Research on the Relationship between Dynamic Characteristics and Friction Torque Fluctuation of CMGB under the Condition of Time-Varying Moment
Abstract
:1. Introduction
2. Dynamic Model of CMGB
2.1. Coordinate System of CMGB
2.2. Dynamic Differential Equations for CMGB
2.2.1. Force Analysis of CMGB
2.2.2. Dynamic Differential Equations of CMGB
3. Results and Discussion
3.1. Dynamic Characteristics and Friction Torque of Bearing under the Steady-State Condition
3.2. Dynamic Characteristics and Friction Torque of Bearing under the Condition of the Time-Varying Moment
3.3. Effect of Preload on Dynamic Characteristics and Friction Torque of Bearing under the Condition of Time-Varying Moment
3.4. Effect of Working Temperature on Dynamic Characteristics and Friction Torque of Bearings under the Time-Varying Moment
3.5. Experimental Verification
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Dong, W.; Zhang, J. The Application of Control Moment Gyro in Attitude Control of Tiangong-1 Spacecraft. Aerosp. Control Appl. 2011, 37, 52–59. [Google Scholar] [CrossRef]
- Wei, D.; Li, G.; Fu, R.; Wu, D.; Zhang, J. Design of SGCMG and Long Life Rotor Bearing System Technology in Tiangong-1. Sci. Sin. Technol. 2014, 44, 261–268. [Google Scholar]
- Lai, L.; Li, G.; Wu, D.; Zhai, B.; Ma, W. Miniature Control Moment Gyroscope for Small Satellites. Aerosp. Control Appl. 2017, 43, 43–48. [Google Scholar] [CrossRef]
- Zhai, H.; Lai, L.; Wu, D.; Li, G.; Wei, W. Development and Application of Control Moment Gyroscope. Aerosp. Control Appl. 2020, 46, 1–7. [Google Scholar] [CrossRef]
- Zhang, W.; Deng, S.; Chen, G.; Cui, Y. Impact of Lubricant Traction Coefficient on Cage’sdynamic Characteristics in High-speed Angular Contact Ball Bearing. Chin. J. Aeronaut. 2017, 30, 827–835. [Google Scholar] [CrossRef]
- Popescu, A.; Houpert, L.; Olarua, D.N. Four Approaches for Calculating Power Losses in an Angular Contact Ball Bearing. Mech. Mach. Theory 2020, 144, 1–20. [Google Scholar] [CrossRef]
- Gupta, P.K. Dynamic loads and cage wear in high-speed rolling bearings. Wear 1991, 147, 119–134. [Google Scholar] [CrossRef]
- Han, Q.; Wen, B.; Wang, M.; Deng, S. Investigation of Cage Motions Affected by Its Unbalance in a Ball Bearing. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2018, 232, 169–185. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, X.; Gu, J.; Li, Q. Progress of Research on Cage Stability of High-Speed Angular Contact Ball Bearing. Acta Aeronaut. Et Astronaut. Sin. 2018, 39, 22026. [Google Scholar]
- Wen, B.G.; Han, Q.K.; Qiao, L.C. Effacts of cage clearance on its wear in an angular contact ball bearing. J. Vib. Shopck 2018, 37, 9–14. [Google Scholar] [CrossRef]
- Deng, S.; Li, X.; Wang, J.; Teng, H. Frictional Torque Characteristic of Angular Contact Ball Bearings. J. Mech. Eng. 2011, 47, 114–120. [Google Scholar] [CrossRef]
- Wang, H.; Han, Q.; Luo, R. Dynamic modeling of moment wheel assemblies with nonlinear rolling bearing supports. J. Sound Vib. 2017, 406, 124–145. [Google Scholar] [CrossRef]
- Wang, H.; Han, Q.; Zhou, D. Nonlinear dynamic modeling of rotor system supported by angular contact ball bearings. Mech. Syst. Signal Process. 2017, 85, 16–40. [Google Scholar] [CrossRef]
- Dazhong, W.; Jiyang, Z.; Dengyun, W. Development of a 200Nms Single Gimbal Control Moment Gyro. Aerosp. Control Appl. 2011, 37, 14–18. [Google Scholar] [CrossRef]
- Han, Q.; Jiang, Z.; Chu, F. Micro-vibration modeling and analysis of single-gimbal control moment gyros. Commun. Nonlinear Sci. Numer. Simul. 2023, 118, 107040. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, D.; Han, Q. Nonlinear dynamic force transmissibility of a flywheel rotor supported by angular contact ball bearings. Nonlinear Dyn. Vol. 2021, 103, 2273–2286. [Google Scholar] [CrossRef]
- Longato, M.M.; Hughes, T.; Yotov, V. Microvibration simulation of reaction wheel ball bearings. J. Sound Vib. 2023, 567, 117909. [Google Scholar] [CrossRef]
- Narayan, S.S.; Nair, P.S.; Ghosal, A. Dynamic interaction of rotating momentum wheels with spacecraft elements. J. Sound Vib. 2008, 315, 970–984. [Google Scholar] [CrossRef]
- Sathyan, K.; Hsu, H.Y.; Lee, S.H.; Gopinath, K. A Bearing Cartridege Assembly for Long-Term Performance of Momentum/Reaction Wheels used in Spacecraft. Tribol. Ind. 2014, 36, 22–32. [Google Scholar]
- Söchting, S.; Sherrington, I.; Lewis, S.D.; Roberts, E.W. An Evaluation of the Effect of Simulated Launch Vibration on the Friction Performance and Lubrication of Ball Bearings for Space Applications. Wear 2006, 260, 1190–1202. [Google Scholar] [CrossRef]
- Hu, G.; Xu, Y.; Wu, J. Thermal Balance Test on a 200Nms Single-Gimbal CMG. Aerosp. Control Appl. 2008, 34, 25–28. [Google Scholar]
- Taniwaki, S.; Kudo, M.; Sato, M.; Ohkami, Y. Analysis of Retainer induced Disturbances of Reaction Wheel. J. Syst. Des. Dyn. 2007, 1, 307–317. [Google Scholar] [CrossRef]
- Wang, H.; Han, Q.; Zhou, D. Output Torque Modeling of Control Moment Gyros Considering Rolling Element Bearing induced Disturbances. Mech. Syst. Signal Process. 2019, 115, 188–212. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Deng, S. Analysis on Temperature Field of Bearing Assembly for a Flywheel. Bearing 2015, 10, 24–28. [Google Scholar] [CrossRef]
- Liao, H.; Xie, P.; Deng, S.; Zhang, W.; Shi, L.; Zhao, S. Investigation of Dynamic Characteristics Experiments and Stability Evaluation Criterion of Space Ball Bearing Cage. Tribol. Trans. 2023, 66, 453–465. [Google Scholar] [CrossRef]
- Liao, H.; Xie, P.; Deng, S.; Zhang, W.; Shi, L.; Zhao, S.; Wang, H. Research on Early Fault Intelligent Diagnosis for Oil-impregnated Cage in Space Ball Bearing. Expert Syst. Appl. 2023, 238, 121952. [Google Scholar] [CrossRef]
- Chen, S.; Chen, X.; Li, Q.; Gu, J. Experimental Study on Cage Dynamic Characteristics of Angular Contact Ball Bearing in Acceleration and Deceleration Process. Tribol. Trans. 2021, 1, 42–52. [Google Scholar] [CrossRef]
- Ningning, Z.; Tao, Q.; Gang, Z. On the Friction Torque Properties of Bearing Assemblies in Fly Wheel. Aerosp. Control Appl. 2013, 39, 54–58. [Google Scholar]
- Xia, X.; Chen, X.; Ye, L. Dynamic Prediction of Friction Torque Performance Reliability for Satellite Momentum Wheel Bearings. China Mech. Eng. 2013, 30, 1268–1275. [Google Scholar] [CrossRef]
- Zhang, Y. The Influence of the Momentum Wheel Bearing Guide Surface Texture on the Dynamic Performance of the Cage. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2019. [Google Scholar]
- Wu, B.; Qing, T.; Zhou, N. Method to Estimate the Optimum Quantity of Lubricating Oil in Flywheel Bearing and Its Experimental Verification. Aerosp. Control Appl. 2014, 40, 42–47. [Google Scholar] [CrossRef]
- Cui, Y.; Deng, S.; Deng, K.; Zhang, W.; Cui, Y. Friction Torque Characteristics of Control Moment Gyros Bearing Unit. Aerosp. Control Appl. 2020, 46, 73–80. [Google Scholar] [CrossRef]
- Deng, K.; Xie, P.; Liao, H.; Zhou, G.; Deng, S. Mechanism of abnormal fluctuation of friction torque of control moment gyro bearing assembly. J. Aerosp. Power 2023, 38, 752–768. [Google Scholar] [CrossRef]
- Deng, S.; Jia, Q.; Xue, J. Rolling Bearing Design Principle; Standards Press of China: Beijing, China, 2014. [Google Scholar]
- Deng, S.; Hua, X.; Zhang, W. Analysis on Friction Torque Fluctuation of Angular Contact Ball Bearing in Gyro Motor. J. Aerosp. Power 2018, 33, 1713–1724. [Google Scholar] [CrossRef]
Item | Value |
---|---|
Bearing inner diameter (mm) | 25 |
Bearing outer diameter (mm) | 47 |
Bearing width (mm) | 12 |
Ball diameter (mm) | 6.35 |
Cage outer diameter (mm) | 39.26 |
Material of inner ring, outer ring, ball | 9Cr18Mo |
Material of cage | Porous polyimide |
Lubricating oil | 4129 aviation lubricating oil |
Time | 0 s | 0.2 s | 0.4 s | 0.5 s | 0.6 s | 0.8 s | 1.0 s |
---|---|---|---|---|---|---|---|
Moment (N·mm) | 0 | 25 | 50 | 62.5 | 75 | 100 | 125 |
Maximum force between balls and inner raceway (N) | 27.79 | 36.92 | 68.49 | 95.99 | 135.22 | 204.85 | 235.92 |
Minimum force between balls and inner raceway (N) | 27.63 | 19.17 | 6.19 | 2.63 | 1.60 | 1.24 | 0.92 |
Axial Preload (N) | 60 | 110 | 160 |
---|---|---|---|
Maximum axial displacement (μm) | 90.3 | 78.2 | 50.9 |
Minimum axial displacement (μm) | 25.1 | 23.5 | 9.1 |
Axial Preload (N) | 60 | 110 | 160 |
---|---|---|---|
Time (s) | 0.4 | 0.5 | 0.55 |
Critical moment (N·m) | 50 | 62.5 | 68.75 |
Maximum force between the ball and inner raceway (N) | 96.23 | 94.99 | 93.50 |
Minimum force between the ball and inner raceway (N) | 0.35 | 2.63 | 5.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Li, S.; Zhou, G.; Zhou, N.; Zhao, Y.; Li, W. Research on the Relationship between Dynamic Characteristics and Friction Torque Fluctuation of CMGB under the Condition of Time-Varying Moment. Lubricants 2023, 11, 525. https://doi.org/10.3390/lubricants11120525
Zhang W, Li S, Zhou G, Zhou N, Zhao Y, Li W. Research on the Relationship between Dynamic Characteristics and Friction Torque Fluctuation of CMGB under the Condition of Time-Varying Moment. Lubricants. 2023; 11(12):525. https://doi.org/10.3390/lubricants11120525
Chicago/Turabian StyleZhang, Wenhu, Shili Li, Gang Zhou, Ningning Zhou, Yan Zhao, and Wanjia Li. 2023. "Research on the Relationship between Dynamic Characteristics and Friction Torque Fluctuation of CMGB under the Condition of Time-Varying Moment" Lubricants 11, no. 12: 525. https://doi.org/10.3390/lubricants11120525