Risk of Myelopathy Following Second Local Treatment after Initial Irradiation of Spine Metastasis
Abstract
:1. Introduction
2. Purpose
3. Methods
4. Radiotherapy Techniques for the Treatment of Vertebral Metastases
5. Questions Regarding the Time Interval between the First and Second Radiotherapy Cycle
6. Studies Reporting Radiation-Induced Myelopathy
7. Surgery vs. Reirradiation
8. Consistency in Delineation and Dose Reporting
9. Dose Constraints and Prediction of RM
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nielsen, O.S.; Munro, A.J.; Tannock, I.F. Bone metastases: Pathophysiology and management policy. J. Clin. Oncol. 1991, 9, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Klimo, P., Jr.; Schmidt, M.H. Surgical management of spinal metastases. Oncologist 2004, 9, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Yong, M.; Jensen, A.Ö.; Jacobsen, J.B.; Nørgaard, M.; Fryzek, J.P.; Sørensen, H.T. Survival in breast cancer patients with bone metastases and skeletal-related events: A population-based cohort study in Denmark (1999–2007). Breast. Cancer Res. Treat. 2011, 129, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Drzymalski, D.M.; Oh, W.K.; Werner, L.; Regan, M.M.; Kantoff, P.; Tuli, S. Predictors of survival in patients with prostate cancer and spinal metastasis. Presented at the 2009 Joint Spine Section Meeting. Clinical article. J. Neurosurg. Spine 2010, 13, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Santini, D.; Barni, S.; Intagliata, S.; Falcone, A.; Ferraù, F.; Galetta, D.; Moscetti, L.; La Verde, N.; Ibrahim, T.; Petrelli, F.; et al. Natural history of non-small-cell lung cancer with bone metastases. Sci. Rep. 2015, 5, 18670. [Google Scholar] [CrossRef] [Green Version]
- Ferini, G.; Palmisciano, P.; Scalia, G.; Haider, A.S.; Bin-Alamer, O.; Sagoo, N.S.; Bozkurt, I.; Deora, H.; Priola, S.M.; Aoun, S.G.; et al. The role of radiation therapy in the treatment of spine metastases from hepatocellular carcinoma: A systematic review and meta-analysis. Neurosurg. Focus. 2022, 53, E12. [Google Scholar] [CrossRef]
- Cetin, K.; Christiansen, C.F.; Sværke, C.; Jacobsen, J.B.; Sørensen, H.T. Survival in patients with breast cancer with bone metastasis: A Danish population-based cohort study on the prognostic impact of initial stage of disease at breast cancer diagnosis and length of the bone metastasis-free interval. BMJ Open 2015, 5, e007702. [Google Scholar] [CrossRef] [Green Version]
- Gottwald, L.; Dukowicz, A.; Piekarski, J.; Misiewicz, B.; Spych, M.; Misiewicz, P.; Kazmierczak-Lukaszewicz, S.; Moszynska-Zielinska, M.; Cialkowska-Rysz, A. Bone metastases from gynaecological epithelial cancers. J. Obstet. Gynaecol. 2012, 32, 81. [Google Scholar] [CrossRef]
- Svendsen, M.L.; Gammelager, H.; Sværke, C.; Yong, M.; Chia, V.M.; Christiansen, C.F.; Fryzek, J.P. Hospital visits among women with skeletal-related events secondary to breast cancer and bone metastases: A nationwide population-based cohort study in Denmark. Clin. Epidemiol. 2013, 5, 103. [Google Scholar]
