A Narrative Review Discussing the Efficiency of Personalized Dosing Algorithm of Follitropin Delta for Ovarian Stimulation and the Reproductive and Clinical Outcomes
Abstract
:1. Introduction
2. Methodology
2.1. Rationale of the Study
2.2. Database Searching Strategy
2.3. Inclusion Criteria
2.4. Exclusion Criteria
2.5. Study Selection
2.6. Number of Entries
3. Results
Strengths and Limitations of the Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aschheim, S.; Zondek, B. Hypophysenvorderlappenhormon und Ovarialhormon im Harn von Schwangeren. Klin. Wochenschr. 1927, 6, 1322. [Google Scholar] [CrossRef]
- Niederberger, C.; Pellicer, A.; Cohen, J.; Gardner, D.K.; Palermo, G.D.; O’Neill, C.L.; Chow, S.; Rosenwaks, Z.; Cobo, A.; Swain, J.E.; et al. Forty years of IVF. Fertil. Steril. 2018, 110, 185–324.e5. [Google Scholar] [CrossRef]
- Olszynko-Gryn, J. The demand for pregnancy testing: The Aschheim-Zondek reaction, diagnostic versatility, and laboratory services in 1930s Britain. Stud. Hist. Philos. Biol. Biomed. Sci. 2014, 47, 233–247. [Google Scholar] [CrossRef] [Green Version]
- Seegar-Jones, G.E. Hormone production by placental cells maintained in continuous culture. Bull Johns Hopkins Hosp. 1943, 72, 26–38. [Google Scholar]
- Lunenfeld, B. Gonadotropin stimulation: Past, present and future. Reprod. Med. Biol. 2012, 11, 11–25. [Google Scholar] [CrossRef]
- Smith, P.E.; Engle, E.T. Experimental evidence regarding the rôle of the anterior pituitary in the development and regulation of the genital system. Am. J. Anat. 1927, 40, 159–217. [Google Scholar] [CrossRef]
- Zondek, B. Weitere untersuchungen zur darstellung, biologie und klinik des hypophysenvorderlappenhormones (Prolan). Zentralbl. Gynakol. 1929, 14, 834–848. [Google Scholar]
- Lunenfeld, B.; Bilger, W.; Longobardi, S.; Alam, V.; D’Hooghe, T.; Sunkara, S.K. The Development of Gonadotropins for Clinical Use in the Treatment of Infertility. Front. Endocrinol. 2019, 10, 429. [Google Scholar] [CrossRef] [Green Version]
- De Leo, V.; Concetta Musacchio, M.; Di Sabatino, A.; Tosti, C.; Morgante, G.; Petraglia, F. Present and Future of Recombinant Gonadotropins in Reproductive Medicine. Curr. Pharm. Biotechnol. 2012, 13, 379–391. [Google Scholar] [CrossRef]
- Howles, C.M. Genetic engineering of human FSH (Gonal-F®). Hum. Reprod. Update 1996, 2, 172–191. [Google Scholar] [CrossRef]
- Olijve, W.; de Boer, W.; Mulders, J.W.M.; van Wezenbeek, P.M.G.F. Recombinat hormones: Molecular biology and biochemistry of human recombinant follicle stimulating hormone (Puregon®). Mol. Hum. Reprod. 1996, 2, 371–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leão, R.D.B.F.; Esteves, S.C. Gonadotropin therapy in assisted reproduction: An evolutionary perspective from biologics to biotech. Clinics 2014, 69, 279–293. [Google Scholar] [CrossRef] [PubMed]
- Goa, K.L.; Wagstaff, A.J. Follitropin Alpha in Infertility. BioDrugs 1998, 9, 235–260. [Google Scholar] [CrossRef] [PubMed]
- De Leeuw, R.; Mulders, J.; Voortman, G.; Rombout, F.; Damm, J.; Kloosterboer, L. Recombinat hormones: Structure-function relationship of recombinant follicle stimulating hormone (Puregon®). Mol. Hum. Reprod. 1996, 2, 361–369. [Google Scholar] [CrossRef] [Green Version]
- De Mora, F.; Fauser, B.C.J.M. Biosimilars to recombinant human FSH medicines: Comparable efficacy and safety to the original biologic. Reprod. Biomed. Online 2017, 35, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Dias, J.; Ulloa-Aguirre, A. New Human Follitropin Preparations: How Glycan Structural Differences May Affect Biochemical and Biological Function and Clinical Effect. Front. Endocrinol. 2021, 12, 636038. [Google Scholar] [CrossRef]
- Olsson, H.; Sandström, R.; Grundemar, L. Different pharmacokinetic and pharmacodynamic properties of recombinant follicle-stimulating hormone (rFSH) derived from a human cell line compared with rFSH from a non-human cell line. J. Clin. Pharmacol. 2014, 54, 1299–1307. [Google Scholar] [CrossRef]
- Koechling, W.; Plaksin, D.; Croston, G.E.; Jeppesen, J.V.; Macklon, K.T.; Andersen, C.Y. Comparative pharmacology of a new recombinant FSH expressed by a human cell line. Endocr. Connect. 2017, 6, 297–305. [Google Scholar] [CrossRef]
- Bosch, E.; Havelock, J.; Martin, F.S.; Rasmussen, B.B.; Klein, B.M.; Mannaerts, B.; Arce, J.-C. Follitropin delta in repeated ovarian stimulation for IVF: A controlled, assessor-blind Phase 3 safety trial. Reprod. Biomed. Online 2019, 38, 195–205. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, O.; Klein, B.M.; Arce, J.-C.; Kuramoto, T.; Yokota, Y.; Mukaida, T.; Kokeguchi, S.; Ishikawa, M.; Oku, H.; Hayashi, N.; et al. Randomized, assessor-blind, antimüllerian hormone-stratified, dose-response trial in Japanese in vitro fertilization/intracytoplasmic sperm injection patients undergoing controlled ovarian stimulation with follitropin delta. Fertil. Steril. 2021, 115, 1478–1486. [Google Scholar] [CrossRef]
- Haakman, O.; Liang, T.; Murray, K.; Vilos, A.; Vilos, G.; Bates, C.; Watson, A.J.; Miller, M.R.; Abu-Rafea, B. In vitro fertilization cycles stimulated with follitropin delta result in similar embryo development and quality when compared with cycles stimulated with follitropin alfa or follitropin beta. F&S Rep. 2021, 2, 30–35. [Google Scholar]
- Višnová, H.; Papaleo, E.; Martin, F.S.; Koziol, K.; Klein, B.M.; Mannaerts, B. Clinical outcomes of potential high responders after individualized FSH dosing based on anti-Müllerian hormone and body weight. Reprod. Biomed. Online 2021, 43, 1019–1026. [Google Scholar] [CrossRef]
- Ishihara, O.; Arce, J.-C. Individualized follitropin delta dosing reduces OHSS risk in Japanese IVF/ICSI patients: A randomized controlled trial. Reprod. Biomed. Online 2021, 42, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Zhang, Y.; Liang, X.; Ho, T.; Huang, H.-Y.; Kim, S.-H.; Goethberg, M.; Mannaerts, B.; Arce, J.-C.; Asian Follitropin Delta Phase 3 Trial (GRAPE) Group. A randomised controlled trial to clinically validate follitropin delta in its individualised dosing regimen for ovarian stimulation in Asian IVF/ICSI patients. Hum. Reprod. 2021, 36, 2452–2462. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, A.; Kissler, S.; Laubert, I.; Mehrle, P.; Mempel, A.; Reissmann, C.; Sauer, D.S.; Tauchert, S.; Bielfeld, A.P. An eight centre, retrospective, clinical practice data analysis of algorithm-based treatment with follitropin delta. Reprod. Biomed. Online 2022, 44, 853–857. [Google Scholar] [CrossRef]
- Fernández Sánchez, M.; Višnová, H.; Larsson, P.; Yding Andersen, C.; Filicori, M.; Blockeel, C.; Pinborg, A.; Khalaf, Y.; Mannaerts, B. A randomized, controlled, first-in-patient trial of choriogonadotropin beta added to follitropin delta in women undergoing ovarian stimulation in a long GnRH agonist protocol. Hum. Reprod. 2022, 37, 1161–1174. [Google Scholar] [CrossRef]
- A Trial to Compare the Ovarian Response of REKOVELLE and GONAL-F in Conventional Dosing in Women Undergoing Controlled Ovarian Stimulation (ADAPT-1). Available online: https://clinicaltrials.gov/ct2/show/NCT05263388 (accessed on 12 December 2022).
- Real-World Evidence on Follitropin Delta Individual Dosing. Available online: https://clinicaltrials.gov/ct2/show/NCT05173597?cond=NCT05173597&draw=2&rank=1 (accessed on 12 December 2022).
- Trial to Assess the Pattern of Use of REKOVELLE® in Women Undergoing In Vitro Fertilisation (IVF) or Intracytoplasmic Sperm Injection (ICSI) Procedures in Routine Clinical Practice (NORSOS). Available online: https://clinicaltrials.gov/ct2/show/NCT05499052?cond=NCT05499052&draw=2&rank=1 (accessed on 12 December 2022).
- Efficacy and Safety of FE 999049 in Controlled Ovarian Stimulation in India Women (IRIS). Available online: https://clinicaltrials.gov/ct2/show/NCT04773353?cond=NCT04773353&draw=2&rank=1 (accessed on 12 December 2022).
- Arce, J.-C.; Larsson, P.; García-Velasco, J.A. Establishing the follitropin delta dose that provides a comparable ovarian response to 150 IU/day follitropin alfa. Reprod. Biomed. Online 2020, 41, 616–622. [Google Scholar] [CrossRef]
- Havelock, J.; Aaris Henningsen, A.-K.; Mannaerts, B.; Arce, J.-C.; ESTHER-1 and ESTHER-2 Trial Groups. Pregnancy and neonatal outcomes in fresh and frozen cycles using blastocysts derived from ovarian stimulation with follitropin delta. J. Assist. Reprod. Genet. 2021, 38, 2651–2661. [Google Scholar] [CrossRef]
- Nelson, S.M.; Larsson, P.; Mannaerts, B.M.J.L.; Nyboe Andersen, A.; Fauser, B.C.J.M. Anti-Müllerian hormone variability and its implications for the number of oocytes retrieved following individualized dosing with follitropin delta. Clin. Endocrinol. 2019, 90, 719–726. [Google Scholar] [CrossRef]
- Nyboe Andersen, A.; Nelson, S.M.; Fauser, B.C.J.M.; García-Velasco, J.A.; Klein, B.M.; Arce, J.-C.; Tournaye, H.; de Sutter, P.; Decleer, W.; Petracco, A.; et al. Individualized versus conventional ovarian stimulation for in vitro fertilization: A multicenter, randomized, controlled, assessor-blinded, phase 3 noninferiority trial. Fertil. Steril. 2017, 107, 387–396.e4. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, O.; Nelson, S.M.; Arce, J.-C. Comparison of ovarian response to follitropin delta in Japanese and White IVF/ICSI patients. Reprod. Biomed. Online 2022, 44, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Bissonnette, F.; Minano Masip, J.; Kadoch, I.-J.; Librach, C.; Sampalis, J.; Yuzpe, A. Individualized ovarian stimulation for in vitro fertilization: A multicenter, open label, exploratory study with a mixed protocol of follitropin delta and highly purified human menopausal gonadotropin. Fertil. Steril. 2021, 115, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Sánchez, M.; Visnova, H.; Yuzpe, A.; Klein, B.M.; Mannaerts, B.; Arce, J.-C. Individualization of the starting dose of follitropin delta reduces the overall OHSS risk and/or the need for additional preventive interventions: Cumulative data over three stimulation cycles. Reprod. Biomed. Online 2019, 38, 528–537. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, R.K.; Smith, P.P.; Malhas, R.; Harb, H.M.; Gallos, I.D.; Dowell, K.; Fishel, S.; Deeks, J.J.; Coomarasamy, A. Investigating the effect of ethnicity on IVF outcome. Reprod. Biomed. Online 2015, 31, 356–363. [Google Scholar] [CrossRef] [Green Version]
