Existence of solutions to quasilinear Schrödinger equations involving critical Sobolev exponent. Taiwan. J. Math. 2018, 22, 401–420. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Zhang, X.; Zhang, J. Nontrivial Solutions for a Class of Quasilinear Schrödinger Systems. Axioms 2024, 13, 182. https://doi.org/10.3390/axioms13030182

AMA Style

Zhang X, Zhang J. Nontrivial Solutions for a Class of Quasilinear Schrödinger Systems. Axioms. 2024; 13(3):182. https://doi.org/10.3390/axioms13030182

Chicago/Turabian Style

Zhang, Xue, and Jing Zhang. 2024. "Nontrivial Solutions for a Class of Quasilinear Schrödinger Systems" Axioms 13, no. 3: 182. https://doi.org/10.3390/axioms13030182

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop