Next Article in Journal
Insecticidal Effect of Zinc Oxide Nanoparticles against Spodoptera frugiperda under Laboratory Conditions
Next Article in Special Issue
The Effects of Boric Acid Sugar Bait on Wolbachia Trans-Infected Male Aedes albopictus (ZAP Males®) in Laboratory Conditions
Previous Article in Journal
The Fitness of Mass Rearing Food on the Establishment of Chrysopa pallens in a Banker Plant System under Fluctuating Temperature Conditions
Previous Article in Special Issue
The Influence of the pH and Salinity of Water in Breeding Sites on the Occurrence and Community Composition of Immature Mosquitoes in the Green Belt of the City of São Paulo, Brazil
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Communication

Revisiting the Hybridization Processes in the Triatoma brasiliensis Complex (Hemiptera, Triatominae): Reproductive Isolation between Triatoma petrocchiae and T. b. brasiliensis and T. lenti

by
Luiza Maria Grzyb Delgado
1,†,
Jader de Oliveira
2,3,†,
Amanda Ravazi
1,
Fernanda Fernandez Madeira
4,
Yago Visinho dos Reis
1,
Heloisa Pinotti
3,
Ana Beatriz Bortolozo de Oliveira
4,
Isabella da Silva Masarin
1,
Maurício Lilioso
5,
Elaine Folly-Ramos
6,
Cleber Galvão
7,*,
Maria Tercília Vilela de Azeredo-Oliveira
4,
João Aristeu da Rosa
3 and
Kaio Cesar Chaboli Alevi
1,2,3
1
Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Rua Dr. Antônio Celso Wagner Zanin, 250, Distrito de Rubião Júnior, Botucatu 18618-689, Brazil
2
Laboratório de Entomologia em Saúde Pública, Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo (USP), Av. Dr. Arnaldo 715, São Paulo 01246-904, Brazil
3
Laboratório de Parasitologia, Departamento de Ciências Biológicas, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus de Araraquara, Rod. Araraquara-Jaú km 1, Araraquara 14801-902, Brazil
4
Laboratório de Biologia Celular, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Câmpus de São José do Rio Preto, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Rua Cristóvão Colombo 2265, São José do Rio Preto 15054-000, Brazil
5
Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083-862, Brazil
6
Centro de Ciências Aplicadas e Educação, Laboratório de Ecologia Animal, Departamento de Engenharia e Meio Ambiente, Universidade Federal de Paraíba (UFPB), Av. Santa Elizabete, 160, Rio Tinto, Paraíba 58297-000, Brazil
7
Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Instituto Oswaldo Cruz (IOC/FIOCRUZ), Av. Brasil 4365, Pavilhão Rocha Lima, Sala 505, Rio de Janeiro 21040-360, Brazil
*
Author to whom correspondence should be addressed.
Co-first authorship.
Insects 2021, 12(11), 1015; https://doi.org/10.3390/insects12111015
Submission received: 12 October 2021 / Revised: 4 November 2021 / Accepted: 9 November 2021 / Published: 11 November 2021
(This article belongs to the Special Issue Vector-Borne Diseases in a Changing World)

Abstract

:

Simple Summary

Although all triatomines are potential vectors of Chagas disease, there are species with greater or lesser vectorial importance. Therefore, the correct identification of triatomine species is essential for vector control programs. In general, triatomines are identified by external morphological characters. However, some species are very similar or even morphologically identical, making the use of complementary analyses for the correct identification of species important. For this reason, this study focused on the use of experimental crosses to assess the specific status of species of the Triatoma brasiliensis species complex. The crosses did not result in hybrids, demonstrating that there are pre-zygotic reproductive barriers installed between T. petrocchiae and the other species of the T. brasiliensis complex (which confirms the specific status of the species according to the biological species concept). On the basis of the results above, we demonstrated that T. petrocchiae is reproductively isolated from T. b. brasiliensis and T. lenti. Furthermore, we suggest that T. petrocchiae is the species most derived from the T. brasiliensis complex.

Abstract

Triatoma petrocchiae is a species morphologically similar to T. b. brasiliensis (which resulted in a synonymization event); despite this similarity, genetic, morphological, and experimental crossbreeding studies confirmed the specific status of T. petrocchiae. Considering that both species have been reported living in sympatry and that, for a long time, most species of the T. brasiliensis complex were considered only chromatic variants of T. b. brasiliensis, we carried out experimental crosses between T. b. brasiliensis and T. petrocchiae (to confirm whether these species are reproductively isolated) and between T. lenti and T. petrocchiae (to assess whether T. petrocchiae also presents prezygotic isolation with the other species of the T. brasiliensis complex). Reciprocal experimental crosses were conducted, and weekly, the eggs were collected, counted, and separated in new containers to assess the hatch rate. Neither cross resulted in hybrids, demonstrating that there are pre-zygotic reproductive barriers installed between T. petrocchiae and the other species of the T. brasiliensis complex. On the basis of the results above, we demonstrated that T. petrocchiae is reproductively isolated from T. b. brasiliensis and T. lenti. Furthermore, we suggest that T. petrocchiae is the species most derived from the T. brasiliensis complex.

1. Introduction

Triatomines (Hemiptera, Triatominae) are hematophagous insects of great importance to public health, as they are considered the main form of transmission of the protozoan Trypanosoma cruzi (Chagas, 1909) (Kinetoplastida, Trypanosomatidae), the etiological agent of Chagas disease [1] (a neglected disease that affects about 8 million people and results in 10,000 deaths per year [1]). There are currently 157 species grouped into 18 genera and five tribes [2,3,4,5]. The Triatomini and Rhodniini tribes have the largest number of species (115 and 24, respectively) and are the most important from an epidemiological point of view (since Panstrongylus megistus (Burmeister, 1835), Triatoma infestans Klug, 1834, T. brasiliensis brasiliensis Neiva, 1911, T. dimidiata (Latreille, 1811), and Rhodnius prolixus Stål, 1859 are of worldwide importance in the transmission of the disease [6]).
The genus Triatoma Laporte, 1832 is the most representative (81 species) and the most morphologically diversified [6,7]. This genus is paraphyletic [8,9], and species are grouped into complexes and subcomplexes [9,10,11,12]. The T. brasiliensis complex is a grouping of endemic species from Brazil [13] composed of six species and two subspecies that share a common ancestry: T. b. brasiliensis Neiva, 1911, T. b. macromelasoma Galvão, 1965, T. juazeirensis Costa and Félix, 2007, T. sherlocki Papa et al., 2002, T. petrocchiae Pinto and Barreto, 1925, T. lenti Sherlock and Serafim, 1967, T. bahiensis Sherlock and Serafim, 1967, and T. melanica Neiva and Lent, 1941 [14,15,16,17,18]. The last taxon grouped in this complex was T. petrocchiae [18], a species reported in the states of Bahia, Ceará, Pernambuco, Paraíba, and Rio Grande do Norte [13,19]; however, the potential distribution map published by Caranha et al. [20] suggests that this species could also be found in the states of Piauí, Alagoas, and Sergipe, where the species has not been recorded to date.
The species T. brasiliensis sensu stricto is currently divided into two subspecies (T. b. brasiliensis and T. b. macromelasoma), which can be differentiated by morphological characters: T. b. brasiliensis presents a pronotum with 1 + 1 brownish-yellow areas extending from the posterior portion of the anterior lobe to the posterior lobe, femora with broad brownish-yellow rings, and membrane of hemelytra with a lumen of cells that are not darkened; T. b. macromelasoma presents a pronotum with 1 + 1 narrow brownish-yellow stripes on the submedian carinae, not attaining its apex, legs with an incomplete brownish-yellow ring on the apical half of the femora, and hemelytra with membrane cells that are darkened on the central portion [21]. In addition to the phenotypic divergences, these species have a different geographic distribution: while T. b. brasiliensis has been noted in the states of Ceará, Maranhão, Paraíba, Piauí, and Rio Grande do Norte, T. b. macromelasoma is endemic to Pernambuco [13,19].
Triatoma petrocchiae is a species morphologically similar to T. b. brasiliensis, which led Lucena [22] to propose the synonymization of species, considering T. petrocchiae only as a chromatic variant of T. b. brasiliensis. However, Espínola [23] carried out experimental crosses between T. b. brasiliensis and T. petrocchiae from Paulo Afonso, Bahia, Brazil, and observed that these species did not produce viable hybrids. On the basis of this, Lent and Wygodzinsky [24] revalidated the specific status of T. petrocchiae from morphological data (the status was corroborated with genetic analyses using allozyme electrophoresis [25]).
The interspecific crosses performed by Espínola [23] were proposed because chromatic variations were observed in the populations of T. b. brasiliensis from Paulo Afonso, Bahia. The authors indicated that there are similarities in the coloration between T. b. brasiliensis and T. petrocchiae and, above all, these species share the same ecological niche. Considering that these species have been reported living in sympatry [26,27] and that, in 1971, most species of the T. brasiliensis complex were still considered only chromatic variants of T. b. brasiliensis, there is a need to confirm whether T. b. brasiliensis and T. petrocchiae are really reproductively isolated (mainly because all other species in this complex are capable of producing hybrids [15,28,29,30,31,32]). On the basis of the assumptions above, we carried out experimental crosses between T. b. brasiliensis and T. petrocchiae (to corroborate the results of Espínola [23]) and between T. lenti and T. petrocchiae (to assess whether T. petrocchiae also presents prezygotic isolation with the other species of the T. brasiliensis complex).