- Skov Dalgaard, K.; Gammelager, H.; Sværke, C.; Kurics, T.; Cetin, K.; Christiansen, C.F. Hospital use among patients with lung cancer complicated by bone metastases and skeletal- related events: A population-based cohort study in Denmark. Clin. Epidemiol. 2015, 7, 363–368. [Google Scholar] [CrossRef] [Green Version]
- Costanzo, R.; Ferini, G.; Brunasso, L.; Bonosi, L.; Porzio, M.; Benigno, U.E.; Musso, S.; Gerardi, R.M.; Giammalva, G.R.; Paolini, F.; et al. The Role of 3D-Printed Custom-Made Vertebral Body Implants in the Treatment of Spinal Tumors: A Systematic Review. Life 2022, 12, 489. [Google Scholar] [CrossRef]
- Ibrahim, T.; Mercatali, L.; Amadori, D. Bone and cancer: The osteoncology. Clin. Cases Miner. Bone Metab. 2013, 10, 121–123. [Google Scholar]
- Giammalva, G.R.; Ferini, G.; Torregrossa, F.; Brunasso, L.; Musso, S.; Benigno, U.E.; Gerardi, R.M.; Bonosi, L.; Costanzo, R.; Paolini, F.; et al. The Palliative Care in the Metastatic Spinal Tumors. A Systematic Review on the Radiotherapy and Surgical Perspective. Life 2022, 12, 571. [Google Scholar] [CrossRef]
- Rades, D.; Lange, M.; Veninga, T.; Rudat, V.; Bajrovic, A.; Stalpers, L.J.; Dunst, J.; Schild, S.E. Preliminary results of spinal cord compression recurrence evaluation (score-1) study comparing short-course versus long-course radiotherapy for local control of malignant epidural spinal cord compression. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 228–234. [Google Scholar] [CrossRef]
- Wong, C.S.; Van Dyk, J.; Milosevic, M.; Laperriere, N.J. Radiation myelopathy following single courses of radiotherapy and retreatment. Int. J. Radiat. Oncol. Biol. Phys. 1994, 30, 575–581. [Google Scholar] [CrossRef]
- Ryu, S.; Gorty, S.; Kazee, A.M.; Bogart, J.; Hahn, S.S.; Dalal, P.S.; Chung, C.T.; Sagerman, R.H. “Full dose” re-irradiation of human cervical spinal cord. Am. J. Clin. Oncol. 2000, 23, 29–31. [Google Scholar] [CrossRef]
- Jin, J.Y.; Huang, Y.; Brown, S.L.; Movsas, B.; Kaminski, J.; Chetty, I.J.; Ryu, S.; Kong, F.S. Radiation dose-fractionation effects in spinal cord: Comparison of animal and human data. J. Radiat. Oncol. 2015, 4, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.S.; Fehlings, M.G.; Sahgal, A. Pathobiology of radiation myelopathy and strategies to mitigate injury. Spinal Cord 2015, 53, 574–580. [Google Scholar] [CrossRef] [Green Version]
- Reagan, T.J.; Thomas, J.E.; Colby, M.Y., Jr. Chronic progressive radiation myelopathy: Its clinical aspects and differential diagnosis. JAMA 1968, 203, 106–110. [Google Scholar] [CrossRef]
- Marcus, R.B., Jr.; Million, R.R. The incidence of myelitis after irradiation of the cervical spinal cord. Int. J. Radiat. Oncol. Biol. Phys. 1990, 19, 3–8. [Google Scholar] [CrossRef]
- Wang, P.Y.; Shen, W.C.; Jan JSSerial, M.R.I. changes in radiation myelopathy. Neuroradiology 1995, 37, 374–377. [Google Scholar] [CrossRef] [PubMed]