- Maalouf, W.; Maalouf, W.; Campbell, B.; Jayaprakasan, K. Effect of ethnicity on live birth rates after in vitro fertilisation/intracytoplasmic sperm injection treatment: Analysis of UK national database. BJOG An Int. J. Obstet. Gynaecol. 2017, 124, 904–910. [Google Scholar] [CrossRef]
- Quinn, M.; Fujimoto, V. Racial and ethnic disparities in assisted reproductive technology access and outcomes. Fertil. Steril. 2016, 105, 1119–1123. [Google Scholar] [CrossRef] [Green Version]
- Bungum, L.; Tagevi, J.; Jokubkiene, L.; Bungum, M.; Giwercman, A.; Macklon, N.; Andersen, C.Y.; Klausen, T.W.; Tørring, N.; Kumar, A.; et al. The Impact of the Biological Variability or Assay Performance on AMH Measurements: A Prospective Cohort Study with AMH Tested on Three Analytical Assay-Platforms. Front. Endocrinol. 2018, 9, 603. [Google Scholar] [CrossRef] [Green Version]
- Doroftei, B.; Ilie, O.-D.; Dabuleanu, A.-M.; Diaconu, R.; Maftei, R.; Simionescu, G.; Ilea, C. Follitropin Delta as a State-of-the-Art Incorporated Companion for Assisted Reproductive Procedures: A Two Year Observational Study. Medicina 2021, 57, 379. [Google Scholar] [CrossRef]
- Longobardi, S.; Seidler, A.; Martins, J.; Beckers, F.; MacGillivray, W.; D’Hooghe, T. An evaluation of the use and handling errors of currently available recombinant human follicle-stimulating hormone pen injectors by women with infertility and fertility nurses. Expert Opin. Drug Deliv. 2019, 16, 1003–1014. [Google Scholar] [CrossRef]
- Out, H.J.; Mannaerts, B.M.J.L.; Driessen, S.G.A.J.; Coelingh Bennink, H.J.T. A prospective, randomized, assessor-blind, multicentre study comparing recombinant and urinary follicle stimulating hormone (Puregon versus Metrodin) in in-vitro fertilization. Hum. Reprod. 1995, 10, 2534–2540. [Google Scholar] [CrossRef]
- Recombinant Human FSH Study Group. Clinical assessment of recombinant human follicle-stimulating hormone in stimulating ovarian follicular development before in vitro fertilization. Fertil. Steril. 1995, 63, 77–86. [Google Scholar] [CrossRef]
- Norman, R.J.; Zegers-Hochschild, F.; Salle, B.S.; Elbers, J.; Heijnen, E.; Marintcheva-Petrova, M.; Mannaerts, B.; The Trust Investigators. Repeated ovarian stimulation with corifollitropin alfa in patients in a GnRH antagonist protocol: No concern for immunogenicity. Hum. Reprod. 2011, 26, 2200–2208. [Google Scholar] [CrossRef] [PubMed]
- Rettenbacher, M.; Andersen, A.N.; Garcia-Velasco, J.A.; Sator, M.; Barri, P.; Lindenberg, S.; van der Ven, K.; Khalaf, Y.; Bentin-Ley, U.; Obruca, A.; et al. A multi-centre phase 3 study comparing efficacy and safety of Bemfola(®) versus Gonal-f(®) in women undergoing ovarian stimulation for IVF. Reprod. Biomed. Online 2015, 30, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Strowitzki, T.; Kuczynski, W.; Mueller, A.; Bias, P. Safety and efficacy of Ovaleap® (recombinant human follicle-stimulating hormone) for up to 3 cycles in infertile women using assisted reproductive technology: A phase 3 open-label follow-up to Main Study. Reprod. Biol. Endocrinol. 2016, 14, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gobert, B.; Jolivet-Reynaud, C.; Dalbon, P.; Barbarino-Monnier, P.; Faure, G.C.; Jolivet, M.; Béné, M.C. An Immunoreactive Peptide of the FSH Involved in Autoimmune Infertility. Biochem. Biophys. Res. Commun. 2001, 289, 819–824. [Google Scholar] [CrossRef]
- Haller-Kikkatalo, K.; Salumets, A.; Uibo, R. Review on Autoimmune Reactions in Female Infertility: Antibodies to Follicle Stimulating Hormone. Clin. Dev. Immunol. 2012, 2012, 762541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shatavi, S.V.; Llanes, B.; Luborsky, J.L. Association of Unexplained Infertility with Gonadotropin and Ovarian Antibodies. Am. J. Reprod. Immunol. 2006, 56, 286–291. [Google Scholar] [CrossRef]
- Rabinson, J.; Ashkenazi, J.; Homburg, R.; Meltcer, S.; Anteby, E.Y.; Orvieto, R. Repeated in vitro fertilization cycle attempts in patients undergoing controlled ovarian hyperstimulation with use of gonadotropin-releasing hormone antagonists. Fertil. Steril. 2009, 91, 1473–1475. [Google Scholar] [CrossRef]
- Khalaf, Y.; El-Toukhy, T.; Taylor, A.; Braude, P. Increasing the gonadotrophin dose in the course of an in vitro fertilization cycle does not rectify an initial poor response. Eur. J. Obstet. Gynecol. Reprod. Biol. 2002, 103, 146–149. [Google Scholar] [CrossRef]
- Van Hooff, M.H.A.; Alberda, A.T.; Huisman, G.J.; Zeilmaker, G.H.; Leerentveld, R.A. Doubling the human menopausal gonadotrophin dose in the course of an in-vitro fertilization treatment cycle in low responders: A randomized study. Hum. Reprod. 1993, 8, 369–373. [Google Scholar] [CrossRef]
- Arce, J.-C.; Nyboe Andersen, A.; Fernández-Sánchez, M.; Visnova, H.; Bosch, E.; García-Velasco, J.A.; Barri, P.; de Sutter, P.; Klein, B.M.; Fauser, B.C.J.M. Ovarian response to recombinant human follicle-stimulating hormone: A randomized, antimüllerian hormone-stratified, dose-response trial in women undergoing in vitro fertilization/intracytoplasmic sperm injection. Fertil. Steril. 2014, 102, 1633–1640.e5. [Google Scholar] [CrossRef] [PubMed]
- Bosch, E.; Nyboe Andersen, A.; Barri, P.; García-Velasco, J.A.; de Sutter, P.; Fernández-Sánchez, M.; Visnova, H.; Klein, B.M.; Mannaerts, B.; Arce, J.-C. Follicular and endocrine dose responses according to anti-Müllerian hormone levels in IVF patients treated with a novel human recombinant FSH (FE 999049). Clin. Endocrinol. 2015, 83, 902–912. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, O.; Jwa, S.C.; Kuwahara, A.; Katagiri, Y.; Kuwabara, Y.; Hamatani, T.; Harada, M.; Osuga, Y. Assisted reproductive technology in Japan: A summary report for 2018 by the Ethics Committee of the Japan Society of Obstetrics and Gynecology. Reprod. Med. Biol. 2021, 20, 3–12. [Google Scholar] [CrossRef]
- Papanikolaou, E.G.; Pozzobon, C.; Kolibianakis, E.M.; Camus, M.; Tournaye, H.; Fatemi, H.M.; van Steirteghem, A.; Devroey, P. Incidence and prediction of ovarian hyperstimulation syndrome in women undergoing gonadotropin-releasing hormone antagonist in vitro fertilization cycles. Fertil. Steril. 2006, 85, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Steward, R.G.; Lan, L.; Shah, A.A.; Yeh, J.S.; Price, T.M.; Goldfarb, J.M.; Muasher, S.J. Oocyte number as a predictor for ovarian hyperstimulation syndrome and live birth: An analysis of 256,381 in vitro fertilization cycles. Fertil. Steril. 2014, 101, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, T. A multi-center, randomized, open-label, parallel group study of a natural micronized progesterone vaginal tablet as a luteal support agent in Japanese women undergoing assisted reproductive technology. Reprod. Med. Biol. 2015, 14, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Alper, M.M.; Smith, L.P.; Sills, E.S. Ovarian hyperstimulation syndrome: Current views on pathophysiology, risk factors, prevention, and management. J. Exp. Clin. Assist. Reprod. 2009, 6, 3. [Google Scholar]
- Olsson, H.; Sandström, R.; Bagger, Y. Dose-Exposure Proportionality of a Novel Recombinant Follicle-Stimulating Hormone (rFSH), FE 999049, Derived from a Human Cell Line, with Comparison between Caucasian and Japanese Women after Subcutaneous Administration. Clin. Drug Investig. 2015, 35, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Leijdekkers, J.A.; Torrance, H.L.; Schouten, N.E.; van Tilborg, T.C.; Oudshoorn, S.C.; Mol, B.W.J.; Eijkemans, M.J.C.; Broekmans, F.J.M. Individualized ovarian stimulation in IVF/ICSI treatment: It is time to stop using high FSH doses in predicted low responders. Hum. Reprod. 2020, 35, 1954–1963. [Google Scholar] [CrossRef]
- Roque, M.; Simon, C. Time to pregnancy: As important for patients as underestimated by doctors. Fertil. Steril. 2020, 113, 522–523. [Google Scholar] [CrossRef] [Green Version]
- Stormlund, S.; Sopa, N.; Zedeler, A.; Bogstad, J.; Prætorius, L.; Nielsen, H.S.; Kitlinski, M.L.; Skouby, S.O.; Mikkelsen, A.L.; Spangmose, A.L.; et al. Freeze-all versus fresh blastocyst transfer strategy during in vitro fertilisation in women with regular menstrual cycles: Multicentre randomised controlled trial. BMJ 2020, 370, m2519. [Google Scholar] [CrossRef] [PubMed]
- Bosch, E.; Labarta, E.; Crespo, J.; Simón, C.; Remohí, J.; Jenkins, J.; Pellicer, A. Circulating progesterone levels and ongoing pregnancy rates in controlled ovarian stimulation cycles for in vitro fertilization: Analysis of over 4000 cycles. Hum. Reprod. 2010, 25, 2092–2100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, S.M.; Klein, B.M.; Arce, J.-C. Comparison of antimüllerian hormone levels and antral follicle count as predictor of ovarian response to controlled ovarian stimulation in good-prognosis patients at individual fertility clinics in two multicenter trials. Fertil. Steril. 2015, 103, 923–930.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iliodromiti, S.; Anderson, R.A.; Nelson, S.M. Technical and performance characteristics of anti-Müllerian hormone and antral follicle count as biomarkers of ovarian response. Hum. Reprod. Update 2015, 21, 698–710. [Google Scholar] [CrossRef] [PubMed]
- Arce, J.-C.; La Marca, A.; Mirner Klein, B.; Nyboe Andersen, A.; Fleming, R. Antimüllerian hormone in gonadotropin releasing-hormone antagonist cycles: Prediction of ovarian response and cumulative treatment outcome in good-prognosis patients. Fertil. Steril. 2013, 99, 1644–1653.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broer, S.L.; Broekmans, F.J.M.; Laven, J.S.E.; Fauser, B.C.J.M. Anti-Müllerian hormone: Ovarian reserve testing and its potential clinical implications. Hum. Reprod. Update 2014, 20, 688–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Gong, F.; Zhu, Y.; Fang, W.; Yang, J.; Liu, J.; Hu, L.; Yang, D.; Liang, X.; Qiao, J. Anti-Müllerian hormone for prediction of ovarian response in Chinese infertile women undergoing IVF/ICSI cycles: A prospective, multi-centre, observational study. Reprod. Biomed. Online 2016, 33, 506–512. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Wang, X.; Li, Y.; Zhang, Y. Analysis of the women with the AMH concentrations below the limit of reference range but with the ideal number of retrieved oocytes. Arch. Gynecol. Obstet. 2020, 301, 1089–1094. [Google Scholar] [CrossRef]
- Available online: https://www.deutsches-ivf-register.de/perch/resources/dir-jahrbuch-2018-deutsch-4.pdf (accessed on 22 December 2022).
- Broksø Kyhl, L.-E.; Hesse, C.; Larsson, P.; Bruzelius, K.; Mannaerts, B. First-in-human trial assessing the pharmacokinetic-pharmacodynamic profile of a novel recombinant human chorionic gonadotropin in healthy women and men of reproductive age. Clin. Transl. Sci. 2021, 14, 1590–1599. [Google Scholar] [CrossRef]
- Thuesen, L.L.; Loft, A.; Egeberg, A.N.; Smitz, J.; Petersen, J.H.; Nyboe Andersen, A. A randomized controlled dose–response pilot study of addition of hCG to recombinant FSH during controlled ovarian stimulation for in vitro fertilization. Hum. Reprod. 2012, 27, 3074–3084. [Google Scholar] [CrossRef]
- Mannaerts, B.; Uilenbroek, J.; Schot, P.; de Leeuw, R. Folliculogenesis in Hypophysectomized Rats after Treatment with Recombinant Human Follicle-Stimulating Hormone. Biol. Reprod. 1994, 51, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.Y.; Ziebe, S.; Guoliang, X.; Byskov, A.G. Requirements for human chorionic gonadotropin and recombinant human luteinizing hormone for follicular development and maturation. J. Assist. Reprod. Genet. 1999, 16, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Y. hCG-induced loss of LH-hCG receptor and desensitization of adenylate cyclase. Adv. Exp. Med. Biol. 1979, 112, 717–722. [Google Scholar] [PubMed]
- Cortvrindt, R.G.; Hu, Y.; Liu, J.; Smitz, J.E.J. Timed analysis of the nuclear maturation of oocytes in early preantral mouse follicle culture supplemented with recombinant gonadotropin. Fertil. Steril. 1998, 70, 1114–1125. [Google Scholar] [CrossRef] [PubMed]
- Menon, K.M.J.; Munshi, U.M.; Clouser, C.L.; Nair, A.K. Regulation of Luteinizing Hormone/Human Chorionic Gonadotropin Receptor Expression: A Perspective1. Biol. Reprod. 2004, 70, 861–866. [Google Scholar] [CrossRef]
- Menon, K.M.J.; Menon, B. Structure, function and regulation of gonadotropin receptors—A perspective. Mol. Cell. Endocrinol. 2012, 356, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Loumaye, E.; Engrand, P.; Shoham, Z.; Hillier, S.G.; Baird, D.T.; Recombinant LH Study Group. Clinical evidence for an LH ‘ceiling’ effect induced by administration of recombinant human LH during the late follicular phase of stimulated cycles in World Health Organization type I and type II anovulation. Hum. Reprod. 2003, 18, 314–322. [Google Scholar] [CrossRef] [Green Version]
- Hugues, J.N.; Soussis, J.; Calderon, I.; Balasch, J.; Anderson, R.A.; Romeu, A.; Recombinant LH Study Group. Does the addition of recombinant LH in WHO group II anovulatory women over-responding to FSH treatment reduce the number of developing follicles? A dose-finding study. Hum. Reprod. 2005, 20, 629–635. [Google Scholar] [CrossRef] [Green Version]
- Filicori, M.; Cognigni, G.E.; Taraborrelli, S.; Spettoli, D.; Ciampaglia, W.; Tabarelli de Fatis, C.; Pocognoli, P.; Cantelli, B.; Boschi, S. Luteinzing Hormone Activity in Menotropins Optimizes Folliculogenesis and Treatment in Controlled Ovarian Stimulation. J. Clin. Endocrinol. Metab. 2001, 86, 337–343. [Google Scholar] [CrossRef]
- Filicori, M.; Cognigni, G.E.; Tabarelli, C.; Pocognoli, P.; Taraborrelli, S.; Spettoli, D.; Ciampaglia, W. Stimulation and Growth of Antral Ovarian Follicles by Selective LH Activity Administration in Women. J. Clin. Endocrinol. Metab. 2002, 87, 1156–1161. [Google Scholar] [CrossRef]
- Filicori, M.; Cognigni, G.E.; Gamberini, E.; Parmegiani, L.; Troilo, E.; Roset, B. Efficacy of low-dose human chorionic gonadotropin alone to complete controlled ovarian stimulation. Fertil. Steril. 2005, 84, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, J.V.; Kristensen, S.G.; Nielsen, M.E.; Humaidan, P.; Dal Canto, M.; Fadini, R.; Schmidt, K.T.; Ernst, E.; Yding Andersen, C. LH-Receptor Gene Expression in Human Granulosa and Cumulus Cells from Antral and Preovulatory Follicles. J. Clin. Endocrinol. Metab. 2012, 97, E1524–E1531. [Google Scholar] [CrossRef] [PubMed]
- Hillier, S.G.; Tetsuka, M. Role of androgens in follicle maturation and atresia. Baillieres. Clin. Obstet. Gynaecol. 1997, 11, 249–260. [Google Scholar] [CrossRef] [PubMed]
- McGee, E.A.; Hsueh, A.J.W. Initial and Cyclic Recruitment of Ovarian Follicles. Endocr. Rev. 2000, 21, 200–214. [Google Scholar]
- Franks, S.; Hardy, K. Androgen Action in the Ovary. Front. Endocrinol. 2018, 9, 452. [Google Scholar] [CrossRef]
- Group, T.E.O.S.; Borm, G.; Mannaerts, B. Treatment with the gonadotrophin-releasing hormone antagonist ganirelix in women undergoing ovarian stimulation with recombinant follicle stimulating hormone is effective, safe and convenient: Results of a controlled, randomized, multicentre trial. Hum. Reprod. 2000, 15, 1490–1498. [Google Scholar]
- Al-Inany, H.G.; Youssef, M.A.; Aboulghar, M.; Broekmans, F.; Sterrenburg, M.; Smit, J.; Abou-Setta, A.M. Gonadotrophin-releasing hormone antagonists for assisted reproductive technology. Cochrane Database Syst. Rev. 2011, CD001750. [Google Scholar] [CrossRef] [Green Version]
- Adda-Herzog, E.; Poulain, M.; de Ziegler, D.; Ayoubi, J.-M.; Fanchin, R. Premature progesterone elevation in controlled ovarian stimulation: To make a long story short. Fertil. Steril. 2018, 109, 563–570. [Google Scholar] [CrossRef] [Green Version]
- Griesinger, G.; Mannaerts, B.; Andersen, C.Y.; Witjes, H.; Kolibianakis, E.M.; Gordon, K. Progesterone elevation does not compromise pregnancy rates in high responders: A pooled analysis of in vitro fertilization patients treated with recombinant follicle-stimulating hormone/gonadotropin-releasing hormone antagonist in six trials. Fertil. Steril. 2013, 100, 1622–1628.e3. [Google Scholar] [CrossRef]
- Legro, R.S. Obesity and PCOS: Implications for diagnosis and treatment. Semin. Reprod. Med. 2012, 30, 496–506. [Google Scholar] [CrossRef] [Green Version]
- Abbara, A.; Patel, A.; Hunjan, T.; Clarke, S.A.; Chia, G.; Eng, P.C.; Phylactou, M.; Comninos, A.N.; Lavery, S.; Trew, G.H.; et al. FSH Requirements for Follicle Growth During Controlled Ovarian Stimulation. Front. Endocrinol. 2019, 10, 579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ledger, W.L.; Fauser, B.C.J.M.; Devroey, P.; Zandvliet, A.S.; Mannaerts, B.M.J.L. Corifollitropin alfa doses based on body weight: Clinical overview of drug exposure and ovarian response. Reprod. Biomed. Online 2011, 23, 150–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 2004, 81, 19–25. [CrossRef]
- Sahmay, S.; Atakul, N.; Oncul, M.; Tuten, A.; Aydogan, B.; Seyisoglu, H. Serum anti-mullerian hormone levels in the main phenotypes of polycystic ovary syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 170, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Teede, H.J.; Misso, M.L.; Costello, M.F.; Dokras, A.; Laven, J.; Moran, L.; Piltonen, T.; Norman, R.J.; Andersen, M.; Azziz, R.; et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil. Steril. 2018, 110, 364–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewailly, D.; Gronier, H.; Poncelet, E.; Robin, G.; Leroy, M.; Pigny, P.; Duhamel, A.; Catteau-Jonard, S. Diagnosis of polycystic ovary syndrome (PCOS): Revisiting the threshold values of follicle count on ultrasound and of the serum AMH level for the definition of polycystic ovaries. Hum. Reprod. 2011, 26, 3123–3129. [Google Scholar] [CrossRef] [PubMed]
- Van Zanden, J.; Wagenmakers-Huizinga, L.; Inia, L.; Muller Kobold, A. Comparison of the automated Roche Elecsys Cobas Anti Mullerian Hormone (AMH) assay with the Beckman AMH Gen II ELISA. Ned. Tijdschr. Klin. Chem. Labgeneesk. 2016, 41, 214–215. [Google Scholar]
- Dietz de Loos, A.; Hund, M.; Buck, K.; Meun, C.; Sillman, J.; Laven, J.S.E. Establishing an anti-müllerian hormone (AMH) cut-off to determine polycystic ovarian morphology (PCOM) supporting diagnosis of polycystic ovarian syndrome (PCOS): The aphrodite study. Fertil. Steril. 2019, 112, e391. [Google Scholar] [CrossRef]
- Lauritsen, M.P.; Bentzen, J.G.; Pinborg, A.; Loft, A.; Forman, J.L.; Thuesen, L.L.; Cohen, A.; Hougaard, D.M.; Nyboe Andersen, A. The prevalence of polycystic ovary syndrome in a normal population according to the Rotterdam criteria versus revised criteria including anti-Müllerian hormone. Hum. Reprod. 2014, 29, 791–801. [Google Scholar] [CrossRef]
Number of Patients | Allocation | Reproductive Outcomes | Dose Concentration | Clinical Outcomes | Reference |
---|---|---|---|---|---|
n = 701 | Cycle 2 n = 252; follitropin delta n = 261; follitropin alfa Cycle 3 n = 95; follitropin delta n = 93; follitropin alfa | Cycle 2 10.2 ± 5.2 vs. 9.9 ± 4.9; follicles ≥ 12 mm 9.2 ± 4.8 vs. 8.6 ± 4.3; oocytes retrieved 56.8 ± 23.5 vs. 52.6 ± 24.3; fertilization rate 5.1 ± 3.3 vs. 4.3 ± 2.8; total embryos D3 3.9 ± 3.1 vs. 3.3 ± 2.4; good quality embryos D3 2.8 ± 2.4 vs. 2.4 ± 2.1; total blastocysts D5 1.4 ± 1.7 vs. 1.2 ± 1.6; good quality blastocysts D5 Cycle 3 8.9 ± 4.5 vs. 9.8 ± 4.8; follicles ≥ 12 mm 8.3 ± 4.0 vs. 8.9 ± 4.2; oocytes retrieved 56.3 ± 20.6 vs. 49.7 ± 24.9; fertilization rate 4.4 ± 2.4 vs. 4.4 ± 3.3; total embryos D3 3.2 ± 2.2 vs. 3.3 ± 3.0; good quality embryos D3 2.2 ± 1.8 vs. 2.4 ± 2.3; total blastocysts D5 1.2 ± 1.5 vs. 1.2 ± 1.8; good quality blastocysts D5 | Cycle 2 18 µg—max dose 225 IU—max dose; 75 IU adjustments, up to max 450 IU Cycle 3 24 µg—max dose 300 IU—max dose; 75 IU adjustments, up to max 450 IU | Cycle 2 n = 82 (32.5%) vs. n = 79 (30.3%)—clinical pregnancy rate n = 74 (29.4%) vs. n = 71 (27.2%)—vital pregnancy rate n = 70 (27.8%) vs. n = 67 (25.7%)—ongoing pregnancy rate n = 69 (27.4%) vs. n = 66 (25.3%)—live birth rate n = 69 (27.4%) vs. n = 66 (25.3%)—live birth rate at 4 weeks n = 5 (7.1%) vs. n = 2 (3.0%)—multiple pregnancy rate Cycle 3 n = 31 (32.6%) vs. n = 30 (32.3%)—clinical pregnancy rate n = 26 (27.4%) vs. n = 27 (29.0%)—vital pregnancy rate n = 26 (27.4%) vs. n = 26 (28.0%)—ongoing pregnancy rate n = 25 (26.3%) vs. n = 25 (26.9%)—live birth rate n = 25 (26.3%) vs. n = 25 (26.9%)—live birth rate at 4 weeks n = 8 (30.8%) vs. n = 10 (38.5%)—multiple pregnancy rate | [19] |
n = 158 | n = 37; follitropin delta n = 40; follitropin delta n = 40; follitropin delta n = 41; follitropin beta | 7.0 ± 4.1 vs. 9.1 ± 5.6 vs. 11.6 ± 5.6 vs. 11.0 ± 4.7; oocytes retrieved in all patients 5.3 ± 3.7 vs. 5.6 ± 3.5 vs. 9.5 ± 3.0 vs. 9.3 ± 4.3; oocytes retrieved in low AMH stratum 7.9 ± 4.1 vs. 11.2 ± 5.6 vs. 12.9 ± 6.4 vs. 11.8 ± 4.7; oocytes retrieved in high AMH stratum 3.2 ± 2.2 vs. 4.4 ± 3.1 vs. 5.9 ± 3.6 vs. 5.7 ± 3.8; fertilized oocytes in all patients 2.5 ± 2.2 vs. 2.9 ± 2.3 vs. 3.9 ± 2.3 vs. 5.4 ± 3.2; fertilized oocytes in low AMH stratum 3.5 ± 2.2 vs. 5.3 ± 3.2 vs. 7.0 ± 3.7 vs. 5.9 ± 4.1; fertilized oocytes in high AMH stratum 21.4 ± 8.5 vs. 23.6 ± 9.5 vs. 28.5 ± 10.2 vs. 27.9 ± 10.0; follicular volume in all patients 19.9 ± 8.4 vs. 18.9 ± 6.7 vs. 23.2 ± 6.3 vs. 24.7 ± 9.1; follicular volume in low AMH stratum 22.1 ± 8.6 vs. 26.4 ± 10.0 vs. 31.7 ± 10.7 vs. 29.6 ± 10.2; follicular volume in high AMH stratum | 6 µg 9 µg 12 µg 150 IU | n = 9 (24%) vs. n = 8 (20%) vs. n = 13 (33%) vs. n = 8 (20%)—clinical pregnancy rate per started cycle n = 9 (35%) vs. n = 8 (26%) vs. n = 13 (41%) vs. n = 8 (26%)—clinical pregnancy rate per cycle with transfer n = 7 (19%) vs. n = 8 (20%) vs. n = 10 (25%) vs. n = 6 (15%)—vital pregnancy rate per started cycle n = 7 (27%) vs. n = 8 (26%) vs. n = 10 (31%) vs. n = 6 (19%)—vital pregnancy rate per cycle with transfer n = 6 (16%) vs. n = 7 (18%) vs. n = 10 (25%) vs. n = 6 (15%)—ongoing pregnancy rate per started cycle n = 6 (23%) vs. n = 7 (23%) vs. n = 10 (31%) vs. n = 6 (19%)—ongoing pregnancy rate per cycle with transfer n = 6 (16%) vs. n = 7 (18%) vs. n = 9 (23%) vs. n = 6 (15%)—live birth rate per started cycle n = 6 (23%) vs. n = 7 (23%) vs. n = 9 (28%) vs. n = 6 (19%)—live birth rate per cycle with transfer n = 6 (16%) vs. n = 7 (18%) vs. n = 9 (23%) vs. n = 6 (15%)—live birth rate at 4 weeks per started cycle n = 6 (23%) vs. n = 7 (23%) vs. n = 9 (28%) vs. n = 6 (19%)—live birth rate at 4 weeks per started cycle | [20] |
n = 403 | n = 297; follitropin alfa or beta n = 106; follitropin delta | 8.42 (SD 4.64) vs. 7.41 (SD 3.43); mean no. of follicles ≥ 15 mm 3.94 (SD 2.14) vs. 3.60 (SD 1.87); mean no. of follicles ≥ 18 mm 1.47 (SD 1.23) vs. 1.41 (SD 1.13); mean no. of follicles ≥ 20 mm 12.3 (SD 7.7) vs. 10.4 (SD 6.1); mean no. of oocytes retrieved 0.760 (SD 0.207) vs. 0.732 (SD 0.240); proportion of normal fertilization | 1951 IU (SD 849) 132 µg (SD 245) | 35.3% vs. 38.7%—clinical pregnancy rate per fresh transfer cycles D3 37.6% vs. 38.5%—clinical pregnancy rate per fresh transfer cycles D5 | [21] |
n = 153 | n = 78; follitropin delta n = 75; follitropin alfa | follicles ≥ 12 mm 2.5 ± 2.9 vs. 4.0 ± 4.0; stimulation D6 12.1 ± 7.0 vs. 18.3 ± 7.0; end of stimulation follicles ≥ 17 mm 5.2 ± 3.6 vs. 7.7 ± 4.9; end of stimulation 9.3 ± 6.7 vs. 17.9 ± 8.7; oocytes retrieved per started cycle 10.3 ± 6.2 vs. 17.9 ± 8.7; oocytes for subjects with oocyte retrieval 3.2 ± 2.9 vs. 5.9 ± 5.1; blastocysts D5 | 12 µg—no limit min dose 150 IU (11 µg); 75 IU adjustments | 29.5% vs. 25.3%—vital pregnancy rate 28.2% vs. 24.0%—ongoing pregnancy rate | [22] |
n = 347 | n = 170; follitropin delta n = 177; follitropin beta | 9.3 ± 5.4 vs. 10.5 ± 6.1; oocytes retrieved 7.2 ± 3.7 vs. 7.0 ± 3.4; oocytes retrieved when AMH < 15 pmol/L 10.8 ± 5.9 vs. 12.9 ± 6.4; oocytes retrieved when AMH ≥ 15 pmol/L 3.1 ± 2.7 vs. 4.2 ± 3.4; blastocysts D5 | 6 µg—min dose-12 µg—max dose 150 IU (15 µg); 75 IU adjustments, up to max 375 IU | n = 43 (25.3%) vs. n = 42 (23.7%)—clinical pregnancy rate per started cycle n = 43 (31.9%) vs. n = 42 (29.8%)—clinical pregnancy rate per cycle with transfer n = 40 (23.5%) vs. n = 34 (19.2%)—ongoing pregnancy rate per started cycle n = 40 (29.6%) vs. n = 34 (24.1%)—ongoing pregnancy rate per cycle with transfer n = 40 (23.5%) vs. n = 33 (18.6%)—live birth rate per started cycle n = 40 (29.6%) vs. n = 33 (23.4%)—live birth rate per cycle with transfer | [23] |
n = 1009 | n = 499; follitropin delta n = 510; follitropin alfa | 10.0 ± 6.1 vs. 12.4 ± 7.3; oocytes retrieved in all patients 64 ± 23 vs. 64 ± 21; fertilization rate in all patients 7.0 ± 4.6 vs. 8.7 ± 5.5; embryos D3 in all patients 9.6 ± 5.3 vs. 7.6 ± 3.5; oocytes retrieved when AMH < 15 pmol/L 66 ± 22 vs. 67 ± 22; fertilization rate when FAMH < 15 pmol/L 6.8 ± 3.7 vs. 5.6 ± 2.9; embryos D3 when AMH < 15 pmol/L 10.1 ± 6.3 vs. 13.8 ± 7.5; oocytes retrieved when AMH ≥ 15 pmol/L 63 ± 23 vs. 63 ± 21; fertilization rate when AMH ≥ 15 pmol/L 7.0 ± 4.8 vs. 9.6 ± 5.7; embryos D3 when AMH ≥ 15 pmol/L | 6 µg—min dose-12 µg—max dose 150 IU (11 µg); 75 IU adjustments, up to max 450 IU | n = 180 (36.1%) vs. n = 159 (31.2%)—clinical pregnancy rate n = 156 (31.3%) vs. n = 131 (25.7%)—ongoing pregnancy rate n = 156 (31.3%) vs. n = 126 (24.7%)—live birth rate n = 156 (31.3%) vs. n = 126 (24.7%)—live birth rate at 4 weeks | [24] |
n = 360 | - | 11.2 (±6.7); no. of oocytes 69.1 (±25); rate of fertilization in two-pronuclear/metaphase II 55.5 (±24.5); rate of fertilization in two-pronuclear/oocyte 81.7 (±18.1); rate of fertilization in metaphase II/oocyte | 8.7 µg—median 9.0 µg (±2.3 SD)—mean | n = 109 (38.2%)—clinical pregnancy rate in the first fresh cycle with an ET 36.8%—clinical pregnancy rate in the fresh transfer cycle with a SET 49.4%—cumulative clinical pregnancy rate for the first stimulation cycle including cryopreservation cycles 9.3%—spontaneous miscarriage rate per transfer for the first fresh cycle 13.2%—spontaneous miscarriage rate per transfer for the first stimulation cycle including cryopreservation cycles 20.7%—miscarriage rate per clinical pregnancy in the first fresh cycle 23.4%—miscarriage rate per clinical pregnancy in the first stimulation cycle including cryopreservation cycles | [25] |
n = 619 | n = 104; placebo n = 104; follitropin delta n = 101; follitropin delta n = 99; follitropin delta n = 107; follitropin delta n = 104; follitropin delta | 12.7 vs. 11.8 vs. 11.6 vs. 11.0 vs. 11.4 vs. 10.6; follicles ≥ 12 mm 5.2 vs. 5.3 vs. 5.1 vs. 5.3 vs. 5.3 vs. 4.9; follicles ≥ 17 mm 12.5 vs. 10.6 vs. 10.7 vs. 10.6 vs. 11.3 vs. 9.7; oocytes retrieved 9.7 vs. 8.2 vs. 8.3 vs. 8.0 vs. 8.4 vs. 7.3; oocytes metaphase II 7.4 vs. 6.0 vs. 6.1 vs. 5.5 vs. 5.9 vs. 5.1; oocytes fertilized 7.4 vs. 5.9 vs. 6.1 vs. 5.5 vs. 5.9 vs. 5.1; embryos D3 5.3 vs. 4.0 vs. 4.6 vs. 3.6 vs. 4.2 vs. 3.5; blastocysts D5 3.3 vs. 2.2 vs. 3.0 vs. 2.2 vs. 2.6 vs. 2.1; good quality blastocysts D5 | 1 µg 2 µg 4 µg 8 µg 12 µg | 42.9% vs. 28.4% vs. 30.1% vs. 41.3% vs. 40.3% vs. 35.3%—vital pregnancy rate 42.9% vs. 28.4% vs. 29.1% vs. 39.2% vs. 37.4% vs. 30.4%—ongoing pregnancy rate | [26] |
Country | Number of Participants | Type of Study | Stage | Drug | Dose Concentration | Estimation Completion | Identifier | Reference |
---|---|---|---|---|---|---|---|---|
Spain n = 1 center | n = 300 | Interventional (Randomized) | Phase 3 | follitropin delta follitropin alfa | 5 µg—min dose; 20 µg—max dose; 5 µg adjustments 225 IU; 75 IU adjustments; 75 IU—min; 300 IU—max; | 2023 | NCT05263388 | [27] |
Germany n = 1 center | n = 300 | Observational (Cohort) | - | follitropin delta | NS | 2024 | NCT05173597 | [28] |
Denmark n = 1 center | n = 200 | Observational (Cohort) | - | follitropin delta | NS | 2024 | NCT05499052 | [29] |
India n = 11 centers | n = 220 | Interventional (Randomized) | Phase 3 | follitropin delta follitropin alfa | 12 µg—max 150 IU; 75 IU adjustments, up to 450 IU | 2024 | NCT04773353 | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doroftei, B.; Ilie, O.-D.; Anton, N.; Marcu, O.-A.; Scripcariu, I.-S.; Ilea, C. A Narrative Review Discussing the Efficiency of Personalized Dosing Algorithm of Follitropin Delta for Ovarian Stimulation and the Reproductive and Clinical Outcomes. Diagnostics 2023, 13, 177. https://doi.org/10.3390/diagnostics13020177
Doroftei B, Ilie O-D, Anton N, Marcu O-A, Scripcariu I-S, Ilea C. A Narrative Review Discussing the Efficiency of Personalized Dosing Algorithm of Follitropin Delta for Ovarian Stimulation and the Reproductive and Clinical Outcomes. Diagnostics. 2023; 13(2):177. https://doi.org/10.3390/diagnostics13020177
Chicago/Turabian StyleDoroftei, Bogdan, Ovidiu-Dumitru Ilie, Nicoleta Anton, Olivia-Andreea Marcu, Ioana-Sadyie Scripcariu, and Ciprian Ilea. 2023. "A Narrative Review Discussing the Efficiency of Personalized Dosing Algorithm of Follitropin Delta for Ovarian Stimulation and the Reproductive and Clinical Outcomes" Diagnostics 13, no. 2: 177. https://doi.org/10.3390/diagnostics13020177