2. Materials and Methods

Reciprocal experimental crosses were conducted between T. b. brasiliensis (from Currais Novos (Pedra do Sino), Rio Grande do Norte, Brazil, collected in wild ecotopes (geographic coordinates: 6°17′06.8″ S 36°29′51.9″ W)) and T. petrocchiae (from Caicó, Rio Grande do Norte, Brazil, collected in wild ecotopes (geographic coordinates: 6°27′47.8″ S 37°09′11.3″ W)) and between T. lenti (from Macaúbas, Bahia, Brazil, collected in peridomiciliary ecotopes (geographic coordinates: 13°11′25.7″ S 42°31′56.3″ W)) and T. petrocchiae (Figure 1). The insects used in the experiment came from colonies kept in the Triatominae insectary of the School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil. The experimental crosses were conducted in the Triatominae insectary, according to the experiments of Mendonça et al. [30], Neves et al. [33], and Pinotti et al. [32]: the insects were sexed as 5th instar nymphs [34], and males and females were kept separately until they reached the adult stage to guarantee the virginity of the insects used in the crosses. For the experimental crosses, three couples from each set were placed in plastic jars (diameter 5 cm × height 10 cm) (each couple in a jar) and kept at room temperature (average of 24 °C [35]) and an average relative humidity of 63% [35]). Weekly, the couples were fed on duck blood, and the eggs were collected, counted, and separated into new containers to assess the hatch rate.

3. Results and Discussion

The experimental crosses between T. petrocchiae and T. b. brasiliensis did not result in hybrids (Table 1), demonstrating that there are pre-zygotic reproductive barriers installed between these species (confirming the specific status of T. petrocchiae according to the biological species concept [36,37]). These results obtained for the cross between T. b. brasiliensis and T. petrocchiae from Rio Grande do Sul (the state where the species were also collected in the same rock outcrop spot [38]) agree with those obtained by Espínola [23] when they crossed specimens from Paulo Afonso, Bahia.
Whereas in 1971, the current species T. melanica, T. sherlocki, and T. juazeirensis were considered only phenotypic variants and/or subspecies of T. b. brasiliensis [14,39,40,41,42], we conducted a survey of the literature on the triatomine already noted in Paulo Afonso, Bahia to confirm which species Espínola [22] had crossed with T. petrocchiae, and we observed that only T. b. brasiliensis and T. petrocchiae were the species of the T. brasiliensis complex notified for the municipality [43]. Furthermore, to ensure that the T. brasiliensis complex triatomines collected in Paulo Afonso, Bahia, were correctly identified as T. b. brasiliensis and T. petrocchiae, we evaluated some specimens collected in this municipality that were deposited in the entomologic collections of the Faculty of Public Health of the University of Sao Paulo, Brazil (Figure 2). On the basis of this information, we confirmed that the specimens used in the experiments of Espínola [23] were T. b. brasiliensis.
Although Espínola [23] suggested that T. petrocchiae and T. b. brasiliensis share the same ecological niche, Liloso et al. [27] recently demonstrated that while T. b. brasiliensis is mainly associated with rodents, the food sources of T. petrocchiae were strongly associated with reptiles of the Tropidurus and Hemidactylus genera; this suggests that T. petrocchiae is the single member within this complex that is associated with reptiles, indicating a distinct niche occupation related to the trophic resources. These results point to the possible presence of a prezygotic reproductive barrier due to ecological isolation between T. petrocchiae and members of the T. brasiliensis complex. However, other possible prezygotic barriers cannot be ruled out, such as mechanical isolation, as the morphological analysis of the external female genitalia evidenced some unique characteristics for T. petrocchiae [44].
Experimental crosses between T. petrocchiae and T. lenti also did not result in hybrids (Table 1). Unlike T. b. brasiliensis, which cohabits rock outcrops with T. petrocchiae [27,38], there are no reports of T. petrocchiae and T. lenti living in sympatry (on the contrary, they inhabit municipalities in the state of Bahia that are at least 800 km away [43]). This result is in accordance with what was proposed by Oliveira et al. [18], which suggests that T. petrocchiae is the most distant species from the T. brasiliensis complex. The genomic incompatibility resulting in the inability to produce hybrids with T. lenti points to the hypothesis that T. petrocchiae was possibly the first species to be derived from the common ancestor of the T. brasiliensis complex (since all other species in the complex produce hybrids [15,28,29,30,31,32]).
The prezygotic isolation observed between T. petrocchiae and species of the T. brasiliensis complex was only observed when members of this complex (T. b. brasiliensis) were crossed with other subcomplexes, such as T. sordida [45], T. infestans [45], and T. vitticeps subcomplexes [33] (which are species phylogenetically distant from T. b. brasiliensis [8,9]). The reproductive barrier that possibly prevents hybrids between other species of the T. brasiliensis complex is based on post-zygotic reproductive isolation due to hybrid collapse (as noted by Mendonça et al. [30] and Alevi et al. [31]). It was believed that T. melanica was the most differentiated form of the complex [37]; however, according to the results of experimental crosses and the high genetic distance observed between T. petrocchiae and members of the T. brasiliensis complex [46], the most differentiated species from a genetic point of view is T. petrocchiae.
Before concluding, it is worth mentioning that the low number of eggs produced by crosses can be a limiting factor for the research. Furthermore, it is important that new crosses between T. petrocchiae and all members of the T. brasiliensis complex be carried out to confirm that this species is indeed reproductively isolated from all other species in the complex or whether prezygotic isolation is restricted to T. b. brasiliensis and T. lenti (as noted by Espínola et al. [23] and in the present manuscript).

4. Conclusions

On the basis of the results above, we demonstrated that T. petrocchiae is reproductively isolated from T. b. brasiliensis and T. lenti (confirming the specific status of T. petrocchiae). Furthermore, we demonstrated that these species have prezygotic reproductive isolation and suggest that T. petrocchiae is the species most derived from the T. brasiliensis complex.

Author Contributions

Conceptualization, L.M.G.D., J.d.O., C.G., M.T.V.d.A.-O., J.A.d.R. and K.C.C.A.; methodology, L.M.G.D., J.d.O., A.R., H.P., F.F.M., Y.V.d.R., A.B.B.d.O., I.d.S.M., M.L., E.F.-R. and K.C.C.A.; formal analysis, L.M.G.D., J.d.O., A.R., H.P., F.F.M., Y.V.d.R., A.B.B.d.O., I.d.S.M., M.L., E.F.-R. and K.C.C.A.; investigation, L.M.G.D., J.d.O., A.R., C.G., F.F.M., H.P., Y.V.d.R., A.B.B.d.O., I.d.S.M., M.L., E.F.-R., M.T.V.d.A.-O., J.A.d.R. and K.C.C.A.; resources, L.M.G.D., C.G., M.T.V.d.A.-O., J.A.d.R. and K.C.C.A.; writing—original draft preparation, L.M.G.D. and K.C.C.A.; writing—review and editing, L.M.G.D., J.d.O., A.R., C.G., F.F.M., Y.V.d.R., A.B.B.d.O., M.L., E.F.-R., M.T.V.d.A.-O., J.A.d.R. and K.C.C.A.; supervision, J.d.O. and K.C.C.A.; project administration, L.M.G.D. and K.C.C.A.; funding acquisition, L.M.G.D., C.G., M.T.V.d.A.-O., and K.C.C.A. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Brazil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil)—Finance Code 001, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

All relevant data are within the manuscript.

Acknowledgments

We thank Maria Anice Mureb Sallum for loaning the specimens of T. b. brasiliensis and T. petrocchiae deposited in “Coleção Entomológica de Referência” of the Faculdade de Saúde Pública (FSP/USP), Brazil. We also thank Vagner José Mendonça for his support in collecting T. lenti.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. World Health Organization. Chagas Disease (American Trypanosomiasis). Available online: http://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis) (accessed on 7 October 2021).
  2. Alevi, K.C.C.; De Oliveira, J.; Garcia, A.C.C.; Cristal, D.C.; Delgado, L.M.G.; Bittinelli, I.D.F.; Dos Reis, Y.V.; Ravazi, A.; De Oliveira, A.B.B.; Galvão, C.; et al. Triatoma rosai sp. nov. (Hemiptera, Triatominae): A new species of Argentinian Chagas disease vector described based on integrative taxonomy. Insects 2020, 11, 830. [Google Scholar] [CrossRef]
  3. Zhao, Y.; Galvão, C.; Cai, W. Rhodnius micki, a new species of Triatominae (Hemiptera, Reduviidae) from Bolivia. ZooKeys 2021, 1012, 71–93. [Google Scholar] [CrossRef]
  4. Costa, J.; Dale, C.; Galvão, C.; Almeida, C.E.; Dujardin, J.P. Do the new triatomine species pose new challenges or strategies for monitoring Chagas disease? An overview from 1979–2021. Mem. Inst. Oswaldo Cruz 2021, 116, e210015. [Google Scholar] [CrossRef]
  5. Dale, C.; Justi, S.A.; Galvão, C. Belminus santosmalletae (Hemiptera: Heteroptera: Reduviidae): New Species from Panama, with an Updated Key for Belminus Stål, 1859 Species. Insects 2021, 12, 686. [Google Scholar] [CrossRef]
  6. Galvão, C. Vetores da Doença de Chagas No Brasil, 1st ed.; Sociedade Brasileira de Zoologia: Curitiba, Brazil, 2014. [Google Scholar]
  7. Galvão, C. Taxonomia dos vetores da doença de Chagas da forma à molécula, quase três séculos de história. In Atualidades em Medicina Tropical No Brasil: Vetores; Oliveira, J., Alevi, K.C.C., Camargo, L.M.A., Meneguetti, D.U.O., Eds.; Strictu Sensu Editora: Porto Alegre, Brazil, 2020; pp. 9–37. [Google Scholar]
  8. Justi, S.A.; Russo, C.A.M.; Mallet, J.R.D.S.; Obara, M.T.; Galvão, C. Molecular phylogeny of Triatomini (Hemiptera: Reduviidae: Triatominae). Parasites Vectors 2014, 7, 149. [Google Scholar] [CrossRef] [Green Version]
  9. Justi, S.A.; Galvão, C.; Schrago, C.G. Geological changes of the Americas and their influence on the diversification of the Neotropical kissing bugs (Hemiptera: Reduviidae: Triatominae). PLoS Negl. Trop. Dis. 2016, 10, 4. [Google Scholar] [CrossRef] [Green Version]
  10. Schofield, C.J.; Galvão, C. Classification, evolution, and species groups within the Triatominae. Acta Trop. 2009, 110, 88–100. [Google Scholar] [CrossRef]
  11. Pita, S.; Lorite, P.; Nattero, J.; Galvão, C.; Alevi, K.; Teves, S.C.; Azeredo-Oliveira, M.T.; Panzera, F. New arrangements on several species subcomplexes of Triatoma genus based on the chromosomal position of ribosomal genes (Hemiptera -Triatominae). Infect. Genet. Evol. 2016, 43, 225–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  12. Alevi, K.C.C.; Oliveira, J.; Azeredo-Oliveira, M.T.V.; Rosa, J.A. Triatoma vitticeps subcomplex (Hemiptera, Reduviidae, Triatominae): A new grouping of Chagas disease vectors from South America. Parasites Vectors 2017, 10, 180. [Google Scholar] [CrossRef]
  13. Costa, J.; Dornak, L.L.; Almeida, C.E.; Peterson, A.T. Distributional potential of the Triatoma brasiliensis species complex at present and under scenarios of future climate conditions. Parasites Vectors 2014, 7, 238. [Google Scholar] [CrossRef]
  14. Monteiro, F.A.; Donnelly, M.J.; Beard, C.B.; Costa, J. Nested clade and phylogeographic analyses of the Chagas disease vector Triatoma brasiliensis in Northeast Brazil. Mol. Phylogenet. Evol. 2004, 32, 46–56. [Google Scholar] [CrossRef]
  15. Mendonça, V.J.; Alevi, K.C.C.; Pinotti, H.; Gurgel-Gonçalves, R.; Pita, S.; Guerra, A.L.; Panzera, F.; de Araújo, R.F.; de Azeredo-Oliveira, M.T.V.; da Rosa, J.A. Revalidation of Triatoma bahiensis Sherlock & Serafim, 1967 (Hemiptera: Reduviidae) and phylogeny of the T. brasiliensis species complex. Zootaxa 2016, 4107, 239–254. [Google Scholar]
  16. Mendonça, V.J.; Silva, M.T.A.; Araújo, R.F.; Martíns Júnior, J.; Bacci Júnior, M.; Almeida, C.E.; Costa, J.; Graminha, M.; Cicarelli, R.M.B.; Rosa, J.A. Phylogeny of Triatoma sherlocki (Hemiptera: Reduviidae: Triatominae) inferred from two mitochondrial genes suggests its location within the Triatoma brasiliensis complex. Am. J. Trop. Med. Hyg. 2009, 81, 856–864. [Google Scholar] [CrossRef]
  17. Gardim, S.; Almeida, C.E.; Takiya, D.; Oliveira, J.; Araújo, R.F.; Cicarelli, R.M.; da Rosa, J.A. Multiple mitochondrial genes of some sylvatic Brazilian Triatoma: Non-monophyly of the T. brasiliensis subcomplex and the need for a generic revision in the Triatomini. Infect. Genet. Evol. 2014, 23, 74–79. [Google Scholar] [CrossRef] [Green Version]
  18. Oliveira, J.; Marcet, P.L.; Takiya, D.M.; Mendonça, V.J.; Belintani, T.; Bargues, M.D.; Mateo, L.; Chagas, V.; Folly-Ramos, E.; Cordeiro-Estrela, P.; et al. Combined phylogenetic and morphometric information to delimitand unify the Triatoma brasiliensis species complex and the Brasiliensis subcomplex. Acta Trop. 2017, 170, 140–148. [Google Scholar] [CrossRef]
  19. Dale, C.; Almeida, C.E. An updated and illustrated dichotomous key for the Chagas disease vectors of Triatoma brasiliensis species complex and their epidemiologic importance. Zookeys 2018, 805, 33. [Google Scholar] [CrossRef] [PubMed]
  20. Caranha, L.; Gurgel-Gonçalves, R.; Ramalho, R.D.; Galvão, C. New records and geographic distribution map of Triatoma petrocchiae Pinto and Barreto, 1925 (Hemiptera: Reduviidae: Triatominae). Check List. 2011, 7, 508–509. [Google Scholar] [CrossRef] [Green Version]
  21. Costa, J.; Correia, N.C.; Neiva, V.L.; Cristina, T.; Gonçalves, M.; Felix, M. Revalidation and redescription of Triatoma brasiliensis macromelasoma Galvão, 1956 and an identification key for the Triatoma brasiliensis complex (Hemiptera: Reduviidae: Triatominae). Mem. Inst. Oswaldo Cruz 2013, 108, 785–789. [Google Scholar] [CrossRef] [PubMed]
  22. Lucena, D. Estudos sobre a doença de Chagas no Brasil. Rev. Soc. Bras. Med. Trop. 1970, 22, 3–173. [Google Scholar]
  23. Espínola, H. Reproductive isolation between Triatoma brasiliensis Neiva, 1911 and Triatoma petrochii Pinto & Barretto, 1925 (Hemiptera Reduviidae). Rev. Bras. Biol. 1971, 31, 277–281. [Google Scholar] [PubMed]
  24. Lent, H.; Wygodzinsky, P. Revision of the Triatominae (Hemiptera: Reduviidae) and their significance as vectors of Chagas disease. Bull. Am. Mus. Nat. Hist. 1979, 163, 123–520. [Google Scholar]
  25. Monteiro, F.A.; Costa, J.; Sole-Cava, A.M. Genetic confirmation of the specific status of Triatoma petrochii (Hemiptera: Reduviidae: Triatominae). Ann. Trop. Med. Parasitol. 1998, 92, 897–900. [Google Scholar] [CrossRef] [PubMed]
  26. Lima-Oliveira, T.M.; Fontes, F.V.H.M.; Lilioso, M.; Pires-Silva, D.; Teixeira, M.M.G.; Meza, J.G.V.; Harry, M.; Fileé, J.; Costa, J.; Valença-Barbosa, C.; et al. Molecular eco-epidemiology on the sympatric Chagas disease vectors Triatoma brasiliensis and Triatoma petrocchiae: Ecotopes, genetic variation, natural infection prevalence by trypanosomatids and parasite genotyping. Acta Trop. 2020, 201, 105188. [Google Scholar] [CrossRef]
  27. Lilioso, M.; Pires-Silva, D.; Fontes, F.V.H.M.; Oliveira, J.; Da Rosa, J.A.; Vilela, R.; Folly-Ramos, E.; Almeida, C.E. Triatoma petrocchiae (Hemiptera, Reduviidae, Triatominae): A Chagas disease vector of T. brasiliensis species complex associated to reptiles. Infect. Genet. Evol. 2020, 82, 104307. [Google Scholar] [CrossRef]