- Michikawa, M.; Wada, Y.; Sano, M.; Uchihara, T.; Furukawa, T.; Shibuya, H.; Tsukagoshi, H. Radiation myelopathy: Significance of gadolinium-DTPA enhancement in the diagnosis. Neuroradiology 1991, 33, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Emami, B.; Lyman, J.; Brown, A.; Coia, L.; Goitein, M.; Munzenrider, J.E.; Shank, B.; Solin, L.J.; Wesson, M. Tolerance of normal tissue to therapeutic irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1991, 21, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Joiner, M.; van der Kogel, A. Basic Clinical Radiobiology, 4th ed.; Hodder Arnold Publication: London, UK, 2009. [Google Scholar]
- Chow, E.; Zeng, L.; Salvo, N.; Dennis, K.; Tsao, M.; Lutz, S. Update on the systematic review of palliative radiotherapy trials for bone metastases. Clin. Oncol. 2012, 24, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Hirano, Y.; Nakamura, N.; Zenda, S.; Hojo, H.; Motegi, A.; Arahira, S.; Toshima, M.; Onozawa, M.; Akimoto, T. Incidence and severity of adverse events associated with re-irradiation for spine or pelvic bone metastases. Int. J. Clin. Oncol. 2016, 21, 609–614. [Google Scholar] [CrossRef]
- Grosu, A.L.; Andratschke, N.; Nieder, C.; Molls, M. Retreatment of the spinal cord with palliative radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2002, 52, 1288–1292. [Google Scholar] [CrossRef]
- Maranzano, E.; Trippa, F.; Casale, M.; Anselmo, P.; Rossi, R. Reirradiation of metastatic spinal cord compression: Definitive results of two randomized trials. Radiother. Oncol. 2011, 98, 234–237. [Google Scholar] [CrossRef]
- Pontoriero, A.; Iatì, G.; Cacciola, A.; Conti, A.; Brogna, A.; Siragusa, C.; Ferini, G.; Davì, V.; Tamburella, C.; Molino, L.; et al. Stereotactic Body Radiation Therapy with Simultaneous Integrated Boost in Patients With Spinal Metastases. Technol. Cancer Res. Treat. 2020, 19, 1533033820904447. [Google Scholar] [CrossRef]
- Navarria, P.; Mancosu, P.; Alongi, F.; Pentimalli, S.; Tozzi, A.; Reggiori, G.; Ascolese, A.M.; Arcangeli, S.; Lobefalo, F.; Baena, R.R.; et al. Vertebral metastases reirradiation with volumetric-modulated arc radiotherapy. Radiother. Oncol. 2012, 102, 416–420. [Google Scholar] [CrossRef]
- Mancosu, P.; Navarria, P.; Bignardi, M.; Cozzi, L.; Fogliata, A.; Lattuada, P.; Santoro, A.; Urso, G.; Vigorito, S.; Scorsetti, M. Re-irradiation of metastatic spinal cord compression: A feasibility study by volumetric-modulated arc radiotherapy for in-field recurrence creating a dosimetric hole on the central canal. Radiother. Oncol. 2010, 94, 67–70. [Google Scholar] [CrossRef]
- Kawashiro, S.; Harada, H.; Katagiri, H.; Asakura, H.; Ogawa, H.; Onoe, T.; Sumita, K.; Murayama, S.; Murata, H.; Nemoto, K.; et al. Reirradiation of spinal metastases with intensity-modulated radiation therapy: An analysis of 23 patients. J. Radiat. Res. 2016, 57, 150–156. [Google Scholar] [CrossRef] [Green Version]
- Sterzing, F.; Hauswald, H.; Uhl, M.; Herm, H.; Wiener, A.; Herfarth, K.; Debus, J.; Krempien, R. Spinal cord sparing reirradiation with helical tomotherapy. Cancer 2010, 116, 3961–3968. [Google Scholar] [CrossRef]
- Ito, K.; Nihei, K.; Shimizuguchi, T.; Ogawa, H.; Furuya, T.; Sugita, S.; Hozumi, T.; Karasawa, K. Postoperative re-irradiation using stereotactic body radiotherapy for metastatic epidural spinal cord compression. J. Neurosurg. Spine SPI 2018, 29, 332–338. [Google Scholar] [CrossRef]
- Boyce-Fappiano, D.; Elibe, E.; Zhao, B.; Siddiqui, M.S.; Lee, I.; Rock, J.; Ryu, S.; Siddiqui, F. Re-irradiation of the spine with stereotactic radiosurgery: Efficacy & toxicity. Pract. Radiat. Oncol. 2017, 7, e409–e417. [Google Scholar]
- Thibault, I.; Campbell, M.; Tseng, C.L.; Atenafu, E.G.; Letourneau, D.; Yu, E.; Cho, B.C.; Lee, Y.K.; Fehlings, M.G.; Sahgal, A. Salvage Stereotactic Body Radiotherapy (SBRT) Following In-Field Failure of Initial SBRT for Spinal Metastases. Int. J. Radiat. Oncol. Biol. Phys. 2015, 93, 353–360. [Google Scholar] [CrossRef]
- Ang, K.K.; Price, R.E.; Stephens, L.C.; Jiang, G.L.; Feng, Y.; Schultheiss, T.E.; Peters, L.J. The tolerance of primate spinal cord to re-irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1993, 25, 459–464. [Google Scholar] [CrossRef]
- Sahgal, A.; Ma, L.; Weinberg, V.; Gibbs, I.C.; Chao, S.; Chang, U.K.; Werner-Wasik, M.; Angelov, L.; Chang, E.L.; Sohn, M.J.; et al. Reirradiation human spinal cord tolerance for stereotactic body radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 107–116. [Google Scholar] [CrossRef]
- Kim, J.M.; Losina, E.; Bono, C.M.; Schoenfeld, A.J.; Collins, J.E.; Katz, J.N.; Harris, M.B. Clinical outcome of metastatic spinal cord compression treated with surgical excision +/–radiation versus radiation therapy alone: A systematic review of literature. Spine 2012, 37, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Pessina, F.; Navarria, P.; Carta, G.A.; D’Agostino, G.R.; Clerici, E.; Nibali, M.C.; Costa, F.; Fornari, M.; Scorsetti, M. Long-Term Follow-Up of Patients with Metastatic Epidural Spinal Cord Compression from Solid Tumors Submitted for Surgery Followed by Radiation Therapy. World Neurosurg. 2018, 115, e681–e687. [Google Scholar] [CrossRef]
- Redmond, K.J.; Lo, S.S.; Fisher, C.; Sahgal, A. Postoperative stereotactic body radiation therapy (SBRT) for spine metastases: A critical review to guide practice. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 1414–1428. [Google Scholar] [CrossRef]
- Rades, D.; Abrahm, J.L. The role of radiotherapy for metastatic epidural spinal cord compression. Nat. Rev. Clin. Oncol. 2010, 7, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Ferini, G.; Valenti, V.; Viola, A.; Umana, G.E.; Illari, S.I.; Parisi, S.; Pontoriero, A.; Pergolizzi, S. First-ever Clinical Experience With Magnetic Resonance-based Lattice Radiotherapy for Treating Bulky Gynecological Tumors. Anticancer Res. 2022, 42, 4641–4646. [Google Scholar] [CrossRef] [PubMed]
- Ferini, G.; Castorina, P.; Valenti, V.; Illari, S.I.; Sachpazidis, I.; Castorina, L.; Marrale, M.; Pergolizzi, S. A Novel Radiotherapeutic Approach to Treat Bulky Metastases Even from Cutaneous Squamous Cell Carcinoma: Its Rationale and a Look at the Reliability of the Linear-Quadratic Model to Explain Its Radiobiological Effects. Front. Oncol. 2022, 12, 809279. [Google Scholar] [CrossRef] [PubMed]
- Ferini, G.; Valenti, V.; Tripoli, A.; Illari, S.I.; Molino, L.; Parisi, S.; Cacciola, A.; Lillo, S.; Giuffrida, D.; Pergolizzi, S. Lattice or Oxygen-Guided Radiotherapy: What If They Converge? Possible Future Directions in the Era of Immunotherapy. Cancers 2021, 13, 3290. [Google Scholar] [CrossRef] [PubMed]
- Conti, A.; Acker, G.; Kluge, A.; Loebel, F.; Kreimeier, A.; Budach, V.; Vajkoczy, P.; Ghetti, I.; Germano, A.F.; Senger, C. Decision making in patients with metastatic spine. The Role of Minimally Invasive Treatment Modalities. Front. Oncol. 2019, 19, 915. [Google Scholar] [CrossRef]
- Tseng, C.L.; Sussman, M.S.; Atenafu, E.G.; Letourneau, D.; Ma, L.; Soliman, H.; Thibault, I.; Cho, B.C.; Simeonov, A.; Yu, E.; et al. Magnetic resonance imaging assessment of spinal cord and cauda equina motion in supine patients with spinal metastases planned for spine stereotactic body radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2015, 91, 995–1002. [Google Scholar] [CrossRef]
- Garg, A.K.; Shiu, A.S.; Yang, J.; Wang, X.S.; Allen, P.; Brown, B.W.; Grossman, P.; Frija, E.K.; McAleer, M.F.; Azeem, S.; et al. Phase 1/2 trial of single-session stereotactic body radiotherapy for previously unirradiated spinal metastases. Cancer 2012, 118, 5069–5077. [Google Scholar] [CrossRef] [Green Version]
- Sahgal, A.; Weinberg, V.; Ma, L.; Chang, E.; Chao, S.; Muacevic, A.; Gorgulho, A.; Soltys, S.; Gerszten, P.C.; Ryu, S.; et al. Probabilities of radiation myelopathy specific to stereotactic body radiation therapy to guide safe practice. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 341–347. [Google Scholar] [CrossRef]
- Grimm, J.; Sahgal, A.; Soltys, S.G.; Luxton, G.; Patel, A.; Herbert, S.; Xue, J.; Ma, L.; Yorke, E.; Adler, J.R.; et al. Estimated Risk Level of Unified Stereotactic Body Radiation Therapy Dose Tolerance Limits for Spinal Cord. Semin. Radiat. Oncol. 2016, 26, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Nieder, C.; Grosu, A.L.; Andratschke, N.H.; Molls, M. Proposal of human spinal cord reirradiation dose based on collection of data from 40 patients. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 851–855. [Google Scholar] [CrossRef]
- Katsoulakis, E.; Jackson, A.; Cox, B.; Lovelock, M.; Yamada, Y. A detailed dosimetric analysis of spinal cord tolerance in high-dose spine radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 2017, 99, 598–607. [Google Scholar] [CrossRef] [Green Version]
