The Association between Hip Joint Morphology and Posterior Wall Fracture: Analysis of Radiologic Parameters in Computed Tomography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Fracture Classification and Measurement of Morphological Features
2.3. Statistical Analysis
3. Results
3.1. Patient Demographics
3.2. The Radiologic Risk Factor Analysis for Isolated PW Fracture
3.3. The Radiologic Risk Factor Analysis for Acetabular Fractures with PW Involvement
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rickman, M.; Bircher, M.D. Acetabular fractures in the 21st century. Trauma 2008, 10, 149–173. [Google Scholar] [CrossRef]
- Kelly, J.; Ladurner, A.; Rickman, M. Surgical management of acetabular fractures—A contemporary literature review. Injury 2020, 51, 2267–2277. [Google Scholar] [CrossRef] [PubMed]
- Mauffrey, C.; Hao, J.; Cuellar, D.O.; Herbert, B.; Chen, X.; Liu, B.; Zhang, Y.; Smith, W. The Epidemiology and Injury Patterns of Acetabular Fractures: Are the USA and China Comparable? Clin. Orthop. Relat. Res. 2014, 472, 3332–3337. [Google Scholar] [CrossRef]
- Moed, B.R.; Kregor, P.J.; Reilly, M.C.; Stover, M.D.; Vrahas, M.S. Current management of posterior wall fractures of the acetabulum. Instr. Course Lect. 2015, 64, 139–159. [Google Scholar] [PubMed]
- Moed, B.R.; WillsonCarr, S.E.; Watson, J.T. Results of operative treatment of fractures of the posterior wall of the acetabulum. J. Bone Jt. Surg. Am. 2002, 84, 752–758. [Google Scholar] [CrossRef]
- Rommens, P.M.; Giménez, M.V.; Hessmann, M. Posterior wall fractures of the acetabulum: Characteristics, management, prognosis. Acta Chir. Belg. 2001, 101, 287–293. [Google Scholar] [CrossRef]
- Saterbak, A.M.; Marsh, J.L.; Nepola, J.V.; Brandser, E.A.; Turbett, T. Clinical failure after posterior wall acetabular fractures: The influence of initial fracture patterns. J. Orthop. Trauma 2000, 14, 230–237. [Google Scholar] [CrossRef]
- Milenkovic, S.; Mitkovic, M.; Saveski, J.; Micic, I.; Stojiljkovic, P.; Stanojkovic, M.; Mitkovic, M.; Stamenic, S.; Spalevic, M. Avascular necrosis of the femoral head in the patients with posterior wall acetabular fractures associated with dislocations of the hip. Acta Chir. Iugosl. 2013, 60, 65–69. [Google Scholar] [CrossRef]
- Vipulendran, K.; Kelly, J.; Rickman, M.; Chesser, T. Current concepts: Managing acetabular fractures in the elderly population. Eur. J. Orthop. Surg. Traumatol. 2021, 31, 807–816. [Google Scholar] [CrossRef]
- Park, K.C.; Oh, C.W.; Kim, J.W.; Oh, H.K.; Shon, H.C.; Kim, J.J.; Kim, J.W. Acetabular fractures in elderly. J. Orthop. Sci. 2021, 28, 376–379. [Google Scholar] [CrossRef]
- Butterwick, D.; Papp, S.; Gofton, W.; Liew, A.; Beaulé, P.E. Acetabular fractures in the elderly: Evaluation and management. J. Bone Jt. Surg. Am. 2015, 97, 758–768. [Google Scholar] [CrossRef] [PubMed]
- Alton, T.B.; Gee, A.O. Classifications in Brief: Letournel Classification for Acetabular Fractures. Clin. Orthop. Relat. Res. 2014, 472, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Ly, T.V.; Stover, M.D.; Sims, S.H.; Reilly, M.C. The Use of an Algorithm for Classifying Acetabular Fractures: A Role for Resident Education? Clin. Orthop. Relat. Res. 2011, 469, 2371–2376. [Google Scholar] [CrossRef]
- Cimerman, M.; Kristan, A.; Jug, M.; Tomaževič, M. Fractures of the acetabulum: From yestertday to tomorrow. Int. Orthop. 2021, 45, 1057–1064. [Google Scholar] [CrossRef]
- Letournel, E. Acetabulum fractures: Classification and management. J. Orthop. Trauma 2019, 33, S1–S2. [Google Scholar] [CrossRef]
- Scheinfeld, M.H.; Dym, A.A.; Spektor, M.; Avery, L.L.; Dym, R.J.; Amanatullah, D.F. Acetabular Fractures: What Radiologists Should Know and How 3D CT Can Aid Classification. Radiographics 2015, 35, 555–577. [Google Scholar] [CrossRef] [PubMed]
- van Bosse, H.; Wedge, J.H.; Babyn, P. How are dysplastic hips different? A three-dimensional CT study. Clin. Orthop. Relat. Res. 2015, 473, 1712–1723. [Google Scholar] [CrossRef]
- Tannast, M.; Hanke, M.S.; Zheng, G.; Steppacher, S.D.; Siebenrock, K.A. What are the radiographic reference values for acetabular under- and overcoverage? Clin. Orthop. Relat. Res. 2015, 473, 1234–1246. [Google Scholar] [CrossRef]
- Ganz, R.; Leunig, M.; Leunig-Ganz, K.; Harris, W.H. The etiology of osteoarthritis of the hip: An integrated mechanical concept. Clin. Orthop. Relat. Res. 2008, 466, 264–272. [Google Scholar] [CrossRef]
- Mimura, T.; Mori, K.; Kitagawa, M.; Ueki, M.; Furuya, Y.; Kawasaki, T.; Imai, S. Multiplanar evaluation of radiological findings associated with acetabular dysplasia and investigation of its prevalence in an Asian population: A CT-based study. BMC Musculoskelet. Disord. 2017, 18, 50. [Google Scholar] [CrossRef]
- Kim, J.; Choi, J.A.; Lee, E.; Lee, K.R. Prevalence of Imaging Features on CT Thought to Be Associated With Femoroacetabular Impingement: A Retrospective Analysis of 473 Asymptomatic Adult Hip Joints. AJR Am. J. Roentgenol. 2015, 205, W100–W105. [Google Scholar] [CrossRef]
- Malhotra, R.; Kannan, A.; Kancherla, R.; Khatri, D.; Kumar, V. Femoral head-neck offset in the Indian population: A CT based study. Indian J. Orthop. 2012, 46, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Giannoudis, P.V.; Grotz, M.R.; Papakostidis, C.; Dinopoulos, H. Operative treatment of displaced fractures of the acetabulum. A meta-analysis. J. Bone Jt. Surg. Br. 2005, 87, 2–9. [Google Scholar] [CrossRef]
- Gebre, R.K.; Hirvasniemi, J.; Lantto, I.; Saarakkala, S.; Leppilahti, J.; Jämsä, T. Structural risk factors for low-energy acetabular fractures. Bone 2019, 127, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Beck, M.; Kalhor, M.; Leunig, M.; Ganz, R. Hip morphology influences the pattern of damage to the acetabular cartilage: Femoroacetabular impingement as a cause of early osteoarthritis of the hip. J. Bone Jt. Surg. Br. 2005, 87, 1012–1018. [Google Scholar] [CrossRef]
- Pulkkinen, P.; Eckstein, F.; Lochmüller, E.M.; Kuhn, V.; Jämsä, T. Association of geometric factors and failure load level with the distribution of cervical vs. trochanteric hip fractures. J. Bone Min. Res. 2006, 21, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Frost, A.; Pavlou, G.; Richards, P.J.; Belcher, J.; Jasani, V. Influence of acetabular and femoral version on fractures of the femoral neck. Clin. Orthop. Relat. Res. 2010, 468, 2224–2229. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.; Nepple, J.J.; Crook, K.; Ross, J.R.; Bedi, A.; Schoenecker, P.; Clohisy, J.C. Femoral Morphology in the Dysplastic Hip: Three-dimensional Characterizations with CT. Clin. Orthop. Relat. Res. 2017, 475, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Steppacher, S.D.; Albers, C.E.; Siebenrock, K.A.; Tannast, M.; Ganz, R. Femoroacetabular impingement predisposes to traumatic posterior hip dislocation. Clin. Orthop. Relat. Res. 2013, 471, 1937–1943. [Google Scholar] [CrossRef] [PubMed]
- Krych, A.J.; Thompson, M.; Larson, C.M.; Byrd, J.W.; Kelly, B.T. Is posterior hip instability associated with cam and pincer deformity? Clin. Orthop. Relat. Res. 2012, 470, 3390–3397. [Google Scholar] [CrossRef]
- Henak, C.R.; Abraham, C.L.; Anderson, A.E.; Maas, S.A.; Ellis, B.J.; Peters, C.L.; Weiss, J.A. Patient-specific analysis of cartilage and labrum mechanics in human hips with acetabular dysplasia. Osteoarthr. Cartil. 2014, 22, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Shin, C.H.; Yang, E.; Lim, C.; Yoo, W.J.; Choi, I.H.; Cho, T.-J. Which Acetabular Landmarks are the Most Useful for Measuring the Acetabular Index and Center-edge Angle in Developmental Dysplasia of the Hip? A Comparison of Two Methods. Clin. Orthop. Relat. Res. 2020, 478, 2120–2131. [Google Scholar] [CrossRef] [PubMed]
- Long, H.T.; Deng, Z.H.; Zou, M.; Lin, Z.Y.; Zhu, J.X.; Zhu, Y. Effects of the acetabular fracture index and other factors of posterior wall acetabular fracture on functional outcome. J. Int. Med. Res. 2017, 45, 1394–1405. [Google Scholar] [CrossRef] [PubMed]
- Hartig-Andreasen, C.; Søballe, K.; Troelsen, A. The role of the acetabular labrum in hip dysplasia. A literature overview. Acta Orthop. 2013, 84, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Khaliq, S.; Qamar, A.; Khokhar, S.K.; Naseer, H. Morphometric study of acetabular depth and coverage and their clinical importance. Pak. J. Med. Sci. 2022, 38, 2227–2233. [Google Scholar] [CrossRef] [PubMed]
- Novais, E.N.; Pan, Z.; Autruong, P.T.; Meyers, M.L.; Chang, F.M. Normal Percentile Reference Curves and Correlation of Acetabular Index and Acetabular Depth Ratio in Children. J. Pediatr. Orthop. 2018, 38, 163–169. [Google Scholar] [CrossRef]
- Albers, C.E.; Wambeek, N.; Hanke, M.S.; Schmaranzer, F.; Prosser, G.H.; Yates, P.J. Imaging of femoroacetabular impingement-current concepts. J. Hip Preserv. Surg. 2016, 3, 245–261. [Google Scholar] [CrossRef]
Total (n = 99) | PW (n = 27) | Control (n = 72) | p-Value | |
---|---|---|---|---|
Male sex | 81 (81.8%) | 24 (88.9%) | 57 (79.2%) | 0.383 |
Age (year) | 50.1 ± 17.0 (16–71) | 45.3 ± 17.0 (16–71) | 51.9 ± 17.6 (13–90) | 0.095 |
Injury mechanism | <0.001 | |||
Slip down | 6 (6.1%) | 0 (0%) | 6 (8.3%) | |
Fall from height | 33 (33.3%) | 1 (3.7%) | 32 (44.4%) | |
MVA: driver | 21 (21.2%) | 16 (59.3%) | 5 (6.9%) | |
MVA: passenger | 7 (7.1%) | 2 (7.4%) | 5 (6.9%) | |
Pedestrian | 11 (11.1%) | 1 (3.7%) | 10 (13.9%) | |
Bicycle | 5 (5.1%) | 1 (3.7%) | 4 (5.6%) | |
Motorcycle | 11 (11.1%) | 5 (18.5%) | 6 (8.3%) | |
Crushing injury | 5 (5.1%) | 1 (3.7%) | 4 (5.6%) |
Radiologic Parameters | Total (n = 99) | PW (n = 27) | Control (n = 72) | p-Value |
---|---|---|---|---|
AI (°) | 8.67 ± 4.33 (0.73–20.51) | 8.88 ± 4.71 (0.73–20.51) | 8.59 ± 4.21 (0.82–20.32) | 0.770 |
Sharp angle (°) | 39.57 ± 4.19 (25.25–49.08) | 39.76 ± 4.07 (30.71–49.08) | 39.50 ± 4.25 (25.25–46.92) | 0.788 |
AD/WR | 0.27 ± 0.03 (0.21–0.41) | 0.29 ± 0.04 (0.24–0.41) | 0.27 ± 0.03 (0.21–0.34) | 0.047 |
CEA (°) | 32.02 ± 6.71 (14.47–48.23) | 32.29 ± 6.50 (18.92–43.54) | 31.91 ± 6.83 (14.47–48.23) | 0.805 |
AHI | 0.81 ± 0.07 (0.65–1.17) | 0.82 ± 0.09 (0.69–1.17) | 0.81 ± 0.06 (0.65–0.95) | 0.797 |
AASA (°) | 61.46 ± 7.93 (28.40–77.78) | 61.63 ± 8.48 (47.73–77.24) | 61.40 ± 7.77 (28.40–77.78) | 0.900 |
PASA (°) | 91.86 ± 8.04 (74.74–116.74) | 92.60 ± 6.95 (79.21–108.76) | 91.59 ± 8.44 (74.74–116.74) | 0.580 |
HNOR | 0.20 ± 0.06 (0.09–0.34) | 0.20 ± 0.06 (0.11–0.30) | 0.19 ± 0.06 (0.09–0.34) | 0.847 |
AVA (°) | 15.79 ± 5.30 (3.79–29.07) | 16.28 ± 5.18 (5.75–25.53) | 15.61 ± 5.37 (3.79–29.07) | 0.575 |
Characteristic | Univariate Analyses | Multivariable Analyses | ||||
---|---|---|---|---|---|---|
B | Exp (B) | p-Value | B | Exp (B) | p-Value | |
Sex (Male) | −0.744 | 0.475 | 0.272 | −0.917 | 0.400 | 0.444 |
Age (Year) | −0.022 | 0.978 | 0.097 | −0.046 | 0.103 | 0.955 |
Injury mechanism | N/A | N/A | 0.001 | N/A | N/A | 0.011 |
AI (°) | 0.015 | 1.016 | 0.767 | 0.320 | 1.377 | 0.017 |
Sharp angle (°) | 0.015 | 1.015 | 0.785 | −0.216 | 0.806 | 0.073 |
AD/WR | 15.878 | 7.868 × 106 | 0.021 | 33.047 | 2.25 × 1014 | 0.028 |
CEA (°) | 0.008 | 1.008 | 0.803 | 0.050 | 1.051 | 0.661 |
AHI | 0.800 | 2.224 | 0.795 | −10.080 | <0.001 | 0.405 |
AASA (°) | 0.004 | 1.004 | 0.899 | 0.141 | 1.151 | 0.168 |
PASA (°) | 0.016 | 1.016 | 0.576 | 0.051 | 1.053 | 0.527 |
HNOR | 0.756 | 2.130 | 0.846 | −1.032 | 0.356 | 0.876 |
AVA (°) | 0.024 | 1.025 | 0.571 | 0.326 | 0.057 | 0.057 |
Characteristic | Univariate Analyses | Multivariable Analyses | ||||
---|---|---|---|---|---|---|
B | Exp(B) | p-Value | B | Exp(B) | p-Value | |
Sex (Male) | −0.916 | 0.400 | 0.175 | −1.286 | 0.276 | 0.261 |
Age (Year) | −0.022 | 0.978 | 0.092 | −0.046 | 0.955 | 0.104 |
Injury mechanism | N/A | N/A | <0.001 | N/A | N/A | 0.006 |
AI (°) | 0.013 | 1.014 | 0.790 | 0.255 | 1.291 | 0.035 |
Sharp angle (°) | 0.042 | 1.043 | 0.434 | −0.108 | 0.897 | 0.356 |
AD/WR | 13.815 | 9.99 × 105 | 0.036 | 22.645 | 6.836 × 109 | 0.112 |
CEA (°) | 0.012 | 1.012 | 0.726 | 0.066 | 1.069 | 0.519 |
AHI | 0.872 | 2.392 | 0.770 | −6.012 | 0.002 | 0.581 |
AASA (°) | 0.007 | 1.007 | 0.794 | 0.041 | 1.041 | 0.675 |
PASA (°) | 0.019 | 1.019 | 0.491 | 0.094 | 1.099 | 0.287 |
HNOR | 0.316 | 1.372 | 0.933 | −2.079 | 0.125 | 0.742 |
AVA (°) | 0.011 | 1.011 | 0.789 | 0.154 | 1.167 | 0.339 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.S.; Mun, K.U.; Kim, C.-H. The Association between Hip Joint Morphology and Posterior Wall Fracture: Analysis of Radiologic Parameters in Computed Tomography. J. Pers. Med. 2023, 13, 1406. https://doi.org/10.3390/jpm13091406
Kim HS, Mun KU, Kim C-H. The Association between Hip Joint Morphology and Posterior Wall Fracture: Analysis of Radiologic Parameters in Computed Tomography. Journal of Personalized Medicine. 2023; 13(9):1406. https://doi.org/10.3390/jpm13091406
Chicago/Turabian StyleKim, Han Soul, Ki Uk Mun, and Chul-Ho Kim. 2023. "The Association between Hip Joint Morphology and Posterior Wall Fracture: Analysis of Radiologic Parameters in Computed Tomography" Journal of Personalized Medicine 13, no. 9: 1406. https://doi.org/10.3390/jpm13091406