  28. Costa, J.; Almeida, C.E.; Dujardin, J.P.; Beard, C.B. Crossing experiments detect genetic incompatibility among populations of Triatoma brasiliensis Neiva, 1911 (Heteroptera, Reduviidae, Triatominae). Mem. Inst. Oswaldo Cruz 2003, 98, 637–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  29. Correia, N.; Almeida, C.E.; Lima-Neiva, V.; Gumiel, M.; Lima, M.M.; Medeiros, L.M.O.; Rosa, J.A.; Costa, J. Crossing experiments confirm Triatoma sherlocki as a member of the Triatoma brasiliensis species complex. Acta Trop. 2013, 128, 162–167. [Google Scholar] [CrossRef]
  30. Mendonça, V.J.; Alevi, K.C.C.; de Oliveira Medeiros, L.M.; Nascimento, J.D.; Azeredo-Oliveira, M.T.V.; Rosa, J.A. Cytogenetic and morphologic approaches of hybrids from experimental crosses between Triatoma lenti Sherlock & Serafim, 1967 and T. sherlocki Papa et al., 2002 (Hemiptera: Reduviidae). Infect. Genet. Evol. 2014, 26, 123–131. [Google Scholar] [PubMed] [Green Version]
  31. Alevi, K.C.C.; Pinotti, H.; Araújo, R.F.; Azeredo-Oliveira, M.T.V.; Rosa, J.A.; Mendonça, V.J. Hybrid colapse confirm the specific status of Triatoma bahiensis Sherlock and Serafim, 1967 (Hemiptera, Triatominae). Am. J. Trop. Med. Hyg. 2018, 98, 475–477. [Google Scholar] [CrossRef]
  32. Pinotti, H.; Oliveira, J.; Ravazi, A.; Madeira, F.F.; Reis, Y.V.; Oliveira, A.B.B.; Azeredo-Oliveira, M.T.V.; Rosa, J.A.; Alevi, K.C.C. Revisiting the hybridization processes in the Triatoma brasiliensis complex (Hemiptera, Triatominae): Interspecific genomic compatibility point to a possible recent diversification of the species grouped in this monophyletic complex. PLoS ONE 2021, 16, e0257992. [Google Scholar] [CrossRef]
  33. Neves, S.J.M.; Sousa, P.S.; Oliveira, J.; Ravazi, A.; Madeira, F.F.; Reis, Y.V.; de Oliveira, A.B.B.; Pinotti, H.; de Azeredo-Oliveira, M.T.V.; da Rosa, J.A.; et al. Prezygotic isolation confirms the exclusion of Triatoma melanocephala, T. vitticeps and T. tibiamaculata of the T. brasiliensis subcomplex (Hemiptera, Triatominae). Infect. Genet. Evol. 2020, 79, 104149. [Google Scholar] [CrossRef]
  34. Rosa, J.A.; Barata, J.M.S.; Barelli, N.; Santos, J.L.F.; Belda Neto, F.M. Sexual distinction between 5th instar nymphs of six species (Hemiptera: Reduviidae). Mem. Inst. Oswaldo Cruz. 1992, 87, 257–264. [Google Scholar] [CrossRef] [Green Version]
  35. Olaia, N.; Alevi, K.C.C.; de Oliveira, J.; Cacini, G.L.; Souza, E.D.S.; Pinotti, H.; da Silva, L.A.; da Rosa, J.A. Biology of Chagas disease vectors: Biological cycle and emergence rates of Rhodnius marabaensis Souza et al., 2016 (Hemiptera, Reduviidae, Triatominae) under laboratory conditions. Parasitol. Res. 2021, 120, 2939–2945. [Google Scholar] [CrossRef] [PubMed]
  36. Mayr, E. Populações, Espécies e Evolução, 1st ed.; Editora Nacional: São Paulo, Brazil, 1963. [Google Scholar]
  37. Mayr, E. Populations, Species, and Evolution; Harvard University Press: Cambridge, MA, USA, 1970. [Google Scholar]
  38. Almeida, C.E.; Faucher, L.; Lavina, M.; Costa, J.; Harry, M. Molecular individual-based approach on Triatoma brasiliensis: Inferences on Triatomine foci, Trypanosoma cruzi natural infection prevalence, parasite diversity and feeding sources. PLoS Negl. Trop. Dis. 2016, 10, e0004447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  39. Cerqueira, R.L. Estudos sobre populações de triatomíneos silvestres encontrado em Santo Inácio—Bahia. Tese de Doutorado, Universidade de São Paulo, São Paulo, Brazil, 1982. [Google Scholar]
  40. Costa, J.; Argolo, A.M.; Felix, M. Redescription of Triatoma melanica Neiva & Lent, 1941, New Status (Hemiptera: Reduviidae: Triatominae). Zootaxa 2006, 385, 47–52. [Google Scholar]
  41. Costa, J.; Felix, M. Triatoma juazeirensis sp. nov. from the state of Bahia, Northeastern Brazil (Hemiptera: Reduviidae: Triatominae). Mem. Inst. Oswaldo Cruz 2007, 102, 87–90. [Google Scholar] [CrossRef] [PubMed]
  42. Papa, A.R.; Jurberg, J.; Carcavallo, R.U.; Cerqueira, R.L.; Barata, J.M.S. Triatoma sherlocki sp. n. coletada na Bahia, Brasil (Hemiptera, Reduviidae, Triatominae). Entomol. Vect. 2002, 9, 133–146. [Google Scholar]
  43. Souza, O.M.F.; Santos, C.G.S.; Santos, R.F.; Fonseca, E.O.L.; Lima, A.G.D. Triatomíneos da Bahia: Manual de Identificação e Orientações Para o Serviço; Editora Oxente: Paulo Afonso, Brazil, 2020. [Google Scholar]