- Benedict, S.H.; Yenice, K.M.; Followill, D.; Galvin, J.M.; Hinson, W.; Kavanagh, B.; Keall, P.; Lovelock, M.; Meeks, S.; Papiez, L.; et al. Stereotactic body radiation therapy: The report of AAPM Task Group 101. Med. Phys. 2010, 37, 4078–4101. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.W.N.; Medin, P.M.; Timmerman, R.D. Emphasis on Repair, Not Just Avoidance of Injury, Facilitates Prudent Stereotactic Ablative Radiotherapy. Semin. Radiat. Oncol. 2017, 27, 378–392. [Google Scholar] [CrossRef]
- Hashmi, A.; Guckenberger, M.; Kersh, R.; Gerszten, P.C.; Mantel, F.; Grills, I.S.; Flickinger, J.C.; Shin, J.H.; Fahim, D.K.; Winey, B.; et al. Re-irradiation stereotactic body radiotherapy for spinal metastases: A multi-institutional outcome analysis. J. Neurosurg. Spine 2016, 25, 646–653. [Google Scholar] [CrossRef]
Reference Study | Number of Patients | Target Volumes | Median Time to Re-Irradiation (Months) | RT1-Tech | Dose Fractionation (Median Gy/fr) | Dose (Median BED EQD2) | Median Volume Treated (cc/nr. of Vertebrae) | RM | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RT1 DT | RT1 fr | RT2-Tech | RT2 DT | RT2 fr | RT1 (Median EQD2) | RT2 (Median EQD2) | Tumor EQD2-SBRT | Cumulative (RT1 + RT2) | |||||||
Sahgal 2012 | 14 | 16 | 15 | 3D CRT | 30 | 17 | SBRT | 24 | 3 | 39.8 | 12.5 | 52.4 | 11.5 | 0 | |
5 RM | 5 | 18 | 3D CRT | 40 | 22 | SBRT | 20 | 2 | 38 | 61.7 | 99.6 | 31.5 | 5 | ||
Hashmi 2016 | 215 | 247 | 13.5 | 3D CRT | 30 | 10 | SBRT | 18 | 1 | 37.5 | 24.6 | 36 | 60.8 | No data | 0 |
Foerster 2018 | 16 | No data | No data | 3D CRT | No data | No data | SBRT | 18 | 1 | No data | 33.8 | 41.3 | 69.9 | 56.9 | 0 |
7 | pSBRT | 20.4 | 1 | 0 | 0 | 0 | 26 | 0 | 81.9 | 0 | |||||
Hirano 2015 | 35 | 52 | 5.3 | 3D CRT | 30 | 10 | 3D CRT | 8 | 1 | 37.5 | 20 | 57.5 | No data | 0 | |
Ito 2018 | 82 | 134 | No data | 3D CRT | 25 | 7.5 | SBRT | 24 | 2 | 30 | 24 | 44 | 54 | No data | 1 |
Zschaeck 2017 | 30 | 31 | 11 | 3D CRT = 18 | No data | No data | SBRT | No data | No data | 33.1 | 33.5 | 69 | No data | 0 | |
THIBAULT 2015 | 40 | 56 | 12.9 | SBRT | 24 | 2 | SBRT | 30 | 4 | 31.8 | 21.9 | 32.5 | 51.3 | No data | 0 |
24 | 3D CRT | No data | No data | SBRT | No data | No data | 50.8 | 21.9 | 81.4 | No data | 0 | ||||
BOYCE- FAPPIANO 2017 | 162 | 237 | 10.2 | 3D CRT | 30 | 10 | SBRT | 16 | 1 | 37.5 | 56 | 34.7 | 93.5 | 2 v | 1 |
Mahadevan 2011 | 60 | 81 | 20 | 3D CRT | 30 | 10 | SBRT | 27 | 4 | 37.5 | 30 | 67.5 | 84 | 0 | |
Choi 2010 | 42 | 51 | 9 | 3D CRT | 40 | 20 | SBRT | 26 | 2 | 40 | 24 | 64 | 10.3 | 4 | |
Hoyer 2017 | 215 | 247 | 14 | 3D CRT | 30 | 10 | SBRT | 18 | 1 | No data | No data | No data | No data | 0 | |
Navarria 2012 | 31 | 17 | 3D CRT | 30 | 10 | VMAT | 30 | 12 | 37.5 | 23.6 | 61.6 | 289 | 0 | ||
kawashiro 2015 | 23 | 23 | 13 | 3D CRT | 37.5 | No data | VMAT | 14.5 | 5 | 40 | 17.7 | 59 | 47.4 | 0 | |
Sterzing 2010 | 36 | 17.5 | 3D CRT | 36.3 | No data | VMAT | 34.8 | No data | 40 | 32.5 | 72.5 | 2 v | 0 | ||
Folkert 2013 | 5 | 5 | 12.2 | 3D CRT | 30 | 10 | IOBT | 14 Gy | 1 | 37.5 | 65.3 | 92.8 | No data | 0 | |
Maranzano 2011 | 12 | 6.5 | 3D CRT | 8 | 1 | 3D CRT | 15 | 3 | 30 | 26 | 56 | No data | 0 | ||
Whong 1994 | 139 | 19 | 2D/3D CRT | 24 | 9 | 3D CRT | 20 | 8 | 41 | 26 | 67 | 60 | 11 | ||
Grosu 2002 | 8 | 30 | 2D/3D CRT | 38 | 18 | 3D CRT | 30 | 15 | 38.5 | 30 | 68.5 | 2 | 0 | ||
Ahmed 2012 | 66 | 85 | 13.5 | 3D CRT | 30 | 10 | No data | 24 | 3 | - | - | - | 42.7 | 1 | |
Doi 2021 | 32 | 32 | 15 | 3D CRT | 30 | 10 | 39 | 13 | 45.6 | 80.7 | 135.6 | 2 v |
Reference Study | Sahgal 2012 | Ito 2018 | BOYCE-FAPPIANO 2017 | Choi 2010 | Whong 1994 | Ahmed 2012 | ||
---|---|---|---|---|---|---|---|---|
Number of patients | 14 | 5 RM | 82 | 162 | 42 | 139 | 66 | |
Target volumes | 16 | 5 | 134 | 237 | 51 | 85 | ||
Median time to re-irradiation (months) | 15 | 18 | No data | 10.2 | 9 | 19 | 13.5 | |
RT1-tech | 3D CRT | 3D CRT | 3D CRT | 3D CRT | 3D CRT | 2D/3D CRT | 3D CRT | |
Dose fractionation (median Gy/fr) | RT1 DT | 30 | 40 | 25 | 30 | 40 | 24 | 30 |
RT1 fr | 17 | 22 | 7.5 | 10 | 20 | 9 | 10 | |
RT2-tech | SBRT | SBRT | SBRT | SBRT | SBRT | 3D CRT | No data | |
RT2 DT | 24 | 20 | 24 | 16 | 26 | 20 | 24 | |
RT2 fr | 3 | 2 | 2 | 1 | 2 | 8 | 3 | |
Dose (median BED EQD2) | RT1 (median EQD2) | 39.8 | 38 | 30 | 37.5 | 40 | 41 | - |
RT2 (median EQD2) | 12.5 | 61.7 | 24 | 56 | 24 | 26 | - | |
tumor EQD2-SBRT | 44 | 34.7 | ||||||
Cumulative (RT1 + RT2) | 52.4 | 99.6 | 54 | 93.5 | 64 | 67 | - | |
Median volume treated (cc/nr. of vertebrae) | 11.5 | 31.5 | No data | 2 v | 10.3 | 60 | 42.7 | |
Clinical end points | Late spinal cord toxicity | Late spinal cord toxicity | Pain relief; local control; adverse events | * Pain response 81% (reduced) * Neurological improvement 82% * Radiographic local control 71% | Local control | Local Control | ||
RM | 0 | 5 | 1 | 1 | 4 | 11 | 1 | |
Follow-up (median in months) | 12 | 17 | 9 | 4 | 7 | 8.2 | ||
Spine tumors after re-irradiation (%/m) | 57.10% | 80.00% | OS 65%/12 months | Median OS = 13 months | 24 | 8.3 m (15% in 5 years) | 1 year OS in those with prior RT = 28% | |
Local Control after re-irradiation | No data | No data | 72.3%/12 months | Radiographic local control 71% | 74% | 1 year LC = 83.3 % with prior RT | ||
Median time to local recurrence or progression | No data | No data | 14 | 8 | No data |
Reference Study | Target Volumes | RT1-Tech | Dose Fractionation (Median Gy/fr) | Median Time to Re-Irradiation (Months) | Dose (Median BED EQD2) | REPORT/CONSTRAINTS | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RT1 DT | RT1 fr | RT2-Tech | RT2 DT | RT2 fr | RT1 (Median EQD2) | RT2 (Median EQD2) | Tumor EQD2-SBRT | Cumulative (RT1 + RT2) | |||||
Sahgal 2012 | 16 | 3D CRT | 30 | 17 | SBRT | 24 | 3 | 15 | 39.8 | 12.5 | 52.4 | Dmax to thecal sac | |
5 | 3D CRT | 40 | 22 | SBRT | 20 | 2 | 18 | 38 | 61.7 | 99.6 | |||
Hashmi 2016 | 247 | 3D CRT | 30 | 10 | SBRT | 18 | 1 | 13.5 | 37.5 | 24.6 | 36 | 60.8 | Spinal cord + PRV 1–2 mm |
Ito 2018 | 134 | 3D CRT | 25 | 7.5 | SBRT | 24 | 2 | No data | 30 | 24 | 44 | 54 | MRI spinal cord + PRV 1.5 mm Dmax < 11–12 Gy × 2 fr. |
Zschaeck 2017 | 31 | 3D CRT | No data | No data | SBRT | No data | No data | 11 | 33.1 | 33.5 | 69 | Spinal canal D50 < 1 cc mean Dmax = 50.8 Gy mean D0.5 cc = 44.9 Gy mean D1 cc = 43.3 Gy | |
Thibault 2015 | 56 | SBRT | 24 | 2 | SBRT | 30 | 4 | 12.9 | 31.8 | 21.9 | 32.5 | 51.3 | Spinal cord + PRV Pmax PRV |
24 | 3D CRT | No data | No data | SBRT | No data | No data | 50.8 | 21.9 | 81.4 | ||||
Kawashiro 2015 | 23 | 3D CRT | 37.5 | No data | VMAT | 14.5 | 5 | 13 | 40 | 17.7 | 59 | Spinal cord D0.5 cc in reirad 10 Gy/5 fr, cumulated D0.5 cc = 91 Gy 2/2. | |
Sterzing 2010 | 3D CRT | 36.3 | No data | VMAT | 34.8 | No data | 17.5 | 40 | 32.5 | 72.5 | Dmax in reirad:9.8 Gy (5.2–21.8 Gy) V5 = 6.7 cc; V10 = 2.4 cc, V15 = 0.7 cc |
Number of Fractions | Recommendations for Thecal Sac/Spinal Cord Dmax (Gy) | |||
---|---|---|---|---|
AAPM TG101 [53] | Kim 2017 [54] | Sahgal 2013 [49] | Katsoulakis-Gibbs [52] | |
1 | 14 | 14 | 12.4 | 14 |
2 | 18.3 | 17 | 19.3 | |
3 | 21.9 | 22.5 | 20.3 | 23.1 |
4 | 25.6 | 23 | 26.2 | |
5 | 30 | 28 | 25.3 | 28.8 |
Dmax (Gy) | ||||||
---|---|---|---|---|---|---|
Prior Dose Fractionation | EQD2 (Gy) | 1 Fraction | 2 Fractions | 3 Fractions | 4 Fractions | 5 Fractions |
20/5 | 30 | 9 | 12.2 | 14.5 | 16.2 | 18 |
30/10 | 37.5 | 9 | 12.2 | 14.5 | 16.2 | 19 |
40/20 | 40 | - | 12.2 | 14.5 | 16.2 | 20 |
45/25 | 43 | - | 12.2 | 14.5 | 16.2 | 21 |
50/25 | 50 | - | 11 | 12.5 | 14 | 15.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gales, L.; Mitrea, D.; Chivu, B.; Radu, A.; Bocai, S.; Stoica, R.; Dicianu, A.; Mitrica, R.; Trifanescu, O.; Anghel, R.; et al. Risk of Myelopathy Following Second Local Treatment after Initial Irradiation of Spine Metastasis. Diagnostics 2023, 13, 175. https://doi.org/10.3390/diagnostics13020175
Gales L, Mitrea D, Chivu B, Radu A, Bocai S, Stoica R, Dicianu A, Mitrica R, Trifanescu O, Anghel R, et al. Risk of Myelopathy Following Second Local Treatment after Initial Irradiation of Spine Metastasis. Diagnostics. 2023; 13(2):175. https://doi.org/10.3390/diagnostics13020175
Chicago/Turabian StyleGales, Laurentia, Diana Mitrea, Bogdan Chivu, Adrian Radu, Silvia Bocai, Remus Stoica, Andrei Dicianu, Radu Mitrica, Oana Trifanescu, Rodica Anghel, and et al. 2023. "Risk of Myelopathy Following Second Local Treatment after Initial Irradiation of Spine Metastasis" Diagnostics 13, no. 2: 175. https://doi.org/10.3390/diagnostics13020175
APA StyleGales, L., Mitrea, D., Chivu, B., Radu, A., Bocai, S., Stoica, R., Dicianu, A., Mitrica, R., Trifanescu, O., Anghel, R., & Serbanescu, L. (2023). Risk of Myelopathy Following Second Local Treatment after Initial Irradiation of Spine Metastasis. Diagnostics, 13(2), 175. https://doi.org/10.3390/diagnostics13020175