Entropy Production Rate of a One-Dimensional Alpha-Fractional Diffusion Process
Abstract
:1. Introduction
2. Alpha-Fractional Diffusion Equation
2.1. Problem Formulation
2.2. Fundamental Solution of the Alpha-Fractional Diffusion Equation
3. Entropy Production Rate of the Alpha-Fractional Diffusion Process
4. Conclusions
Conflicts of Interest
References
- Metzler, R.; Jeon, J.-H.; Cherstvy, A.G.; Barkai, E. Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 2014, 16, 24128–24164. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Hoffmann, K.H.; Essex, C.; Schulzky, C. Fractional diffusion and entropy production. J. Non-Equilib. Thermodyn. 1998, 23, 166–175. [Google Scholar] [CrossRef]
- Li, X.; Essex, C.; Davison, M.; Hoffmann, K.H.; Schulzky, C. Fractional diffusion, irreversibility and entropy. J. Non-Equilib. Thermodyn. 2003, 28, 279–291. [Google Scholar] [CrossRef]
- Prehl, J.; Essex, C.; Hoffmann, K.H. The superdiffusion entropy production paradox in the space-fractional case for extended entropies. Phy. A 2010, 389, 214–224. [Google Scholar] [CrossRef]
- Prehl, J.; Essex, C.; Hoffmann, K.H. Tsallis relative entropy and anomalous diffusion. Entropy 2012, 14, 701–716. [Google Scholar] [CrossRef]
- Luchko, Y. Wave-diffusion dualism of the neutral-fractional processes. J. Comput. Phys. 2015, 293, 40–52. [Google Scholar] [CrossRef]
- Mathai, A.M.; Rathie, P.N. Basic Concepts in Information Theory and Statistics: Axiomatic Foundations and Applications; Wiley Eastern: New Delhi, India, 1975. [Google Scholar]
- Mathai, A.M.; Haubold, H.J. Pathway model, superstatistics, Tsallis statistics and a generalized measure of entropy. Phys. A 2007, 375, 110–122. [Google Scholar] [CrossRef]
- Mathai, A.M.; Haubold, H.J. On generalized entropy measures and pathways. Phys. A 2007, 385, 493–500. [Google Scholar] [CrossRef]
- Mainardi, F.; Luchko, Yu.; Pagnini, G. The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 2001, 4, 153–192. [Google Scholar]
- Gorenflo, R.; Mainardi, F. Random walk models approximating symmetric space-fractional diffusion processes. In Problems in Mathematical Physics; Elschner, J., Gohberg, I., Silbermann, B., Eds.; Birkhäuser Verlag: Basel, Switzerland, 2001; pp. 120–145. [Google Scholar]
- Saichev, A.; Zaslavsky, G. Fractional kinetic equations: Solutions and applications. Chaos 1997, 7, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: New York, NY, USA, 1993. [Google Scholar]
- Feller, W. On a generalization of Marcel Riesz’ potentials and the semi-groups generated by them. Comm. Sém. Mathém. Univ. Lund. 1952, 73–81. [Google Scholar]
- Gorenflo, R.; Mainardi, F. Random walk models for space-fractional diffusion processes. Frac. Calc. Appl. Anal. 1998, 1, 167–191. [Google Scholar]
- Luchko, Y. Operational method in fractional calculus. Fract. Calc. Appl. Anal. 1999, 2, 463–489. [Google Scholar]
- Luchko, Y.; Gorenflo, R. An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math. Vietnam. 1999, 24, 207–233. [Google Scholar]
- Marichev, O.I. Handbook of Integral Transforms of Higher Transcendental Functions, Theory and Algorithmic Tables; Ellis Horwood: Chichester, UK, 1983. [Google Scholar]
- Luchko, Yu.; Kiryakova, V. The Mellin integral transform in fractional calculus. Fract. Calc. Appl. Anal. 2013, 16, 405–430. [Google Scholar] [CrossRef]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luchko, Y. Entropy Production Rate of a One-Dimensional Alpha-Fractional Diffusion Process. Axioms 2016, 5, 6. https://doi.org/10.3390/axioms5010006
Luchko Y. Entropy Production Rate of a One-Dimensional Alpha-Fractional Diffusion Process. Axioms. 2016; 5(1):6. https://doi.org/10.3390/axioms5010006
Chicago/Turabian StyleLuchko, Yuri. 2016. "Entropy Production Rate of a One-Dimensional Alpha-Fractional Diffusion Process" Axioms 5, no. 1: 6. https://doi.org/10.3390/axioms5010006
APA StyleLuchko, Y. (2016). Entropy Production Rate of a One-Dimensional Alpha-Fractional Diffusion Process. Axioms, 5(1), 6. https://doi.org/10.3390/axioms5010006