Fenugreek and Its Effects on Muscle Performance: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Search Strategy
2.3. Selection Criteria
2.4. Data Extraction
2.5. Quality Assessment
3. Results
3.1. Characteristics of the Included Studies
3.2. Findings
4. Discussion
4.1. Body Composition and Muscle Performance
4.2. Ergogenic Aid
4.3. Post-Exercise Recovery
4.4. Health Benefits of Fenugreek
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mazza, G.; Di Tommaso, D.; Foti, S. Volatile constituents of Sicilian fenugreek (Trigonella foenum-graecum L.) seeds. Sci. Aliment. 2002, 22, 249–264. [Google Scholar] [CrossRef]
- Shashikumar, J.N.; Champawat, P.S.; Mudgal, V.D.; Jain, S.K.; Deepak, S.; Mahesh, K. A review: Food, medicinal and nutraceutical properties of fenugreek (Trigonella foenum-graecum L.). Int. J. Chem. Stud. 2018, 6, 1239–1245. [Google Scholar]
- Nagulapalli Venkata, K.C.; Swaroop, A.; Bagchi, D.; Bishayee, A. A small plant with big benefits: Fenugreek (Trigonella foenum-graecum Linn.) for disease prevention and health promotion. Mol. Nutr. Food Res. 2017, 61, 1600950. [Google Scholar] [CrossRef] [PubMed]
- Poole, C.; Bushey, B.; Foster, C.; Campbell, B.; Willoughby, D.; Kreider, R.; Taylor, L.; Wilborn, C. The effects of a commercially available botanical supplement on strength, body composition, power output, and hormonal profiles in resistance-trained males. J. Int. Soc. Sports Nutr. 2010, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Haghani, K.; Bakhtiyari, S.; Doost Mohammadpour, J. Alterations in plasma glucose and cardiac antioxidant enzymes activity in streptozotocin-induced diabetic rats: Effects of Trigonella foenum-graecum extract and swimming training. Can. J. Diabetes 2016, 40, 135–142. [Google Scholar] [CrossRef]
- Sheweita, S.A.; ElHady, S.A.; Hammoda, H.M. Trigonella stellata reduced the deleterious effects of diabetes mellitus through alleviation of oxidative stress, antioxidant- and drug-metabolizing enzymes activities. J. Ethnopharmacol. 2020, 256, 112821. [Google Scholar] [CrossRef]
- Mahapatra, K.; Ghosh, A.K.; De, S.; Ghosh, N.; Sadhukhan, P.; Chatterjee, S. Assessment of cytotoxic and genotoxic potentials of a mononuclear Fe(II) Schiff base complex with photocatalytic activity in Trigonella. Biochim. Biophys. Acta Gen. Subj. 2020, 1864, 129503. [Google Scholar] [CrossRef]
- Afroz, R.; Rahman, K.A.; Lotus, M.J.; Afrin, T.; Yeasmin, N.; Moon, K.J. Histopathological evaluation of gastro protective effect of Trigonella foenum Graecum seed (Methi) and omeprazole in experimentally induced gastric ulcer in rats. J. Dhaka Med. College 2020, 28, 67–75. [Google Scholar] [CrossRef]
- Nagamma, T.; Konuri, A.; Bhat, K.M.R.; Maheshwari, R.; Udupa, P.; Nayak, Y. Modulation of inflammatory markers by petroleum ether fraction of Trigonella foenum-graecum L. seed extract in ovariectomized rats. J. Food Biochem. 2021, 45, e13690. [Google Scholar] [CrossRef]
- Al-Timimi, L.A.N. Antibacterial and anticancer activities of fenugreek seed extract. Asian Pac. J. Cancer Prev. 2019, 20, 3771–3776. [Google Scholar] [CrossRef] [Green Version]
- Moustafa, E.M.; Dawood, M.A.; Assar, D.H.; Omar, A.A.; Elbialy, Z.I.; Farrag, F.A.; Shukry, M.; Zayed, M.M. Modulatory effects of fenugreek seeds powder on the histopathology, oxidative status, and immune related gene expression in Nile tilapia (Oreochromis niloticus) infected with Aeromonas hydrophila. Aquaculture 2020, 515, 734589. [Google Scholar] [CrossRef]
- Gao, F.; Du, W.; Zafar, M.I.; Shafqat, R.A.; Jian, L.; Cai, Q.; Lu, F. 4-Hydroxyisoleucine ameliorates an insulin resistant-like state in 3T3-L1 adipocytes by regulating TACE/TIMP3 expression. Drug Des. Devel. Ther. 2015, 9, 5727–5736. [Google Scholar] [CrossRef] [Green Version]
- Belaïd-Nouira, Y.; Bakhta, H.; Haouas, Z.; Flehi-Slim, I.; Neffati, F.; Najjar, M.F.; Cheikh, H.B. Fenugreek seeds, a hepatoprotector forage crop against chronic AlCl3 toxicity. BMC Vet. Res. 2013, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Doshi, M.; Mirza, A.; Umarji, B.; Karambelkar, R. Effect of Trigonella foenum-graecum (fenugreek/methi) on hemoglobin levels in females of child bearing age. Biomed. Res. 2012, 23, 47–50. [Google Scholar]
- Zameer, S.; Najmi, A.K.; Vohora, D.; Akhtar, M. A review on therapeutic potentials of Trigonella foenum graecum (fenugreek) and its chemical constituents in neurological disorders: Complementary roles to its hypolipidemic, hypoglycemic, and antioxidant potential. Nutr. Neurosci. 2018, 21, 539–545. [Google Scholar] [CrossRef]
- Konuri, A.; Bhat, K.M.R.; Rai, K.S.; Gourishetti, K.; Phaneendra, M.Y.S. Supplementation of fenugreek with choline–docosahexaenoic acid attenuates menopause induced memory loss, BDNF and dendritic arborization in ovariectomized rats. Anat. Sci. Int. 2021, 96, 197–211. [Google Scholar] [CrossRef]
- Mansoori, A.; Hosseini, S.; Zilaee, M.; Hormoznejad, R.; Fathi, M. Effect of fenugreek extract supplement on testosterone levels in male: A meta-analysis of clinical trials. Phytother. Res. 2020, 34, 1550–1555. [Google Scholar] [CrossRef]
- Alcantara, J.M.A.; Sanchez-Delgado, G.; Martinez-Tellez, B.; Labayen, I.; Ruiz, J.R. Impact of cow’s milk intake on exercise performance and recovery of muscle function: A systematic review. J. Int. Soc. Sports Nutr. 2019, 16, 22. [Google Scholar] [CrossRef] [Green Version]
- McCubbin, A.J.; Allanson, B.A.; Odgers, J.N.; Cort, M.M.; Costa, R.J.; Cox, G.R.; Crawshay, S.T.; Desbrow, B.; Freney, E.G.; Gaskell, S.K.; et al. Sports Dietitians Australia position statement: Nutrition for exercise in hot environments. Int. J. Sport Nutr. Exerc. Metab. 2020, 30, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Areta, J.L.; Burke, L.M.; Ross, M.L.; Camera, D.M.; West, D.W.; Broad, E.M.; Jeacocke, N.A.; Moore, D.R.; Stellingwerff, T.; Phillips, S.M.; et al. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J. Physiol. 2013, 591, 2319–2331. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Hayden, J.A.; Côté, P.; Bombardier, C. Evaluation of the quality of prognosis studies in systematic reviews. Ann. Intern. Med. 2006, 144, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Goh, J.; Menke, W.; Herrick, L.P.; Campbell, M.S.; Abel, M.G.; Fleenor, B.S.; Bergstrom, H.C. Examination of curcumin and fenugreek soluble fiber supplementation on submaximal and maximal aerobic performance indices. J. Funct. Morphol. Kinesiol. 2020, 5, 34. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.; Poole, C.; Pena, E.; Lewing, M.; Kreider, R.; Foster, C.; Wilborn, C. Effects of combined creatine plus fenugreek extract vs. creatine plus carbohydrate supplementation on resistance training adaptations. J. Sports Sci. Med. 2011, 10, 254–260. [Google Scholar]
- Slivka, D.; Cuddy, J.; Hailes, W.; Harger, S.; Ruby, B. Glycogen resynthesis and exercise performance with the addition of fenugreek extract (4-hydroxyisoleucine) to post exercise carbohydrate feeding. Amino Acids 2008, 35, 439–444. [Google Scholar] [CrossRef]
- Ruby, B.C.; Gaskill, S.E.; Slivka, D.; Harger, S.G. The addition of fenugreek extract (Trigonella foenum-graecum) to glucose feeding increases muscle glycogen resynthesis after exercise. Amino Acids 2005, 28, 71–76. [Google Scholar] [CrossRef]
- Wankhede, S.; Mohan, V.; Thakurdesai, P. Beneficial effects of fenugreek glycoside supplementation in male subjects during resistance training: A randomized controlled pilot study. J. Sport Health Sci. 2016, 5, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Aydogan, U.; Eroglu, A.; Akbulut, H.; Yildiz, Y.; Gok, D.E.; Sonmez, A.; Aydin, T.; Bolu, E.; Saglam, K. Evaluation of the isokinetic muscle strength, balance and anaerobic performance in patients with young male hypogonadism. Endocr. J. 2012, 59, 321–327. [Google Scholar] [CrossRef] [Green Version]
- Basualto-Alarcón, C.; Jorquera, G.; Altamirano, F.; Jaimovich, E.; Estrada, M. Testosterone signals through mTOR and androgen receptor to induce muscle hypertrophy. Med. Sci. Sports Exerc. 2013, 45, 1712–1720. [Google Scholar] [CrossRef]
- Bajer, B.; Vlcek, M.; Galusova, A.; Imrich, R.; Penesova, A. Exercise associated hormonal signals as powerful determinants of an effective fat mass loss. Endocr. Regul. 2015, 49, 151–163. [Google Scholar] [CrossRef]
- Aswar, U.; Mohan, V.; Bhaskaran, S.; Bodhankar, S.L. Study of galactomanan on androgenic and anabolic activity in male rats. Pharmacol. Online Young Res. 2008, 2, 56–65. [Google Scholar]
- Rao, A.J.; Mallard, A.R.; Grant, R. Testofen® (Fenugreek extract) increases strength and muscle mass compared to placebo in response to calisthenics. A randomized control trial. Transl. Sports Med. 2020, 3, 374–380. [Google Scholar] [CrossRef]
- Woodgate, D.E.; Conquer, J.A. Effects of a stimulant-free dietary supplement on body weight and fat loss in obese adults: A six-week exploratory study. Curr. Ther. Res. Clin. Exp. 2003, 64, 248–262. [Google Scholar] [CrossRef] [Green Version]
- Ikeuchi, M.; Yamaguchi, K.; Koyama, T.; Sono, Y.; Yazawa, K. Effects of fenugreek seeds (Trigonella foenum greaecum) extract on endurance capacity in mice. J. Nutr. Sci. Vitaminol. 2006, 52, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Sellami, M.; Slimeni, O.; Pokrywka, A.; Kuvačić, G.; DHayes, L.; Milic, M.; Padulo, J. Herbal medicine for sports: A review. J. Int. Soc. Sports Nutr. 2018, 15, 14. [Google Scholar] [CrossRef] [Green Version]
- Greenhaff, P.L. The creatine-phosphocreatine system: There’s more than one song in its repertoire. J. Physiol. 2001, 537 Pt 3, 657. [Google Scholar] [CrossRef]
- Jäger, R.; Purpura, M.; Shao, A.; Inoue, T.; Kreider, R.B. Analysis of the efficacy, safety, and regulatory status of novel forms of creatine. Amino Acids 2011, 40, 1369–1383. [Google Scholar] [CrossRef] [Green Version]
- Tomcik, K.A.; Smiles, W.J.; Camera, D.M.; Hügel, H.M.; Hawley, J.A.; Watts, R. Fenugreek increases insulin-stimulated creatine content in L6C11 muscle myotubes. Eur. J. Nutr. 2017, 56, 973–979. [Google Scholar] [CrossRef]
- Becque, M.D.; Lochmann, J.D.; Melrose, D.R. Effects of oral creatine supplementation on muscular strength and body composition. Med. Sci. Sports Exerc. 2000, 32, 654–658. [Google Scholar] [CrossRef]
- Bemben, M.G.; Bemben, D.A.; Loftiss, D.D.; Knehans, A.W. Creatine supplementation during resistance training in college football athletes. Med. Sci. Sports Exerc. 2001, 33, 1667–1673. [Google Scholar] [CrossRef]
- Albaker, W.; El-Ashker, S.; Baraka, M.A.; El-Tanahi, N.; Ahsan, M.; Al-Hariri, M. Adiposity and cardiometabolic risk assessment among university students in Saudi Arabia. Sci. Prog. 2021, 104, 36850421998532. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, A.M. Andropause: Clinical implications of the decline in serum testosterone levels with aging in men. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, M76–M99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, A.; Steels, E.; Inder, W.J.; Abraham, S.; Vitetta, L. Testofen, a specialised Trigonella foenum-graecum seed extract reduces age-related symptoms of androgen decrease, increases testosterone levels and improves sexual function in healthy aging males in a double-blind randomised clinical study. Aging Male 2016, 19, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Pavin, N.F.; Izaguirry, A.P.; Soares, M.B.; Spiazzi, C.C.; Mendez, A.S.L.; Leivas, F.G.; Brum, D.S.; Cibin, F.W.S. Tribulus terrestris protects against male reproductive damage induced by cyclophosphamide in mice. Oxid. Med. Cell Longev. 2018, 2018, 5758191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craven, J.; Desbrow, B.; Sabapathy, S.; Bellinger, P.; McCartney, D.; Irwin, C. The effect of consuming carbohydrate with and without protein on the rate of muscle glycogen re-synthesis during short-term post-exercise recovery: A systematic review and meta-analysis. Sports Med. Open 2021, 7, 9. [Google Scholar] [CrossRef]
- Ivy, J.L.; Lee, M.C.; Brozinick, J.T.; Reed, M.J. Muscle glycogen storage after different amounts of carbohydrate ingestion. J. Appl. Physiol. 1988, 65, 2018–2023. [Google Scholar] [CrossRef]
- Zawadzki, K.M.; Yaspelkis, B.B., 3rd; Ivy, J.L. Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. J. Appl. Physiol. 1992, 72, 1854–1859. [Google Scholar] [CrossRef]
- Tipton, K.D. Nutritional support for exercise-induced injuries. Sports Med. 2015, 45 (Suppl. 1), S93–S104. [Google Scholar] [CrossRef] [Green Version]
- Demling, R.H. Nutrition, anabolism, and the wound healing process: An overview. Eplasty 2009, 9, e9. [Google Scholar]
- Lorenz, H.P.; Longaker, M.T. Wounds: Biology, Pathology, and Management. In Surgery: Basic Science and Clinical Evidence, 2nd ed.; Norton, J.A., Barie, P.S., Bollinger, R.R., Chang, A.E., Lowry, S.F., Mulvihill, S.J., Pass, H.I., Tompson, R.W., Eds.; Springer: New York, NY, USA, 2008; pp. 191–208. [Google Scholar]
- Lee, D.Y.; Kim, E.H. Therapeutic Effects of Amino Acids in Liver Diseases: Current Studies and Future Perspectives. J. Cancer Prev. 2019, 24, 72–78. [Google Scholar] [CrossRef]
- Alvarez-Mon, M.A.; Gómez-Lahoz, A.M.; Orozco, A.; Lahera, G.; Diaz, D.; Ortega, M.A.; Albillos, A.; Quintero, J.; Aubá, E.; Monserrat, J.; et al. Expansion of CD4 T Lymphocytes Expressing Interleukin 17 and Tumor Necrosis Factor in Patients with Major Depressive Disorder. J. Pers. Med. 2021, 11, 220. [Google Scholar] [CrossRef]
- Bremner, J.D.; Gurel, N.Z.; Wittbrodt, M.T.; Shandhi, M.H.; Rapaport, M.H.; Nye, J.A.; Pearce, B.D.; Vaccarino, V.; Shah, A.J.; Park, J.; et al. Application of Noninvasive Vagal Nerve Stimulation to Stress-Related Psychiatric Disorders. J. Pers. Med. 2020, 10, 119. [Google Scholar] [CrossRef]
- Di Lernia, D.; Lacerenza, M.; Ainley, V.; Riva, G. Altered Interoceptive Perception and the Effects of Interoceptive Analgesia in Musculoskeletal, Primary, and Neuropathic Chronic Pain Conditions. J. Pers. Med. 2020, 10, 201. [Google Scholar] [CrossRef]
- Guerrini Usubini, A.; Cattivelli, R.; Varallo, G.; Castelnuovo, G.; Molinari, E.; Giusti, E.M.; Pietrabissa, G.; Manari, T.; Filosa, M.; Franceschini, C.; et al. The Relationship between Psychological Distress during the SecondWave Lockdown of COVID-19 and Emotional Eating in Italian Young Adults: The Mediating Role of Emotional Dysregulation. J. Pers. Med. 2021, 11, 569. [Google Scholar] [CrossRef]
- Halaris, A.; Sohl, E.; Whitham, E.A. Treatment-Resistant Depression Revisited: A Glimmer of Hope. J. Pers. Med. 2021, 11, 155. [Google Scholar] [CrossRef]
- Hausenblas, H.A.; Conway, K.L.; Coyle KR, M.; Barton, E.; Smith, L.D.; Esposito, M.; Harvey, C.; Oakes, D.; Hooper, D.R. Efficacy of fenugreek seed extract on men’s psychological and physical health: A randomized placebo-controlled double-blind clinical trial. J. Complement. Integr. Med. 2020, 18, 445–448. [Google Scholar] [CrossRef]
- Kooshki, A.; Khazaei, Z.; Rad, M.; Zarghi, A.; Mogaddam, A. Effects of fenugreek seed powder on stress-induced hyperglycemia and clinical outcomes in critically ill patients: A randomized clinical trial. Biomed. Res. Ther. 2018, 5, 2664–2670. [Google Scholar] [CrossRef]
- Pandaran Sudheeran, S.; Jacob, D.; Natinga Mulakal, J.; Gopinathan Nair, G.; Maliakel, A.; Maliakel, B.; Kuttan, R.; Im, K. Safety, Tolerance, and Enhanced Efficacy of a Bioavailable Formulation of Curcumin With Fenugreek Dietary Fiber on Occupational Stress: A Randomized, Double-Blind, Placebo-Controlled Pilot Study. J. Clin. Psychopharmacol. 2016, 36, 236–243. [Google Scholar] [CrossRef]
- Sindhu, G.; Shyni, G.L.; Pushpan, C.K.; Bala Nambisan, B.; Helen, A. (2018). Evaluation of anti-arthritic potential of Trigonella foenum graecum L. (Fenugreek) mucilage against rheumatoid arthritis. Prostaglandins Other Lipid Mediat. 2018, 138, 48–53. [Google Scholar] [CrossRef]
- Younesy, S.; Amiraliakbari, S.; Esmaeili, S.; Alavimajd, H.; Nouraei, S. Effects of fenugreek seed on the severity and systemic symptoms of dysmenorrhea. J. Reprod. Infertil. 2014, 15, 41–48. [Google Scholar]
- Elsaadany, M.A.; AlTwejry, H.M.; Zabran, R.A.; AlShuraim, S.A.; AlShaia, W.A.; Abuzaid, O.I.; AlBaker, W.I. Antihyperglycemic Effect of Fenugreek and Ginger in Patients with Type 2 Diabetes: A Double-Blind, Placebo-controlled Study. Curr. Nutr. Food Sci. 2022, 18, 231–237. [Google Scholar] [CrossRef]
- Fuller, S.; Stephens, J.M. Diosgenin, 4-hydroxyisoleucine, and fiber from fenugreek: Mechanisms of actions and potential effects on metabolic syndrome. Adv. Nutr. 2015, 6, 189–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arshadi, S.; Bakhtiyari, S.; Bakhtiyari, S.; Haghani, K.; Valizadeh, A. Effects of Fenugreek Seed Extract and Swimming Endurance Training on Plasma Glucose and Cardiac Antioxidant Enzymes Activity in Streptozotocin-induced Diabetic Rats. Osong Public Health Res. Perspect. 2015, 6, 87–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Studies | Location | Mean Age | Sample Size | Sex | Design | Daily Dose | Intervention/Control | Duration | Limitations | Quality Score |
---|---|---|---|---|---|---|---|---|---|---|
Wankhede et al. [27] | India | 23 ± 3 | 60 | M | DBRPC | 300 mg/day | GF/PB | Eight weeks | Involved male participants only | 6 |
Poole et al. [4] | USA | 21 ± 2 | 49 | M | DBRPC | 500 mg | FG/PB | Eight weeks | Involved male participants only | 6 |
Taylor et al. [24] | USA | 21 ± 2 | 47 | M | RPC | 900 mg | FGE/PB | Eight weeks | Involved male participants only | 5 |
Goh et al. [23] | USA | 20 ± 1 | 45 | M/F | DBRPC | 300 mg/day | SF/PB | 28 days | (i) Excluded the participants who were below fitness strata, i.e., “very poor” and “high” fitness. Hence, the findings cannot be generalized to individuals falling within those fitness categories, (ii) Dependence on subject compliance, and (iii) Participants are confined to the laboratory during the supplementation and testing periods; hence sleep and dietary intake outside of the three days prior to pre-and post-test were not accounted. | 4 |
Ruby et al. [26] | USA | 26 ± 5 | 6 | M | DBRPC | 2.0 mg.kg−1 | FGE/PB | 2 h | (i) Very small sample size (ii) Involved male participants only | 3 |
Slivka et al. [25] | USA | 28 ± 9 | 8 | M | DBRPC | 1.99 ± 0.20 mg.kg−1 | FGE/PB | 15 h | (i) Very small sample size (ii) Involved male participants only | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albaker, W.I. Fenugreek and Its Effects on Muscle Performance: A Systematic Review. J. Pers. Med. 2023, 13, 427. https://doi.org/10.3390/jpm13030427
Albaker WI. Fenugreek and Its Effects on Muscle Performance: A Systematic Review. Journal of Personalized Medicine. 2023; 13(3):427. https://doi.org/10.3390/jpm13030427
Chicago/Turabian StyleAlbaker, Waleed I. 2023. "Fenugreek and Its Effects on Muscle Performance: A Systematic Review" Journal of Personalized Medicine 13, no. 3: 427. https://doi.org/10.3390/jpm13030427