Revisiting Vaidya Horizons
Abstract
:1. Introduction
2. Horizons in Vaidya
2.1. Radial Null Vectors
2.2. Conformal Killing Field
2.3. Hamilton-Jacobi Equation
3. Vaidya in Conformally Static Coordinates
4. Static Conformal Vaidya
5. Discussion and Conclusions
Acknowledgments
Conflicts of Interest
References
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Penrose, R. Gravitational collapse and space-time singularities. Phys. Rev. Lett. 1965, 14, 57–59. [Google Scholar] [CrossRef]
- Nielsen, A.B. The Spatial relation between the event horizon and trapping horizon. Class. Quant. Gravity 2010, 27, 245016. [Google Scholar] [CrossRef]
- Vanzo, L.; Acquaviva, G.; Di Criscienzo, R. Tunnelling Methods and Hawking’s radiation: Achievements and prospects. Class. Quant. Gravity 2011, 28, 183001. [Google Scholar] [CrossRef]
- Nielsen, A.B.; Firouzjaee, J.T. Conformally rescaled spacetimes and Hawking radiation. Gen. Relativ. Gravit. 2013, 45, 1815–1838. [Google Scholar] [CrossRef]
- Vaidya, P. The Gravitational Field of a Radiating Star. Proc. Indian Acad. Sci. Sect. A 1951, 33, 264–276. [Google Scholar]
- Kuroda, Y. Vaidya space-time as an evaporating black hole. Prog. Theor. Phys. 1984, 71, 1422–1425. [Google Scholar] [CrossRef]
- Ashtekar, A.; Krishnan, B. Isolated and dynamical horizons and their applications. Living Rev. Rel. 2004, 7, 10. [Google Scholar] [CrossRef]
- Nielsen, A.B.; Jasiulek, M.; Krishnan, B.; Schnetter, E. The Slicing dependence of non-spherically symmetric quasi-local horizons in Vaidya Spacetimes. Phys. Rev. D 2011, 83, 124022. [Google Scholar] [CrossRef]
- Hayward, S.A. General laws of black hole dynamics. Phys. Rev. D 1994, 49, 6467–6474. [Google Scholar] [CrossRef]
- Di Criscienzo, R.; Hayward, S.A.; Nadalini, M.; Vanzo, L.; Zerbini, S. Hamilton-Jacobi tunneling method for dynamical horizons in different coordinate gauges. Class. Quant. Gravity 2010, 27, 015006. [Google Scholar] [CrossRef]
- Nielsen, A.B.; Yoon, J.H. Dynamical surface gravity. Class. Quant. Gravity 2008, 25, 085010. [Google Scholar] [CrossRef]
- Jacobson, T.; Kang, G. Conformal invariance of black hole temperature. Class. Quant. Grav. 1993, 10, L201. [Google Scholar] [CrossRef]
- Dicke, R.H. Mach’s principle and invariance under transformation of units. Phys. Rev. 1962, 125, 2163–2167. [Google Scholar] [CrossRef]
- Bengtsson, I.; Senovilla, J.M.M. Region with trapped surfaces in spherical symmetry, its core, and their boundaries. Phys. Rev. D 2011, 83, 044012. [Google Scholar] [CrossRef]
- Wall, A.C. Testing the generalized second law in 1+1 dimensional conformal vacua: An argument for the causal horizon. Phys. Rev. D 2012, 85, 024015. [Google Scholar] [CrossRef]
- Nielsen, A.B.; Faraoni, V. The horizon-entropy increase law for causal and quasi-local horizons and conformal field redefinitions. Class. Quant. Gravity 2011, 28, 175008. [Google Scholar] [CrossRef]
- Codello, A.; D’Odorico, G.; Pagani, C.; Percacci, R. The renormalization group and Weyl invariance. Class. Quant. Gravity 2013, 30, 115015. [Google Scholar] [CrossRef]
- Cropp, B.; Liberati, S.; Visser, M. Surface gravities for non-Killing horizons. Class. Quant. Gravity 2013, 30, 125001. [Google Scholar] [CrossRef]
© 2014 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Nielsen, A.B. Revisiting Vaidya Horizons. Galaxies 2014, 2, 62-71. https://doi.org/10.3390/galaxies2010062
Nielsen AB. Revisiting Vaidya Horizons. Galaxies. 2014; 2(1):62-71. https://doi.org/10.3390/galaxies2010062
Chicago/Turabian StyleNielsen, Alex B. 2014. "Revisiting Vaidya Horizons" Galaxies 2, no. 1: 62-71. https://doi.org/10.3390/galaxies2010062
APA StyleNielsen, A. B. (2014). Revisiting Vaidya Horizons. Galaxies, 2(1), 62-71. https://doi.org/10.3390/galaxies2010062