Immunologic Factors Associated with Differential Response to Neoadjuvant Chemoimmunotherapy in Triple-Negative Breast Cancer
Abstract
:1. Introduction
2. Methods
2.1. Patients and Clinical Data
2.2. Quality Assessment of Clinical FFPE Tissue Specimens
2.3. Nucleic acid Isolation and Quantitation
2.4. Genomic and Immune Profiling
2.5. Data Analyses
3. Results
3.1. Cohort Characteristics and Clinical Outcomes
3.2. Tumor Microenvironmental Biomarkers and pCR
3.3. Gene Expression and pCR
3.4. Therapy Dose and pCR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FDA | Food and Drug Administration |
TNBC | Triple-negative breast cancer |
irAEs | immune-related adverse events |
TME | tumor microenvironment |
pCR | pathological complete response |
RNA | ribonucleic acid |
FFPE | formalin-fixed paraffin-embedded |
NAC | neoadjuvant chemotherapy administered without combination immunotherapy |
NAC+I | neoadjuvant chemotherapy administered in combination with pembrolizumab immunotherapy |
CPI | immune checkpoint inhibitor |
U.S. FDA | United States Food and Drug Administration |
DNA | deoxyribonucleic acid |
CP | cell proliferation signature |
TIGS | tumor immunogenic signature |
CTAB | cancer testis antigen burden |
CTA | cancer testis antigen |
RDI | relative dose intensity |
TILs | tumor infiltrating lymphocytes |
OR | odds ratio |
FC | fold change |
References
- Schmid, P.; Cortes, J.; Dent, R.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; et al. Event-free Survival with Pembrolizumab in Early Triple-Negative Breast Cancer. N. Engl. J. Med. 2022, 386, 556–567. [Google Scholar] [CrossRef]
- Gandhi, S. Novel Biomarkers to Guide Immunotherapy De-Escalation in the Neoadjuvant Setting in Triple-Negative Breast Cancer. J. Pers. Med. 2023, 13, 1313. [Google Scholar] [CrossRef]
- Tarekegn, K.; Keskinkilic, M.; Kristoff, T.J.; Evans, S.T.; Kalinsky, K. The role of immune checkpoint inhibition in triple negative breast cancer. Expert Rev. Anticancer. Ther. 2023, 23, 1095–1106. [Google Scholar] [CrossRef]
- Rizzo, A.; Ricci, A.D. Biomarkers for breast cancer immunotherapy: PD-L1, TILs, and beyond. Expert Opin. Investig. Drugs 2022, 31, 549–555. [Google Scholar] [CrossRef]
- Seban, R.D.; Arnaud, E.; Loirat, D.; Cabel, L.; Cottu, P.; Djerroudi, L.; Hescot, S.; Loap, P.; Bonneau, C.; Bidard, F.-C.; et al. [18F]FDG PET/CT for predicting triple-negative breast cancer outcomes after neoadjuvant chemotherapy with or without pembrolizumab. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 4024–4035. [Google Scholar] [CrossRef]
- Kim, L.; Coman, M.; Pusztai, L.; Park, T.S. Neoadjuvant Immunotherapy in Early, Triple-Negative Breast Cancers: Catching Up with the Rest. Ann. Surg. Oncol. 2023, 30, 6441–6449. [Google Scholar] [CrossRef]
- Iwase, T.; Blenman, K.R.M.; Li, X.; Reisenbichler, E.; Seitz, R.; Hout, D.; Nielsen, T.J.; Schweitzer, B.L.; Bailey, D.B.; Shen, Y.; et al. A Novel Immunomodulatory 27-Gene Signature to Predict Response to Neoadjuvant Immunochemotherapy for Primary Triple-Negative Breast Cancer. Cancers 2021, 13, 4839. [Google Scholar] [CrossRef]
- Gonzalez-Ericsson, P.I.; Wulfkhule, J.D.; Gallagher, R.I.; Sun, X.; Axelrod, M.L.; Sheng, Q.; Luo, N.; Gomez, H.; Sanchez, V.; Sanders, M.; et al. Tumor-Specific Major Histocompatibility-II Expression Predicts Benefit to Anti-PD-1/L1 Therapy in Patients with HER2-Negative Primary Breast Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2021, 27, 5299–5306. [Google Scholar] [CrossRef]
- Sharma, P.; Connolly, R.M.; Roussos Torres, E.T.; Thompson, A. Best Foot Forward: Neoadjuvant Systemic Therapy as Standard of Care in Triple-Negative and HER2-Positive Breast Cancer. Am. Soc. Clin. Oncol. Educ. Book Am. Soc. Clin. Oncol. Annu. Meet. 2020, 40, 1–16. [Google Scholar] [CrossRef]
- Conroy, J.M.; Pabla, S.; Glenn, S.T.; Burgher, B.; Nesline, M.; Papanicolau-Sengos, A.; Andreas, J.; Giamo, V.; Lenzo, F.L.; Hyland, F.C.; et al. Analytical Validation of a Next-Generation Sequencing Assay to Monitor Immune Responses in Solid Tumors. J. Mol. Diagn. JMD 2018, 20, 95–109. [Google Scholar] [CrossRef]
- Conroy, J.M.; Pabla, S.; Glenn, S.T.; Seager, R.J.; Van Roey, E.; Gao, S.; Burgher, B.; Andreas, J.; Giamo, V.; Mallon, M.; et al. A scalable high-throughput targeted next-generation sequencing assay for comprehensive genomic profiling of solid tumors. PLoS ONE 2021, 16, e0260089. [Google Scholar] [CrossRef] [PubMed]
- Pabla, S.; Conroy, J.M.; Nesline, M.K.; Glenn, S.T.; Papanicolau-Sengos, A.; Burgher, B.; Hagen, J.; Giamo, V.; Andreas, J.; Lenzo, F.L.; et al. Proliferative potential and resistance to immune checkpoint blockade in lung cancer patients. J. Immunother. Cancer 2019, 7, 27. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Pabla, S.; Lenzo, F.L.; Conroy, J.M.; Nesline, M.K.; Glenn, S.T.; Papanicolau-Sengos, A.; Burgher, B.; Giamo, V.; Andreas, J.; et al. Proliferative potential and response to nivolumab in clear cell renal cell carcinoma patients. Oncoimmunology 2020, 9, 1773200. [Google Scholar] [CrossRef]
- Pabla, S.; Seager, R.J.; Van Roey, E.; Gao, S.; Hoefer, C.; Nesline, M.K.; DePietro, P.; Burgher, B.; Andreas, J.; Giamo, V.; et al. Integration of tumor inflammation, cell proliferation, and traditional biomarkers improves prediction of immunotherapy resistance and response. Biomark. Res. 2021, 9, 56. [Google Scholar] [CrossRef] [PubMed]
- Gianni, L.; Huang, C.S.; Egle, D.; Bermejo, B.; Zamagni, C.; Thill, M.; Anton, A.; Zambelli, S.; Bianchini, G.; Russo, S.; et al. Pathologic complete response (pCR) to neoadjuvant treatment with or without atezolizumab in triple-negative, early high-risk and locally advanced breast cancer: NeoTRIP Michelangelo randomized study. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2022, 33, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Karn, T.; Denkert, C.; Rey, J.; Weber, K.E.; Holtrich, U.; Hanusch, C.; Sinn, B.V.; Jank, P.; Huober, J.B.; Blohmer, J.U.; et al. Low TMB as predictor for additional benefit from neoadjuvant immune checkpoint inhibition in triple-negative breast cancer. J. Clin. Oncol. 2022, 40 (Suppl. 16), 581. [Google Scholar] [CrossRef]
- Wang, X.Q.; Danenberg, E.; Huang, C.S.; Egle, D.; Callari, M.; Bermejo, B.; Dugo, M.; Zamagni, C.; Thill, M.; Anton, A.; et al. Spatial predictors of immunotherapy response in triple-negative breast cancer. Nature 2023, 621, 868–876. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Stecklein, S.R.; Yoder, R.; Staley, J.M.; Salgado, R.; Paré, L.; Conte, B.; Brasó-Maristany, F.; O’Dea, A.; Nye, L.; et al. Association of TNBC-DX scores with outcomes in triple-negative breast cancer (TNBC) treated with neoadjuvant pembrolizumab and chemotherapy: A correlative analysis from NeoPACT and NeoSTOP trials. Cancer Res. 2023, 83 (Suppl. 5), PD11-07. [Google Scholar] [CrossRef]
- Wood, S.J.; Gao, Y.; Lee, J.H.; Chen, J.; Wang, Q.; Meisel, J.L.; Li, X. High tumor infiltrating lymphocytes are significantly associated with pathological complete response in triple negative breast cancer treated with neoadjuvant KEYNOTE-522 chemoimmunotherapy. Breast Cancer Res. Treat. 2024. [Google Scholar] [CrossRef]
- Fratta, E.; Coral, S.; Covre, A.; Parisi, G.; Colizzi, F.; Danielli, R.; Nicolay, H.J.M.; Sigalotti, L.; Maio, M. The biology of cancer testis antigens: Putative function, regulation and therapeutic potential. Mol Oncol. 2011, 5, 164–182. [Google Scholar] [CrossRef]
- Xie, K.; Fu, C.; Wang, S.; Xu, H.; Liu, S.; Shao, Y.; Gong, Z.; Wu, X.; Xu, B.; Han, J.; et al. Cancer-testis antigens in ovarian cancer: Implication for biomarkers and therapeutic targets. J. Ovarian Res. 2019, 12, 1. [Google Scholar] [CrossRef]
- Nin, D.S.; Deng, L.W. Biology of Cancer-Testis Antigens and Their Therapeutic Implications in Cancer. Cells 2023, 12, 926. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, P.; Gandini, S.; Trapani, D.; Criscitiello, C.; Curigliano, G. Immunotherapy addition to neoadjuvant chemotherapy for early triple negative breast cancer: A systematic review and meta-analysis of randomized clinical trials. Crit. Rev. Oncol. Hematol. 2021, 159, 103223. [Google Scholar] [CrossRef] [PubMed]
- Seager, R.J.; Hajal, C.; Spill, F.; Kamm, R.D.; Zaman, M.H. Dynamic interplay between tumour, stroma and immune system can drive or prevent tumour progression. Converg. Sci. Phys. Oncol. 2017, 3, 034002. [Google Scholar] [CrossRef]
- Oppmann, B.; Lesley, R.; Blom, B.; Timans, J.C.; Xu, Y.; Hunte, B.; Vega, F.; Yu, N.; Wang, J.; Singh, K.; et al. Novel p19 Protein Engages IL-12p40 to Form a Cytokine, IL-23, with Biological Activities Similar as Well as Distinct from IL-12. Immunity 2000, 13, 715–725. [Google Scholar] [CrossRef]
- Koshiba, R.; Yanai, H.; Matsuda, A.; Goto, A.; Nakajima, A.; Negishi, H.; Nishio, J.; Smale, S.T.; Taniguchi, T. Regulation of cooperative function of the Il12b enhancer and promoter by the interferon regulatory factors 3 and 5. Biochem. Biophys. Res. Commun. 2013, 430, 95–100. [Google Scholar] [CrossRef]
- Kastelein, R.A.; Hunter, C.A.; Cua, D.J. Discovery and biology of IL-23 and IL-27: Related but functionally distinct regulators of inflammation. Annu. Rev. Immunol. 2007, 25, 221–242. [Google Scholar] [CrossRef]
- Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 2003, 3, 133–146. [Google Scholar] [CrossRef]
- O’Quinn, D.B.; Palmer, M.T.; Lee, Y.K.; Weaver, C.T. Emergence of the Th17 pathway and its role in host defense. Adv. Immunol. 2008, 99, 115–163. [Google Scholar]
- Kobori, T.; Tanaka, C.; Urashima, Y.; Takagaki, N.; Obata, T. IFN-γ and IL-12 from Concentrated Ascites in Patients with Pancreatic Cancer Exerts Growth Inhibitory Effects against Pancreatic Cancer Cells. Yakugaku Zasshi 2022, 142, 1409–1417. [Google Scholar] [CrossRef]
- Hershey, G.K.K. IL-13 receptors and signaling pathways: An evolving web. J. Allergy Clin. Immunol. 2003, 111, 677–690. [Google Scholar] [CrossRef]
- Gordon, S.; Martinez, F.O. Alternative Activation of Macrophages: Mechanism and Functions. Immunity 2010, 32, 593–604. [Google Scholar] [CrossRef]
- Scott, T.E.; Lewis, C.V.; Zhu, M.; Wang, C.; Samuel, C.S.; Drummond, G.R.; Kemp-Harper, B.K. IL-4 and IL-13 induce equivalent expression of traditional M2 markers and modulation of reactive oxygen species in human macrophages. Sci. Rep. 2023, 13, 19589. [Google Scholar] [CrossRef]
- Oettgen, H.C.; Geha, R.S. IgE regulation and roles in asthma pathogenesis. J. Allergy Clin. Immunol. 2001, 107, 429–440. [Google Scholar] [CrossRef]
- Chomarat, P.; Banchereau, J. Interleukin-4 and interleukin-13: Their similarities and discrepancies. Int. Rev. Immunol. 1998, 17, 1–52. [Google Scholar] [CrossRef]
- Zurawski, G.; de Vries, J.E. Interleukin 13, an interleukin 4-like cytokine that acts on monocytes and B cells, but not on T cells. Immunol. Today 1994, 15, 19–26. [Google Scholar] [CrossRef]
- Bommhardt, U.; Schraven, B.; Simeoni, L. Beyond TCR Signaling: Emerging Functions of Lck in Cancer and Immunotherapy. Int. J. Mol. Sci. 2019, 20, 3500. [Google Scholar] [CrossRef]
- Hernández-Hoyos, G.; Sohn, S.J.; Rothenberg, E.V.; Alberola-Ila, J. Lck activity controls CD4/CD8 T cell lineage commitment. Immunity 2000, 12, 313–322. [Google Scholar] [CrossRef]
- Nika, K.; Soldani, C.; Salek, M.; Paster, W.; Gray, A.; Etzensperger, R.; Fugger, L.; Polzella, P.; Cerundolo, V.; Dushek, O.; et al. Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. Immunity 2010, 32, 766–777. [Google Scholar] [CrossRef]
- Palacios, E.H.; Weiss, A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene 2004, 23, 7990–8000. [Google Scholar] [CrossRef]
- Candi, E.; Agostini, M.; Melino, G.; Bernassola, F. How the TP53 Family Proteins TP63 and TP73 Contribute to Tumorigenesis: Regulators and Effectors. Hum. Mutat. 2014, 35, 702–714. [Google Scholar] [CrossRef]
- Mills, A.A.; Zheng, B.; Wang, X.J.; Vogel, H.; Roop, D.R.; Bradley, A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999, 398, 708–713. [Google Scholar] [CrossRef]
- Yang, A.; Schweitzer, R.; Sun, D.; Kaghad, M.; Walker, N.; Bronson, R.T.; Tabin, C.; Sharpe, A.; Caput, D.; Crum, C.; et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999, 398, 714–718. [Google Scholar] [CrossRef] [PubMed]
- Paris, M.; Rouleau, M.; Pucéat, M.; Aberdam, D. Regulation of skin aging and heart development by TAp63. Cell Death Differ. 2012, 19, 186–193. [Google Scholar] [CrossRef]
- Li, Y.; Giovannini, S.; Wang, T.; Fang, J.; Li, P.; Shao, C.; Wang, Y.; Agostini, M.; Bove, P.; Mauriello, A.; et al. p63: A crucial player in epithelial stemness regulation. Oncogene 2023, 42, 3371–3384. [Google Scholar] [CrossRef]
- Melino, G.; De Laurenzi, V.; Vousden, K.H. p73: Friend or foe in tumorigenesis. Nat. Rev. Cancer. 2002, 2, 605–615. [Google Scholar] [CrossRef]
- Melino, G. p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death Differ. 2011, 18, 1487–1499. [Google Scholar] [CrossRef]
- Abbas, H.A.; Bui, N.H.B.; Rajapakshe, K.; Wong, J.; Gunaratne, P.; Tsai, K.Y.; Coarfa, C.; Flores, E.R. Distinct TP63 Isoform-Driven Transcriptional Signatures Predict Tumor Progression and Clinical Outcomes. Cancer Res. 2018, 78, 451–462. [Google Scholar] [CrossRef]
- Bankhead, A.; McMaster, T.; Wang, Y.; Boonstra, P.S.; Palmbos, P.L. TP63 isoform expression is linked with distinct clinical outcomes in cancer. EBioMedicine 2020, 51, 102561. [Google Scholar] [CrossRef]
- Gandhi, S.; Opyrchal, M.; Grimm, M.J.; Slomba, R.T.; Kokolus, K.M.; Witkiewicz, A.; Attwood, K.; Groman, A.; Williams, L.; Tarquini, M.L.; et al. Systemic infusion of TLR3-ligand and IFN-α in patients with breast cancer reprograms local tumor microenvironments for selective CTL influx. J. Immunother. Cancer 2023, 11, e007381. [Google Scholar] [CrossRef]
Characteristics | Treatment Group | NAC+I vs. NAC; p-Value *** | |||
---|---|---|---|---|---|
All Patients (NAC and NAC+I); n = 22 | Neoadjuvant Chemotherapy (NAC); n = 14 | Neoadjuvant Chemotherapy and Pembrolizumab (NAC+I); n = 8 | |||
Age * | Median Age | 42.5 years | 45 years | 40 years | 0.18 (WRS) |
Age Range | 25–79 years | 25–79 years | 33–75 years | ||
Sex * | Female | 22 (100%) | 14 (100%) | 8 (100%) | |
Race ** | White | 11 (50.0%) | 4 (28.6%) | 7 (87.5%) | |
Black | 9 (40.9%) | 8 (57.1%) | 1 (12.5%) | ||
Native American | 1 (4.6%) | 1 (7.1%) | 0 | ||
No Data | 1 (4.6%) | 1 (7.1%) | 0 | ||
Stage ** | I | 2 (9.1%) | 1 (7.1%) | 1 (12.5%) | |
II | 6 (27.3%) | 5 (35.7%) | 1 (12.5%) | ||
III | 14 (63.6%) | 8 (57.1%) | 6 (75%) | ||
BMI (kg/m2) * | Average BMI | 29.2 | 30 | 27.8 | 0.66 (WRS) |
BMI Category ** | <30 kg/m2 | 8 (36.4%) | 8 (57.1%) | 6 (75%) | |
≥30 kg/m2 | 14 (63.6%) | 6 (42.9%) | 2 (25%) | ||
Chemotherapy RDI * | Doxorubicin | 82.2 | 91.5 | 67 | |
Cyclophosphamide | 81.8 | 89.7 | 69.1 | ||
Paclitaxel | 94.3 | 93.6 | 95.4 | ||
Carboplatin **** | 88.2 | 85.3 | 88.9 | ||
Checkpoint Inhibitor Dose * | Pembrolizumab (number of cycles administered) | ---- | 0 | 7.3 | |
Gene Expression Biomarkers * | Tumor immunogenic score (TIGS) | 55.6 | 51.3 | 63 | 0.3 (WRS) |
Cell Proliferation (CP) | 54.8 | 50.9 | 61.6 | 0.3 (WRS) | |
Cancer Testis Antigen Burden (CTAB) | 171 | 185.6 | 145.5 | 0.81 (WRS) | |
PD-L1 (assessed by RNA-seq) | 42.1 | 31 | 61.5 | 0.04 (WRS) | |
Response ** | Pathological Complete Response (pCR) | 16 (72.7%) | 10 (71.4%) | 6 (75.0%) | 1 (FET) |
No Pathological Complete Response (Non-pCR) | 6 (27.3%) | 4 (28.6%) | 2 (25.0%) | 1 (FET) |
Treatment Group | Response Group | Upregulated Genes (FC > 2, p < 0.05) |
---|---|---|
NAC | pCR | IL12B, IL13, ADGRE5 |
Non-pCR | MAPK14, IL1B, RB1 | |
NAC+I | pCR | LCK, TP63, CEACAM1, HERC6, TCF7, CXCL1, CXCR5, ISG20, MX1, IFIT2, OAS3, IDO1, IFI44L, EIF2AK2, IKZF3, IL7R |
Non-pCR | PTPN11, CD63, ITGB1, LRP1, NRP1, FOXO1, GUSB, IKZF4, LAMP1, TNFSF4, MADCAM1, NOTCH3, EGR2, AXL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seager, R.J.; Ko, H.; Pabla, S.; Senosain, M.-F.; Kalinski, P.; Van Roey, E.; Gao, S.; Strickland, K.C.; Previs, R.A.; Nesline, M.K.; et al. Immunologic Factors Associated with Differential Response to Neoadjuvant Chemoimmunotherapy in Triple-Negative Breast Cancer. J. Pers. Med. 2024, 14, 481. https://doi.org/10.3390/jpm14050481
Seager RJ, Ko H, Pabla S, Senosain M-F, Kalinski P, Van Roey E, Gao S, Strickland KC, Previs RA, Nesline MK, et al. Immunologic Factors Associated with Differential Response to Neoadjuvant Chemoimmunotherapy in Triple-Negative Breast Cancer. Journal of Personalized Medicine. 2024; 14(5):481. https://doi.org/10.3390/jpm14050481
Chicago/Turabian StyleSeager, Robert J., Heidi Ko, Sarabjot Pabla, Maria-Fernanda Senosain, Pawel Kalinski, Erik Van Roey, Shuang Gao, Kyle C. Strickland, Rebecca Ann Previs, Mary K. Nesline, and et al. 2024. "Immunologic Factors Associated with Differential Response to Neoadjuvant Chemoimmunotherapy in Triple-Negative Breast Cancer" Journal of Personalized Medicine 14, no. 5: 481. https://doi.org/10.3390/jpm14050481