  44. Oliveira, J.; Almeida, C.E.; Mendonça, V.J.; Alevi, K.C.C.; Costa, J.; Rosa, J.A. Triatoma brasiliensis Species Complex: Characterization of the external female genitalia. J. Vector Ecol. 2020, 45, 57–68. [Google Scholar] [CrossRef]
  45. Perlowagora-Szumlewics, A.; Correia, M.V. Induction of male sterility manipulation of genetic mechanisms present in vector species of Chagas disease (remarks on integrating sterile-male release with insecticidal control measures against vectors of Chagas disease). Rev. Inst. Med. Trop. São Paulo 1972, 14, 360–371. [Google Scholar]
  46. Guerra, A.L.; Borsatto, K.C.C.; Pagliusi, N.D.; Madeira, F.F.; Oliveira, J.; Rosa, J.A.; Azeredo-Oliveira, M.T.V.; Alevi, K.C.C. Revisiting the Homoploid Hybrid Speciation Process of the Triatoma brasiliensis macromelasoma Galvão, 1956 (Hemiptera, Triatominae) Using Cytogenetic and Molecular Markers. Am. J. Trop. Med. Hyg. 2019, 100, 911–913. [Google Scholar] [CrossRef] [Green Version]
Figure 1. Distribution map of species used in experimental crosses.
Figure 1. Distribution map of species used in experimental crosses.
Insects 12 01015 g001
Figure 2. Triatomines deposited in the entomologic collections of the Faculty of Public Health of the University of Sao Paulo, Brazil. (A,B) T. b. brasiliensis ♀ (Brazil, Paulo Afonso, BA. Ident. Sherlock/68); (C) T. b. brasiliensis ♂ (Brazil, Paulo Afonso, BA. Ident. Sherlock/68); (D,E) T. petrocchiae ♂ (Brazil, Paulo Afonso, BA. Ident. Sherlock/62).
Figure 2. Triatomines deposited in the entomologic collections of the Faculty of Public Health of the University of Sao Paulo, Brazil. (A,B) T. b. brasiliensis ♀ (Brazil, Paulo Afonso, BA. Ident. Sherlock/68); (C) T. b. brasiliensis ♂ (Brazil, Paulo Afonso, BA. Ident. Sherlock/68); (D,E) T. petrocchiae ♂ (Brazil, Paulo Afonso, BA. Ident. Sherlock/62).
Insects 12 01015 g002
Table 1. Experimental crosses performed between T. petrocchiae x T. b. brasiliensis and T. lenti.
Table 1. Experimental crosses performed between T. petrocchiae x T. b. brasiliensis and T. lenti.
Crossing ExperimentsNumber of EggsEgg Fertility
C1C2C2Total
T. b. brasiliensisxT. petrocchiae4840561440%
T. petrocchiaexT. b. brasiliensis3845371200%
T. lentixT. petrocchiae4233271020%
T. petrocchiaexT. lenti362822860%
Parental Crossings
T. b. brasiliensisxT. b. brasiliensis---41495,4%
T. petrocchiaexT. petrocchiae---5886,2%
T. lentixT. lenti---17957,5%
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Delgado, L.M.G.; Oliveira, J.d.; Ravazi, A.; Madeira, F.F.; Reis, Y.V.d.; Pinotti, H.; Oliveira, A.B.B.d.; Masarin, I.d.S.; Lilioso, M.; Folly-Ramos, E.; et al. Revisiting the Hybridization Processes in the Triatoma brasiliensis Complex (Hemiptera, Triatominae): Reproductive Isolation between Triatoma petrocchiae and T. b. brasiliensis and T. lenti. Insects 2021, 12, 1015. https://doi.org/10.3390/insects12111015

AMA Style

Delgado LMG, Oliveira Jd, Ravazi A, Madeira FF, Reis YVd, Pinotti H, Oliveira ABBd, Masarin IdS, Lilioso M, Folly-Ramos E, et al. Revisiting the Hybridization Processes in the Triatoma brasiliensis Complex (Hemiptera, Triatominae): Reproductive Isolation between Triatoma petrocchiae and T. b. brasiliensis and T. lenti. Insects. 2021; 12(11):1015. https://doi.org/10.3390/insects12111015

Chicago/Turabian Style

Delgado, Luiza Maria Grzyb, Jader de Oliveira, Amanda Ravazi, Fernanda Fernandez Madeira, Yago Visinho dos Reis, Heloisa Pinotti, Ana Beatriz Bortolozo de Oliveira, Isabella da Silva Masarin, Maurício Lilioso, Elaine Folly-Ramos, and et al. 2021. "Revisiting the Hybridization Processes in the Triatoma brasiliensis Complex (Hemiptera, Triatominae): Reproductive Isolation between Triatoma petrocchiae and T. b. brasiliensis and T. lenti" Insects 12, no. 11: 1015. https://doi.org/10.3390/insects12111015

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop