Cardiac Troponin Serum Concentration Measurement Is Useful Not Only in the Diagnosis of Acute Cardiovascular Events
Abstract
:1. Introduction
2. Basics of Troponin Biochemistry and Its Release Mechanisms
3. Cardiac Troponin Blood Level in Acute Cardiovascular Events
4. Cardiac Troponin Serum Level in Chronic Cardiovascular Diseases
4.1. Chronic Coronary Syndrome
4.2. Chronic Lower Extremity Ischemia
4.3. Cerebrovascular Disease
5. Cardiac Troponin Serum Level and Subclinical Cardiovascular Dysfunction
5.1. Intima–Media Thickness
5.2. Pulse Wave Velocity
5.3. Ankle–Brachial Index
5.4. Calcium Score
5.5. Flow-Mediated Dilation
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Townsend, N.; Kazakiewicz, D.; Lucy Wright, F.; Timmis, A.; Huculeci, R.; Torbica, A.; Gale, C.P.; Achenbach, S.; Weidinger, F.; Vardas, P. Epidemiology of cardiovascular disease in Europe. Nat. Rev. Cardiol. 2022, 19, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Basek, A.; Jakubiak, G.K.; Cieślar, G.; Stanek, A. Life-threatening endocrinological immune-related adverse events of immune checkpoint inhibitor therapy. Cancers 2023, 15, 5786. [Google Scholar] [CrossRef] [PubMed]
- Nedkoff, L.; Briffa, T.; Zemedikun, D.; Herrington, S.; Wright, F.L. Global trends in atherosclerotic cardiovascular disease. Clin. Ther. 2023, 45, 1087–1091. [Google Scholar] [CrossRef]
- Navarrete, S.; Solar, C.; Tapia, R.; Pereira, J.; Fuentes, E.; Palomo, I. Pathophysiology of deep vein thrombosis. Clin. Exp. Med. 2023, 23, 645–654. [Google Scholar] [CrossRef]
- Tantry, U.S.; Duhan, S.; Navarese, E.; Ramotowski, B.; Kundan, P.; Bliden, K.P.; Gurbel, P. An update on novel therapies for treating patients with arterial thrombosis. Expert Rev. Hematol. 2023, 16, 593–605. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zhao, P.; Wang, Z.; Ji, X.; Zhao, M. Acute lower extremity arterial thrombosis associated with nephrotic syndrome in adults: Case series and literature review. BMC Nephrol. 2023, 24, 318. [Google Scholar] [CrossRef]
- Kuvvetli, A.; Avci, B.S. Monocyte high density lipoprotein cholesterol ratio as a new prognostic factor for mesenteric embolism. J. Coll. Physicians Surg. Pak. 2020, 30, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Lacey, M.J.; Raza, S.; Rehman, H.; Puri, R.; Bhatt, D.L.; Kalra, A. Coronary embolism: A systematic review. Cardiovasc. Revasc. Med. 2020, 21, 367–374. [Google Scholar] [CrossRef]
- Duffett, L.; Castellucci, L.A.; Forgie, M.A. Pulmonary embolism: Update on management and controversies. BMJ 2020, 370, m2177. [Google Scholar] [CrossRef]
- Lyaker, M.R.; Tulman, D.B.; Dimitrova, G.T.; Pin, R.H.; Papadimos, T.J. Arterial embolism. Int. J. Crit. Illn. Inj. Sci. 2013, 3, 77–87. [Google Scholar] [CrossRef]
- Sen, I.; Franco-Mesa, C.; Erben, Y.; DeMartino, R.R. Abdominal aortic and visceral artery aneurysms. Cardiol. Clin. 2021, 39, 517–525. [Google Scholar] [CrossRef]
- Senser, E.M.; Misra, S.; Henkin, S. Thoracic aortic aneurysm: A clinical review. Cardiol. Clin. 2021, 39, 505–515. [Google Scholar] [CrossRef]
- Starzak, M.; Jakubiak, G.K.; Pietrzak, M.; Cieślar, G.; Stanek, A. Superficial temporal artery aneurysm. Acta Angiol. 2023, 29, 25–29. [Google Scholar] [CrossRef]
- Yin, Z.Q.; Han, H.; Yan, X.; Zheng, Q.J. Research progress on the pathogenesis of aortic dissection. Curr. Probl. Cardiol. 2023, 48, 101249. [Google Scholar] [CrossRef]
- Achenbach, S.; Fuchs, F.; Goncalves, A.; Kaiser-Albers, C.; Ali, Z.A.; Bengel, F.M.; Dimmeler, S.; Fayad, Z.A.; Mebazaa, A.; Meder, B.; et al. Non-invasive imaging as the cornerstone of cardiovascular precision medicine. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 465–475. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Volpato, V.; Cau, R.; Chiesa, M.; Saba, L.; Guglielmo, M.; Senatieri, A.; Chierchia, G.; Pontone, G.; Dell’Aversana, S.; et al. Application of AI in cardiovascular multimodality imaging. Heliyon 2022, 8, e10872. [Google Scholar] [CrossRef]
- Dong, T.; Faaborg-Andersen, C.; Garcia, M.; Blaha, M.; Klein, A.L.; Gill, E.; Quintana, R.A. Multimodality cardiovascular imaging in hypertension. Curr. Opin. Cardiol. 2023, 38, 287–296. [Google Scholar] [CrossRef]
- Baldassarre, L.A.; Ganatra, S.; Lopez-Mattei, J.; Yang, E.H.; Zaha, V.G.; Wong, T.C.; Ayoub, C.; DeCara, J.M.; Dent, S.; Deswal, A.; et al. Advances in multimodality imaging in cardio-oncology: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2022, 80, 1560–1578. [Google Scholar] [CrossRef] [PubMed]
- Lyngbakken, M.N.; Myhre, P.L.; Røsjø, H.; Omland, T. Novel biomarkers of cardiovascular disease: Applications in clinical practice. Crit. Rev. Clin. Lab. Sci. 2019, 56, 33–60. [Google Scholar] [CrossRef] [PubMed]
- Ananthan, K.; Lyon, A.R. The role of biomarkers in cardio-oncology. J. Cardiovasc. Transl. Res. 2020, 13, 431–450. [Google Scholar] [CrossRef] [PubMed]
- Head, S.J.; Milojevic, M.; Taggart, D.P.; Puskas, J.D. Current practice of state-of-the-art surgical coronary revascularization. Circulation 2017, 136, 1331–1345. [Google Scholar] [CrossRef] [PubMed]
- Schermerhorn, M.L.; Liang, P.; Dakour-Aridi, H.; Kashyap, V.S.; Wang, G.J.; Nolan, B.W.; Cronenwett, J.L.; Eldrup-Jorgensen, J.; Malas, M.B. In-hospital outcomes of transcarotid artery revascularization and carotid endarterectomy in the Society for Vascular Surgery Vascular Quality Initiative. J. Vasc. Surg. 2020, 71, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, I.; Daitoku, K. Surgical embolectomy for acute pulmonary thromboembolism. Ann. Vasc. Dis. 2017, 10, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Tamura, A.; Tsutsumi, K.; Saito, I.; Saito, N. Surgical embolectomy for internal carotid artery terminus occlusion. Neurosurg. Rev. 2015, 38, 661–669. [Google Scholar] [CrossRef]
- Georgiadis, G.S.; Argyriou, C. Surgical embolectomy of the aortic bifurcation: A historical but lifesaving alternative procedure. Eur. J. Vasc. Endovasc. Surg. 2021, 61, 786. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, X.; Zhang, W.; Wang, Z.; Zhang, H.; Zhang, X.; Song, J.; Zou, C. Surgical repair and reconstruction of aortic arch in debakey type I aortic dissection: Recent advances and single-center experience in the application of branched stent graft. J. Cardiothorac. Surg. 2017, 12, 86. [Google Scholar] [CrossRef]
- Aggarwal, V.; Waldo, S.W.; Armstrong, E.J. Endovascular revascularization for aortoiliac atherosclerotic disease. Vasc. Health Risk Manag. 2016, 12, 117–127. [Google Scholar] [CrossRef]
- Kopeć, G.; Araszkiewicz, A.; Kurzyna, M.; Sławek-Szmyt, S.; Stępniewski, J.; Roik, M.; Darocha, S.; Gołębiowski, M.; Jaguszewski, M.; Jankiewicz, S.; et al. Role of catheter-directed therapies in the treatment of acute pulmonary embolism. Expert opinion of the Polish PERT Initiative, Working Group on Pulmonary Circulation, Association of Cardiovascular Interventions, and Association of Intensive Cardiac Care of the Polish Cardiac Society. Kardiol. Pol. 2023, 81, 423–440. [Google Scholar] [CrossRef]
- Jakubiak, G.K.; Pawlas, N.; Cieślar, G.; Stanek, A. Pathogenesis and clinical significance of in-stent restenosis in patients with diabetes. Int. J. Environ. Res. Public Health 2021, 18, 11970. [Google Scholar] [CrossRef]
- Hasan, T.F.; Todnem, N.; Gopal, N.; Miller, D.A.; Sandhu, S.S.; Huang, J.F.; Tawk, R.G. Endovascular thrombectomy for acute ischemic stroke. Curr. Cardiol. Rep. 2019, 21, 112. [Google Scholar] [CrossRef] [PubMed]
- Rudarakanchana, N.; Jenkins, M.P. Hybrid and total endovascular repair of the aortic arch. Br. J. Surg. 2018, 105, 315–327. [Google Scholar] [CrossRef]
- Jakubiak, G.K.; Pawlas, N.; Cieślar, G.; Stanek, A. Chronic lower extremity ischemia and its association with the frailty syndrome in patients with diabetes. Int. J. Environ. Res. Public Health 2020, 17, 9339. [Google Scholar] [CrossRef]
- Bengtsson, A.; Nyman, E.; Grönlund, C.; Wester, P.; Näslund, U.; Fhärm, E.; Norberg, M. Multi-view carotid ultrasound is stronger associated with cardiovascular risk factors than presence of plaque or single carotid intima media thickness measurements in subclinical atherosclerosis. Int. J. Cardiovasc. Imaging. 2023, 39, 1461–1471. [Google Scholar] [CrossRef]
- Hussain, B.; Mahmood, A.; Flynn, M.G.; Alexander, T. Coronary artery calcium scoring in asymptomatic patients. HCA Healthc. J. Med. 2023, 4, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Starzak, M.; Stanek, A.; Jakubiak, G.K.; Cholewka, A.; Cieślar, G. Arterial stiffness assessment by pulse wave velocity in patients with metabolic syndrome and its components: Is it a useful tool in clinical practice? Int. J. Environ. Res. Public Health 2022, 19, 10368. [Google Scholar] [CrossRef] [PubMed]
- Mućka, S.; Miodońska, M.; Jakubiak, G.K.; Starzak, M.; Cieślar, G.; Stanek, A. Endothelial function assessment by flow-mediated dilation method: A valuable tool in the evaluation of the cardiovascular system. Int. J. Environ. Res. Public Health 2022, 19, 11242. [Google Scholar] [CrossRef] [PubMed]
- Chaulin, A.M. Cardiac troponins metabolism: From biochemical mechanisms to clinical practice (literature review). Int. J. Mol. Sci. 2021, 22, 10928. [Google Scholar] [CrossRef] [PubMed]
- Katrukha, I.A. Human cardiac troponin complex. Structure and functions. Biochemistry 2013, 78, 1447–1465. [Google Scholar] [CrossRef]
- Li, M.X.; Wang, X.; Sykes, B.D. Structural based insights into the role of troponin in cardiac muscle pathophysiology. J. Muscle Res. Cell Motil. 2004, 25, 559–579. [Google Scholar] [CrossRef]
- Gillis, T.E.; Marshall, C.R.; Tibbits, G.F. Functional and evolutionary relationships of troponin C. Physiol. Genom. 2007, 32, 16–27. [Google Scholar] [CrossRef]
- Fishbein, M.C.; Wang, T.; Matijasevic, M.; Hong, L.; Apple, F.S. Myocardial tissue troponins T and I. An immunohistochemical study in experimental models of myocardial ischemia. Cardiovasc. Pathol. 2003, 12, 65–71. [Google Scholar] [CrossRef]
- Vasatova, M.; Pudil, R.; Horacek, J.M.; Buchler, T. Current applications of cardiac troponin T for the diagnosis of myocardial damage. Adv. Clin. Chem. 2013, 61, 33–65. [Google Scholar] [CrossRef]
- Bergmann, O.; Bhardwaj, R.D.; Bernard, S.; Zdunek, S.; Barnabé-Heider, F.; Walsh, S.; Zupicich, J.; Alkass, K.; Buchholz, B.; Druid, H.; et al. Evidence for cardiomyocyte renewal in humans. Science 2009, 324, 98–102. [Google Scholar] [CrossRef]
- Bergmann, O.; Zdunek, S.; Frisén, J.; Bernard, S.; Druid, H.; Jovinge, S. Cardiomyocyte renewal in humans. Circ. Res. 2012, 110, e17–e18. [Google Scholar] [CrossRef] [PubMed]
- Eschenhagen, T.; Bolli, R.; Braun, T.; Field, L.J.; Fleischmann, B.K.; Frisén, J.; Giacca, M.; Hare, J.M.; Houser, S.; Lee, R.T.; et al. Cardiomyocyte regeneration: A consensus statement. Circulation 2017, 136, 680–686. [Google Scholar] [CrossRef]
- Singh, K.; Xiao, L.; Remondino, A.; Sawyer, D.B.; Colucci, W.S. Adrenergic regulation of cardiac myocyte apoptosis. J. Cell. Physiol. 2001, 189, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Weil, B.R.; Suzuki, G.; Young, R.F.; Iyer, V.; Canty, J.M. Troponin release and reversible left ventricular dysfunction after transient pressure overload. J. Am. Coll. Cardiol. 2018, 71, 2906–2916. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, P.; Piper, H.M.; Spahr, R.; Spieckermann, P.G. Ultrastructure of cultured adult myocardial cells during anoxia and reoxygenation. Am. J. Pathol. 1984, 115, 349–361. [Google Scholar]
- Feng, J.; Schaus, B.J.; Fallavollita, J.A.; Lee, T.-C.; Canty, J.J.M. Preload induces troponin I degradation independently of myocardial ischemia. Circulation 2001, 103, 2035–2037. [Google Scholar] [CrossRef]
- Maekawa, A.; Lee, J.-K.; Nagaya, T.; Kamiya, K.; Yasui, K.; Horiba, M.; Miwa, K.; Uzzaman, M.; Maki, M.; Ueda, Y.; et al. Overexpression of calpastatin by gene transfer prevents troponin I degradation and ameliorates contractile dysfunction in rat hearts subjected to ischemia/reperfusion. J. Mol. Cell. Cardiol. 2003, 35, 1277–1284. [Google Scholar] [CrossRef]
- Hickman, P.E.; Potter, J.M.; Aroney, C.; Koerbin, G.; Southcott, E.; Wu, A.H.; Roberts, M. Cardiac troponin may be released by ischemia alone, without necrosis. Clin. Chim. Acta 2010, 411, 318–323. [Google Scholar] [CrossRef]
- Hessel, M.H.M.; Atsma, D.E.; van der Valk, E.J.M.; Bax, W.H.; Schalij, M.J.; van der Laarse, A. Release of cardiac troponin I from viable cardiomyocytes is mediated by integrin stimulation. Pflugers Arch.—Eur. J. Physiol. 2008, 455, 979–986. [Google Scholar] [CrossRef]
- Mingels, A.; Jacobs, L.; Michielsen, E.; Swaanenburg, J.; Wodzig, W.; van Dieijen-Visser, M. Reference population and marathon runner sera assessed by highly sensitive cardiac troponin T and commercial cardiac troponin T and I assays. Clin. Chem. 2009, 55, 101–108. [Google Scholar] [CrossRef]
- Scherr, J.; Braun, S.; Schuster, T.; Hartmann, C.; Moehlenkamp, S.; Wolfarth, B.; Pressler, A.; Halle, M. 72-h kinetics of high-sensitive troponin T and inflammatory markers after marathon. Med. Sci. Sports Exerc. 2011, 43, 1819–1827. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction. Circulation 2018, 138, e618–e651. [Google Scholar] [CrossRef] [PubMed]
- Tibaut, M.; Mekis, D.; Petrovic, D. Pathophysiology of myocardial infarction and acute management strategies. Cardiovasc. Hematol. Agents Med. Chem. 2017, 14, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Nishimiya, K.; Takahashi, J.; Oyama, K.; Matsumoto, Y.; Yasuda, S.; Shimokawa, H. Mechanisms of coronary artery spasm. Eur. Cardiol. 2023, 18, e39. [Google Scholar] [CrossRef] [PubMed]
- Modaragamage Dona, A.C.; Abuelgasim, E.; Abuelgasim, B.; Kermali, M.; Zahra, S.A.; Hewage, S.; Harky, A. Dissection of coronary artery: A clinical overview. J. Cardiol. 2021, 77, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Akuka, A.; Landes, U.; Manevich, L.; Rubinshtein, R.; Danenberg, H.D. Coronary embolism after transcatheter aortic valve replacement—Case series and review of literature. Am. J. Cardiol. 2023, 205, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Quinn, O.; Jardine, D.; Florkowski, C.; Than, M. Troponin release after exertional vasovagal syncope. Intern. Med. J. 2019, 49, 1040–1043. [Google Scholar] [CrossRef] [PubMed]
- González-Del-Hoyo, M.; Cediel, G.; Carrasquer, A.; Bonet, G.; Vásquez-Nuñez, K.; Boqué, C.; Alí, S.; Bardají, A. Prognostic implications of troponin I elevation in emergency department patients with tachyarrhythmia. Clin. Cardiol. 2019, 42, 546–552. [Google Scholar] [CrossRef]
- Talle, M.A.; Doubell, A.F.; Robbertse, P.S.; Lahri, S.; Herbst, P.G. Myocardial tissue characterization in patients with hypertensive crisis, positive troponin, and unobstructed coronary arteries: A cardiovascular magnetic resonance-based study. Diagnostics 2023, 13, 2943. [Google Scholar] [CrossRef] [PubMed]
- Jayasimhan, D.; Foster, S.; Chang, C.L.; Hancox, R.J. Cardiac biomarkers in acute respiratory distress syndrome: A systematic review and meta-analysis. J. Intensive Care 2021, 9, 36. [Google Scholar] [CrossRef] [PubMed]
- Stroda, A.; Thelen, S.; M’Pembele, R.; Khademlou, N.; Jaekel, C.; Schiffner, E.; Bieler, D.; Bernhard, M.; Huhn, R.; Lurati Buse, G.; et al. Association between hypotension and myocardial injury in patients with severe trauma. Eur. J. Trauma Emerg. Surg. 2023, 49, 217–225. [Google Scholar] [CrossRef]
- Alataby, H.; Nfonoyim, J.; Diaz, K.; Al-Tkrit, A.; Akhter, S.; David, S.; Leelaruban, V.; Gay-Simon, K.S.; Maharaj, V.; Colet, B.; et al. The levels of lactate, troponin, and N-terminal pro-B-type natriuretic peptide are predictors of mortality in patients with sepsis and septic shock: A retrospective cohort study. Med. Sci. Monit. Basic Res. 2021, 27, e927834. [Google Scholar] [CrossRef]
- Schupp, T.; Rusnak, J.; Forner, J.; Weidner, K.; Ruka, M.; Egner-Walter, S.; Dudda, J.; Bertsch, T.; Kittel, M.; Behnes, M.; et al. Cardiac troponin I but not N-terminal pro-B-type natriuretic peptide predicts outcomes in cardiogenic shock. J. Pers. Med. 2023, 13, 1348. [Google Scholar] [CrossRef]
- Caujolle, M.; Allyn, J.; Brulliard, C.; Valance, D.; Vandroux, D.; Martinet, O.; Allou, N. Determinants and prognosis of high-sensitivity cardiac troponin T peak plasma concentration in patients hospitalized for non-cardiogenic shock. SAGE Open Med. 2018, 6, 2050312118771718. [Google Scholar] [CrossRef]
- Guinn, N.R.; Cooter, M.L.; Villalpando, C.; Weiskopf, R.B. Severe anemia associated with increased risk of death and myocardial ischemia in patients declining blood transfusion. Transfusion 2018, 58, 2290–2296. [Google Scholar] [CrossRef] [PubMed]
- Kociol, R.D.; Pang, P.S.; Gheorghiade, M.; Fonarow, G.C.; O’Connor, C.M.; Felker, G.M. Troponin elevation in heart failure prevalence, mechanisms, and clinical implications. J. Am. Coll. Cardiol. 2010, 56, 1071–1078. [Google Scholar] [CrossRef]
- Torre, M.; Jarolim, P. Cardiac troponin assays in the management of heart failure. Clin. Chim. Acta 2015, 441, 92–98. [Google Scholar] [CrossRef]
- Evans, J.D.W.; Dobbin, S.J.H.; Pettit, S.J.; Di Angelantonio, E.; Willeit, P. High-sensitivity cardiac troponin and new-onset heart failure: A systematic review and meta-analysis of 67,063 patients with 4165 incident heart failure events. JACC Heart Fail. 2018, 6, 187–197. [Google Scholar] [CrossRef]
- Soongswang, J.; Durongpisitkul, K.; Nana, A.; Laohaprasittiporn, D.; Kangkagate, C.; Punlee, K.; Limpimwong, N. Cardiac troponin T: A marker in the diagnosis of acute myocarditis in children. Pediatr. Cardiol. 2005, 26, 45–49. [Google Scholar] [CrossRef]
- Marcusohn, E.; Barbara, A.; Epstein, D.; Massalha, S.; Zukermann, R. Correlations between high sensitive troponin I and acute myocarditis extent in cardiac magnetic resonance imaging. J. Cardiovasc. Med. 2023, 24, 334–339. [Google Scholar] [CrossRef]
- Lan, N.S.R.; Nguyen, L.T.; Vasikaran, S.D.; Wilson, C.; Jonsson, J.; Rankin, J.M.; Bell, D.A. Short- and long-term biological variation of cardiac troponin I in healthy individuals, and patients with end-stage renal failure requiring haemodialysis or cardiomyopathy. Clin. Chem. Lab. Med. 2020, 58, 1941–1949. [Google Scholar] [CrossRef]
- Needham, D.M.; Shufelt, K.A.; Tomlinson, G.; Scholey, J.W.; Newton, G.E. Troponin I and T levels in renal failure patients without acute coronary syndrome: A systematic review of the literature. Can. J. Cardiol. 2004, 20, 1212–1218. [Google Scholar]
- Ross, C.; Kumar, R.; Pelland-Marcotte, M.C.; Mehta, S.; Kleinman, M.E.; Thiagarajan, R.R.; Ghbeis, M.B.; VanderPluym, C.J.; Friedman, K.G.; Porras, D.; et al. Acute management of high-risk and intermediate-risk pulmonary embolism in children: A review. Chest 2022, 161, 791–802. [Google Scholar] [CrossRef]
- Meyer, G.; Vicaut, E.; Danays, T.; Agnelli, G.; Becattini, C.; Beyer-Westendorf, J.; Bluhmki, E.; Bouvaist, H.; Brenner, B.; Couturaud, F.; et al. Fibrinolysis for patients with intermediate-risk pulmonary embolism. N. Engl. J. Med. 2014, 370, 1402–1411. [Google Scholar] [CrossRef]
- Konstantinides, S.; Meyer, G. Management of acute pulmonary embolism 2019: What is new in the updated European guidelines? Intern. Emerg. Med. 2020, 15, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Erythropoulou-Kaltsidou, A.; Alkagiet, S.; Tziomalos, K. New guidelines for the diagnosis and management of pulmonary embolism: Key changes. World J. Cardiol. 2020, 12, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Koraćević, G.; Antonijević, N.; Ćosić, V.; Pavlović, M.; Kostić, T.; Zdravković, M.; Cvetković, T.; Tomašević, M.; Ćirić-Zdravković, S.; Krstić, N.; et al. Biomarkers in aortic dissection, including specific causes of troponin elevation. Vojnosanit. Pregl. 2016, 73, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Jenab, Y.; Ahmadi-Tafti, S.H.; Davarpasand, T.; Jalali, A.; Khederlou, H. Association of the high-sensitive cardiac troponin T levels and long-term mortality in patients with acute aortic dissection type A. J. Cardiovasc. Thorac. Res. 2023, 15, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Zhu, H.; Zhang, L.; Liu, J.; Pei, Y.; Zhou, J.; Jing, Z. Elevated admission cardiac troponin I predicts adverse outcomes of acute type B aortic dissection after endovascular treatment. Front. Surg. 2022, 9, 789954. [Google Scholar] [CrossRef] [PubMed]
- Vrsalovic, M. Prognostic effect of cardiac troponin elevation in acute aortic dissection: A meta-analysis. Int. J. Cardiol. 2016, 214, 277–278. [Google Scholar] [CrossRef] [PubMed]
- Stavroulakis, G.A.; George, K.P. Exercise-induced release of troponin. Clin. Cardiol. 2020, 43, 872–881. [Google Scholar] [CrossRef] [PubMed]
- Cantinotti, M.; Clerico, A.; Giordano, R.; Assanta, N.; Franchi, E.; Koestenberger, M.; Marchese, P.; Storti, S.; D’Ascenzi, F. Cardiac troponin-T release after sport and differences by age, sex, training type, volume, and intensity: A critical review. Clin. J. Sport Med. 2022, 32, e230–e242. [Google Scholar] [CrossRef] [PubMed]
- Conesa-Milian, E.; Cirer-Sastre, R.; Hernández-González, V.; Legaz-Arrese, A.; Corbi, F.; Reverter-Masia, J. Cardiac troponin release after exercise in healthy young athletes: A systematic review. Healthcare 2023, 11, 2342. [Google Scholar] [CrossRef]
- Weber, B.; Lackner, I.; Gebhard, F.; Miclau, T.; Kalbitz, M. Trauma, a matter of the heart—Molecular mechanism of post-traumatic cardiac dysfunction. Int. J. Mol. Sci. 2021, 22, 737. [Google Scholar] [CrossRef]
- Thompson, G.E.; Wright, P.P. Cardiac toxicity and anthracyclines: Mechanism, interventions, and the trouble with troponin. J. Adv. Pract. Oncol. 2019, 10, 360–366. [Google Scholar] [CrossRef]
- Adamson, P.D.; Hunter, A.; Madsen, D.M.; Shah, A.S.V.; McAllister, D.A.; Pawade, T.A.; Williams, M.C.; Berry, C.; Boon, N.A.; Flather, M.; et al. High-sensitivity cardiac troponin I and the diagnosis of coronary artery disease in patients with suspected angina pectoris. Circ. Cardiovasc. Qual. Outcomes 2018, 11, e004227. [Google Scholar] [CrossRef]
- Okamoto, H.; Kume, T.; Koyama, T.; Tamada, T.; Yamada, R.; Neishi, Y.; Uemura, S. Clinical impact of high-sensitivity cardiac troponin T on the chronic phase of stable angina after a successful initial percutaneous coronary intervention. Acta Cardiol. Sin. 2020, 36, 16–23. [Google Scholar] [CrossRef]
- Myhre, P.L.; Omland, T.; Sarvari, S.I.; Ukkonen, H.; Rademakers, F.; Engvall, J.E.; Hagve, T.A.; Nagel, E.; Sicari, R.; Zamorano, J.L.; et al. Cardiac troponin T concentrations, reversible myocardial ischemia, and indices of left ventricular remodeling in patients with suspected stable angina pectoris: A DOPPLER-CIP substudy. Clin. Chem. 2018, 64, 1370–1379. [Google Scholar] [CrossRef]
- Tveit, S.H.; Cwikiel, J.; Myhre, P.L.; Omland, T.; Berge, E.; Seljeflot, I.; Flaa, A. Differential associations of cardiac troponin T and cardiac troponin I with coronary artery pathology and dynamics in response to short-duration exercise. Clin. Biochem. 2021, 88, 23–29. [Google Scholar] [CrossRef]
- van den Berg, V.J.; Oemrawsingh, R.M.; Umans, V.A.W.M.; Kardys, I.; Asselbergs, F.W.; van der Harst, P.; Hoefer, I.E.; Kietselaer, B.; Lenderink, T.; Oude Ophuis, A.J.; et al. Temporal evolution of serum concentrations of high-sensitivity cardiac troponin during 1 year after acute coronary syndrome admission. J. Am. Heart Assoc. 2021, 10, e017393. [Google Scholar] [CrossRef] [PubMed]
- Watabe, H.; Sato, A.; Akiyama, D.; Kakefuda, Y.; Adachi, T.; Ojima, E.; Hoshi, T.; Murakoshi, N.; Ishizu, T.; Seo, Y.; et al. Impact of coronary plaque composition on cardiac troponin elevation after percutaneous coronary intervention in stable angina pectoris: A computed tomography analysis. J. Am. Coll. Cardiol. 2012, 59, 1881–1888. [Google Scholar] [CrossRef] [PubMed]
- Vavik, V.; Pedersen, E.K.R.; Svingen, G.F.; Solheim, E.; Aakre, K.M.; Tell, G.S.; Nygård, O.; Vikenes, K. Systemic cardiac troponin T associated with incident atrial fibrillation among patients with suspected stable angina pectoris. Am. J. Cardiol. 2020, 127, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Welsh, P.; Preiss, D.; Hayward, C.; Shah, A.S.V.; McAllister, D.; Briggs, A.; Boachie, C.; McConnachie, A.; Padmanabhan, S.; Welsh, C.; et al. Cardiac troponin T and troponin I in the general population. Circulation 2019, 139, 2754–2764. [Google Scholar] [CrossRef] [PubMed]
- Kaess, B.M.; de Las Heras Gala, T.; Zierer, A.; Meisinger, C.; Wahl, S.; Peters, A.; Todd, J.; Herder, C.; Huth, C.; Thorand, B.; et al. Ultra-sensitive troponin I is an independent predictor of incident coronary heart disease in the general population. Eur. J. Epidemiol. 2017, 32, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Pohlhammer, J.; Kronenberg, F.; Rantner, B.; Stadler, M.; Peric, S.; Hammerer-Lercher, A.; Klein-Weigel, P.; Fraedrich, G.; Kollerits, B. High-sensitivity cardiac troponin T in patients with intermittent claudication and its relation with cardiovascular events and all-cause mortality—The CAVASIC Study. Atherosclerosis 2014, 237, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Mouselimis, D.; Hagstotz, S.; Lichtenberg, M.; Donas, K.P.; Heinrich, U.; Avranas, K.; Dimitriadis, Z.; Blessing, E.; Langhoff, R.; Frey, N.; et al. Cardiac troponins for the clinical management of patients with claudication and without cardiac symptoms. J. Clin. Med. 2022, 11, 7287. [Google Scholar] [CrossRef]
- Hikita, H.; Shigeta, T.; Kimura, S.; Takahashi, A.; Isobe, M. Coronary artery disease severity and cardiovascular biomarkers in patients with peripheral artery disease. Int. J. Angiol. 2015, 24, 278–282. [Google Scholar] [CrossRef]
- Vrsalovic, M.; Vrsalovic Presecki, A.; Aboyans, V. Cardiac troponins predict mortality and cardiovascular outcomes in patients with peripheral artery disease: A systematic review and meta-analysis of adjusted observational studies. Clin. Cardiol. 2022, 45, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Aboyans, V.; Ricco, J.B.; Bartelink, M.E.L.; Björck, M.; Brodmann, M.; Cohnert, T.; Collet, J.P.; Czerny, M.; De Carlo, M.; Debus, S.; et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries Endorsed by: The European Stroke Organization (ESO) The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur. Heart J. 2018, 39, 763–816. [Google Scholar] [CrossRef] [PubMed]
- Gyanwali, B.; Lai, M.K.P.; Lui, B.; Liew, O.W.; Venketasubramanian, N.; Richards, A.M.; Chen, C.; Hilal, S. Blood-based cardiac biomarkers and the risk of cognitive decline, cerebrovascular disease, and clinical events. Stroke 2021, 52, 2275–2283. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.S.; Park, J.J.; Chang, H.; Kim, S.H.; Kwon, C.H.; Chung, S.M.; Kim, H.Y.; Kim, H.J. Association of high-sensitivity troponin I with cardiac and cerebrovascular events in patient after ischemic stroke. Cerebrovasc. Dis. 2023, 52, 153–159. [Google Scholar] [CrossRef]
- Kim, B.S.; Kwon, C.H.; Chang, H.; Choi, J.H.; Kim, H.J.; Kim, S.H. The association of cardiac troponin and cardiovascular events in patients with concomitant heart failure preserved ejection fraction and atrial fibrillation. BMC Cardiovasc. Disord. 2023, 23, 273. [Google Scholar] [CrossRef]
- Ozcan, S.; Donmez, E.; Coban, E.; Korkut, E.; Ziyrek, M.; Sahin, I.; Okuyan, E. Role of cardiac risk scores in clinical use to predict outcomes of acute ischemic stroke. Neurol. India 2023, 71, 1197–1204. [Google Scholar] [CrossRef]
- Lyngbakken, M.N.; Vigen, T.; Ihle-Hansen, H.; Brynildsen, J.; Berge, T.; Rønning, O.M.; Tveit, A.; Røsjø, H.; Omland, T. Cardiac troponin I measured with a very high sensitivity assay predicts subclinical carotid atherosclerosis: The Akershus Cardiac Examination 1950 Study. Clin. Biochem. 2021, 93, 59–65. [Google Scholar] [CrossRef]
- Sinning, C.; Keller, T.; Zeller, T.; Ojeda, F.; Schlüter, M.; Schnabel, R.; Lubos, E.; Bickel, C.; Lackner, K.J.; Diemert, P.; et al. Association of high-sensitivity assayed troponin I with cardiovascular phenotypes in the general population: The population-based Gutenberg health study. Clin. Res. Cardiol. 2014, 103, 211–222. [Google Scholar] [CrossRef]
- Sathi, S.; Mahapatra, H.; Sunder, S.; Jayaraman, R.; Sharma, N.; Verma, H.; Krishnamoorthy, V.; Gupta, A.; Kanchi, P.; Daksh, S.; et al. Nontraditional cardiovascular biomarkers and estimation of cardiovascular risk in predialysis chronic kidney disease patients and their correlations with carotid intima media thickness. Nephrourol. Mon. 2014, 6, e22112. [Google Scholar] [CrossRef]
- Hojs, R.; Ekart, R.; Hojs Fabjan, T.; Balon, B.P.; Gorenjak, M. Cardiac troponin T (cTnT) in hemodialysis patients with asymptomatic and symptomatic atherosclerosis. Arch. Med. Res. 2005, 36, 367–371. [Google Scholar] [CrossRef]
- Mutluay, R.; Konca, C.; Erten, Y.; Paşaoğlu, H.; Değer, S.M.; Ağirgün, C.; Derici, U.; Arinsoy, T.; Sindel, S. Predictive markers of asymptomatic atherosclerosis in end-stage renal disease patients. Ren. Fail. 2010, 32, 448–454. [Google Scholar] [CrossRef]
- Zumrutdal, A.; Sezer, S.; Demircan, S.; Seydaoglu, G.; Ozdemir, F.N.; Haberal, M. Cardiac troponin I and beta 2 microglobulin as risk factors for early-onset atherosclerosis in patients on haemodialysis. Nephrology 2005, 10, 453–458. [Google Scholar] [CrossRef]
- Caliskan, Y.; Ozkok, A.; Akagun, T.; Alpay, N.; Guz, G.; Polat, N.; Tufan, F.; Ecder, T.; Bozfakioglu, S. Cardiac biomarkers and noninvasive predictors of atherosclerosis in chronic peritoneal dialysis patients. Kidney Blood Press. Res. 2012, 35, 340–348. [Google Scholar] [CrossRef]
- Colbert, G.; Jain, N.; de Lemos, J.A.; Hedayati, S.S. Utility of traditional circulating and imaging-based cardiac biomarkers in patients with predialysis CKD. Clin. J. Am. Soc. Nephrol. 2015, 10, 515–529. [Google Scholar] [CrossRef]
- Ibrahem, E.M.; Tawfik, N.M.; Abdel-Aal, R.F.; Moussa, E.M.; Ezz-Eldin, A.M.; Mahmoud, S.R. Value of tumor necrosis factor-alpha and high-sensitive cardiac troponin-I as early predictors of subclinical atherosclerosis and their relation to disease activity in patients with rheumatoid arthritis: A case-control study. Egypt J. Immunol. 2023, 30, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Hörber, S.; Lehn-Stefan, A.; Hieronimus, A.; Hudak, S.; Fritsche, L.; Fritsche, A.; Heni, M.; Häring, H.U.; Peter, A.; Randrianarisoa, E. Carotid intima-media thickness is a predictor of subclinical myocardial damage in men with type 2 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 2021, 129, 750–756. [Google Scholar] [CrossRef]
- Yoshioka, K. Skin autofluorescence is associated with high-sensitive cardiac troponin T, a circulating cardiac biomarker, in Japanese patients with diabetes: A cross-sectional study. Diab. Vasc. Dis. Res. 2018, 15, 559–566. [Google Scholar] [CrossRef]
- Chou, P.R.; Wu, P.Y.; Wu, P.H.; Huang, T.H.; Huang, J.C.; Chen, S.C.; Lee, S.C.; Kuo, M.C.; Chiu, Y.W.; Hsu, Y.L.; et al. Investigation of the relationship between cardiovascular biomarkers and brachial-ankle pulse wave velocity in hemodialysis patients. J. Pers. Med. 2022, 12, 636. [Google Scholar] [CrossRef] [PubMed]
- Sabio, J.M.; Garcia-de Los Ríos, C.; Medina-Casado, M.; Del Mar Del Águila-García, M.; Cáliz-Cáliz, R.; Díaz-Chamorro, A. High-sensitivity cardiac troponin I is a biomarker for increased arterial stiffness in systemic lupus erythematous women with normal kidney function. Rheumatol. Int. 2023, 43, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Yamamoto, E.; Sawa, T.; Toda, K.; Hara, T.; Iwasaki, T.; Fujiwara, H.; Takatsu, Y. High-sensitivity cardiac troponin T in essential hypertension. J. Cardiol. 2011, 58, 226–231. [Google Scholar] [CrossRef]
- Yiu, K.H.; Zhao, C.T.; Chen, Y.; Siu, C.W.; Chan, Y.H.; Lau, K.K.; Liu, S.; Lau, C.P.; Tse, H.F. Association of subclinical myocardial injury with arterial stiffness in patients with type 2 diabetes mellitus. Cardiovasc. Diabetol. 2013, 12, 94. [Google Scholar] [CrossRef] [PubMed]
- Feistritzer, H.J.; Klug, G.; Reinstadler, S.J.; Mair, J.; Seidner, B.; Mayr, A.; Franz, W.M.; Metzler, B. Aortic stiffness is associated with elevated high-sensitivity cardiac troponin T concentrations at a chronic stage after ST-segment elevation myocardial infarction. J. Hypertens. 2015, 33, 1970–1976. [Google Scholar] [CrossRef] [PubMed]
- Ki, Y.J.; Choi, D.H.; Lee, Y.M.; Lim, L.; Song, H.; Koh, Y.Y. Predictive value of brachial-ankle pulse wave velocity for long-term clinical outcomes after percutaneous coronary intervention in a Korean cohort. Int. J. Cardiol. 2014, 175, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Ye, P.; Luo, L.; Xiao, W.; Xu, R.; Wu, H.; Bai, J. Arterial stiffness is associated with minimally elevated high-sensitivity cardiac, troponin T levels in a community-dwelling population. Atherosclerosis 2011, 218, 493–498. [Google Scholar] [CrossRef]
- Kimura, K.; Tomiyama, H.; Matsumoto, C.; Odaira, M.; Shiina, K.; Nagata, M.; Yamashina, A. Correlations of arterial stiffness/central hemodynamics with serum cardiac troponin T and natriuretic peptide levels in a middle-aged male worksite cohort. J. Cardiol. 2015, 66, 135–142. [Google Scholar] [CrossRef]
- Garg, P.K.; Lima, J.; deFilippi, C.R.; Daniels, L.B.; Seliger, S.L.; de Lemos, J.A.; Maisel, A.S.; Criqui, M.H.; Bahrami, H. Associations of cardiac injury biomarkers with risk of peripheral artery disease: The Multi-Ethnic Study of Atherosclerosis. Int. J. Cardiol. 2021, 344, 199–204. [Google Scholar] [CrossRef]
- Price, A.H.; Weir, C.J.; Welsh, P.; McLachlan, S.; Strachan, M.W.J.; Sattar, N.; Price, J.F. Comparison of non-traditional biomarkers, and combinations of biomarkers, for vascular risk prediction in people with type 2 diabetes: The Edinburgh Type 2 Diabetes Study. Atherosclerosis 2017, 264, 67–73. [Google Scholar] [CrossRef]
- Hicks, C.W.; Wang, D.; McDermott, K.; Matsushita, K.; Tang, O.; Echouffo-Tcheugui, J.B.; McEvoy, J.W.; Christenson, R.H.; Selvin, E. Associations of cardiac biomarkers with peripheral artery disease and peripheral neuropathy in US adults without prevalent cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 2023, 43, 1583–1591. [Google Scholar] [CrossRef] [PubMed]
- Tedla, Y.G.; Driver, S.; Szklo, M.; Kuller, L.; Lima, J.A.; Michos, E.D.; Ning, H.; deFilippi, C.R.; Greenland, P. Joint effect of highly-sensitive cardiac troponin T and ankle-brachial index on incident cardiovascular events: The MESA and CHS. Am. J. Prev. Cardiol. 2023, 13, 100471. [Google Scholar] [CrossRef] [PubMed]
- Roh, J.W.; Kwon, B.J.; Ihm, S.H.; Lim, S.; Park, C.S.; Chang, K.; Chung, W.S.; Kim, D.B.; Kim, S.R.; Kim, H.Y. Predictors of significant coronary artery disease in patients with cerebral artery atherosclerosis. Cerebrovasc. Dis. 2019, 48, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Flu, W.J.; van Kuijk, J.P.; Voûte, M.T.; Kuiper, R.; Verhagen, H.J.; Bax, J.J.; Poldermans, D. Asymptomatic low ankle-brachial index in vascular surgery patients: A predictor of perioperative myocardial damage. Eur. J. Vasc. Endovasc. Surg. 2010, 39, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Carmo, G.A.; Calderaro, D.; Gualandro, D.M.; Pastana, A.F.; Yu, P.C.; Marques, A.C.; Caramelli, B. The ankle-brachial index is associated with cardiovascular complications after noncardiac surgery. Angiology 2016, 67, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Groen, R.A.; de Graaf, M.A.; Stöger, J.L.; van Dijkman, P.R.M.; Jukema, J.W.; Schalij, M.J.; Geelhoed, J.J.M.; Antoni, M.L. Coronary calcium score in COVID-19 survivors: Association with cardiac injury and cardiac function after 6 weeks. Am. Heart. J. Plus 2023, 27, 100280. [Google Scholar] [CrossRef] [PubMed]
- Chattranukulchai, P.; Vassara, M.; Siwamogsatham, S.; Buddhari, W.; Tumkosit, M.; Ketloy, C.; Shantavasinkul, P.; Apornpong, T.; Lwin, H.M.S.; Kerr, S.J.; et al. High-sensitivity troponins and subclinical coronary atherosclerosis evaluated by coronary calcium score among older Asians living with well-controlled human immunodeficiency virus. Open Forum Infect. Dis. 2023, 10, ofad234. [Google Scholar] [CrossRef] [PubMed]
- Kuller, L.H.; Lopez, O.L.; Gottdiener, J.S.; Kitzman, D.W.; Becker, J.T.; Chang, Y.; Newman, A.B. Subclinical atherosclerosis, cardiac and kidney function, heart failure, and dementia in the very elderly. J. Am. Heart Assoc. 2017, 6, e005353. [Google Scholar] [CrossRef] [PubMed]
- Korley, F.K.; George, R.T.; Jaffe, A.S.; Rothman, R.E.; Sokoll, L.J.; Fernandez, C.; Falk, H.; Post, W.S.; Saheed, M.O.; Gerstenblith, G.; et al. Low high-sensitivity troponin I and zero coronary artery calcium score identifies coronary CT angiography candidates in whom further testing could be avoided. Acad. Radiol. 2015, 22, 1060–1067. [Google Scholar] [CrossRef] [PubMed]
- Numazaki, H.; Nasu, T.; Satoh, M.; Kotozaki, Y.; Tanno, K.; Asahi, K.; Ohmomo, H.; Shimizu, A.; Omama, S.; Morino, Y.; et al. Association between vascular endothelial dysfunction and stroke incidence in the general Japanese population: Results from the tohoku medical megabank community-based cohort study. Int. J. Cardiol. Cardiovasc. Risk. Prev. 2023, 19, 200216. [Google Scholar] [CrossRef]
- Gokce, N.; Keaney, J.F., Jr.; Hunter, L.M.; Watkins, M.T.; Menzoian, J.O.; Vita, J.A. Risk stratification for postoperative cardiovascular events via noninvasive assessment of endothelial function: A prospective study. Circulation 2002, 105, 1567–1572. [Google Scholar] [CrossRef]
- Güz, G.; Demirgan, S. Lower brachial artery flow-mediated dilation is associated with a worse prognosis and more lung parenchymal involvement in COVID-19: Prospective observational study. Medicine 2022, 101, e30001. [Google Scholar] [CrossRef]
- Oikonomou, E.; Souvaliotis, N.; Lampsas, S.; Siasos, G.; Poulakou, G.; Theofilis, P.; Papaioannou, T.G.; Haidich, A.B.; Tsaousi, G.; Ntousopoulos, V.; et al. Endothelial dysfunction in acute and long standing COVID-19: A prospective cohort study. Vasc. Pharmacol. 2022, 144, 106975. [Google Scholar] [CrossRef]
- Carbonara, R.; Giardinelli, F.; Pepe, M.; Luzzi, G.; Panettieri, I.; Vulpis, V.; Bortone, A.S.; Ciccone, M.M. Correlation between endothelial dysfunction and myocardial damage in acute phase of tako-tsubo cardiomyopathy: Brachial flow mediated dilation as a potential marker for assessment of patient with Tako-Tsubo. Heart Vessels 2018, 33, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Farmakis, D.; Richter, D.; Chronopoulou, G.; Goumas, G.; Kountouras, D.; Mastorakou, A.; Papingiotis, G.; Hahalis, G.; Tsioufis, K. High-sensitivity cardiac troponin I for cardiovascular risk stratification in apparently healthy individuals. Hell. J. Cardiol. 2023. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
Ankle–brachial index (ABI) | The ratio of blood pressure at the ankle to blood pressure at the arm level [32]. |
Intima–media thickness (IMT) | Total thickness of the intima and media measurement using ultrasound in B presentation, most often performed in the common carotid artery [33]. |
Coronary artery calcium (CAC) score | Assessment of coronary artery calcium using computed tomography (CT) [34]. |
Pulse wave velocity (PWV) | Assessment of arterial stiffness through measuring the speed of information propagation along the arterial wall [35]. |
Flow-mediated dilation (FMD) | Ultrasound assessment of the change in the diameter of the brachial artery under the influence of reactive hyperemia [36]. |
Cause of Increased Troponin Serum Concentration | Reference | |
---|---|---|
Myocardial ischemia due to pathology in the coronary arteries | Destabilization of atherosclerotic plaque | [56] |
Coronary artery spasm | [57] | |
Coronary artery dissection | [58] | |
Coronary embolism | [59] | |
Myocardial ischemia due to other pathologies than coronary arteries’ dysfunction | Bradyarrhythmia, tachyarrhythmia | [60,61] |
Poorly controlled hypertension resulting in left ventricular hypertrophy | [62] | |
Respiratory failure | [63] | |
Hypotension, shock (different types, both cardiogenic and non-cardiogenic) | [64,65,66,67] | |
Severe anemia | [68] | |
Other pathologies | Heart failure | [69,70,71] |
Myocarditis | [72,73] | |
Chronic renal failure | [74,75] | |
Pulmonary embolism (of at least intermediate risk) | [76,77] | |
Aortic dissection | [80,81,82,83] | |
Other causes | Physical activity | [84,85,86] |
Heart trauma | [87] | |
Drug-induced cardiotoxicity (e.g., anthracyclines) | [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubiak, G.K. Cardiac Troponin Serum Concentration Measurement Is Useful Not Only in the Diagnosis of Acute Cardiovascular Events. J. Pers. Med. 2024, 14, 230. https://doi.org/10.3390/jpm14030230
Jakubiak GK. Cardiac Troponin Serum Concentration Measurement Is Useful Not Only in the Diagnosis of Acute Cardiovascular Events. Journal of Personalized Medicine. 2024; 14(3):230. https://doi.org/10.3390/jpm14030230
Chicago/Turabian StyleJakubiak, Grzegorz K. 2024. "Cardiac Troponin Serum Concentration Measurement Is Useful Not Only in the Diagnosis of Acute Cardiovascular Events" Journal of Personalized Medicine 14, no. 3: 230. https://doi.org/10.3390/jpm14030230