Impact of the Addition of Tenebrio molitor and Hermetia illucens on the Physicochemical and Sensory Quality of Cooked Meat Products
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Preparation of the Microorganisms
2.3. Microbiological Analyses
2.4. Physical and Chemical Analyses
2.5. Sensory Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Analysis of the Cooked Meat Product
3.2. Analysis of the Cooked Meat Product during Modified Atmosphere Storage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anzani, C.; Boukid, F.; Drummond, L.; Mullen, A.M.; Alvarez, C. Optimising the use of proteins from rich meat co-products and non-meat alternatives: Nutritional, technological and allergenicity challenges. Food Res. Int. 2020, 137, 109575. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guideline: Sodium Intake for Adults and Children; World Health Organization (WHO): Geneva, Switzerland, 2012. [Google Scholar]
- Mortensen, A.; Aguilar, F.; Crebelli, R.; Di Domenico, A.; Dusemund, B.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; Lambre, C. Re-evaluation of potassium nitrite (E 249) and sodium nitrite (E 250) as food additives. EFSA J. 2017, 15, e04786. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.S.; Shelomi, M. Review of Black Soldier Fly (Hermetia illucens) as Animal Feed and Human Food. Foods 2017, 6, 91. [Google Scholar] [CrossRef] [PubMed]
- European Union. 2018. Available online: https://food.ec.europa.eu/system/files/2019-05/novel-food_sum_ongoing-app_2018-0765.pdf (accessed on 3 May 2023).
- Liguori, B.; Sancho, A.I.; Poulsen, M.; Bogh, K.L. Novel foods: Allergenicity assessment of insect proteins. EFSA J. 2022, 20, e200910. [Google Scholar] [CrossRef] [PubMed]
- Baek, M.; Kim, M.A.; Kwon, Y.S.; Hwang, J.S.; Goo, T.W.; Jun, M.; Yun, E.Y. Effects of processing methods on nutritional composition and antioxidant activity of mealworm (Tenebrio molitor) larvae. Entomol. Res. 2019, 49, 284–293. [Google Scholar] [CrossRef]
- Zielinska, E.; Baraniak, B.; Karas, M.; Rybczynska, K.; Jakubczyk, A. Selected species of edible insects as a source of nutrient composition. Food Res. Int. 2015, 77, 460–466. [Google Scholar] [CrossRef]
- Sanabria, C.O.; Hogan, N.; Madder, K.; Gillott, C.; Blakley, B.; Reaney, M.; Beattie, A.; Buchanan, F. Yellow Mealworm Larvae (Tenebrio molitor) Fed Mycotoxin-Contaminated Wheat-A Possible Safe, Sustainable Protein Source for Animal Feed? Toxins 2019, 11, 282. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.H.; Wang, W.Q.; Lu, X.H.; Zhu, F.; Liu, W.; Wang, X.P.; Lei, C.L. Bioconversion performance and life table of black soldier fly (Hermetia illucens) on fermented maize straw. J. Clean. Prod. 2019, 230, 974–980. [Google Scholar] [CrossRef]
- Wang, S.Y.; Wu, L.L.; Li, B.L.; Zhang, D.Y. Reproductive Potential and Nutritional Composition of Hermetia illucens (Diptera: Stratiomyidae) Prepupae Reared on Different Organic Wastes. J. Econ. Entomol. 2020, 113, 527–537. [Google Scholar] [CrossRef]
- Fischer, K.; Lindner, J.P.; Judas, M.; Horeth, R. Carcass and meat quality of heavy pigs. II. Characteristics of meat and fat quality. Arch. Anim. Breed. 2006, 49, 279–292. [Google Scholar] [CrossRef]
- Kim, J.H.; Seong, P.N.; Cho, S.H.; Park, B.Y.; Hah, K.H.; Yu, L.H.; Lim, D.G.; Hwang, I.H.; Kim, D.H.; Lee, J.M.; et al. Characterization of nutritional value for twenty-one pork muscles. Asian-Australas. J. Anim. Sci. 2008, 21, 138–143. [Google Scholar] [CrossRef]
- Purchas, R.W.; Morel, P.C.H.; Janz, J.A.M.; Wilkinson, B.H.P. Chemical composition characteristics of the longissimus and semimembranosus muscles for pigs from New Zealand and Singapore. Meat Sci. 2009, 81, 540–548. [Google Scholar] [CrossRef]
- Rizzi, C.; Chiericato, G.M. Chemical composition of meat and egg yolk of hybrid and Italian breed hens reared using an organic production system. Poult. Sci. 2010, 89, 1239–1251. [Google Scholar] [CrossRef] [PubMed]
- Krischek, C.; Janisch, S.; Gunther, R.; Wicke, M. Nutrient composition of broiler and turkey breast meat in relation to age, gender and genetic line of the animals. Arch. Food Hyg. 2011, 62, 76–81. [Google Scholar] [CrossRef]
- Szabo, C.; Jansman, A.J.M.; Babinszky, L.; Kanis, E.; Verstegen, M.W.A. Effect of dietary protein source and lysine: DE ratio on growth performance, meat quality, and body composition of growing-finishing pigs. J. Anim. Sci. 2001, 79, 2857–2865. [Google Scholar] [CrossRef]
- Werner, C.; Natter, R.; Schellander, K.; Wicke, M. Mitochondrial respiratory activity in porcine longissimus muscle fibers of different pig genetics in relation to their meat quality. Meat Sci. 2010, 85, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Werner, C.; Janisch, S.; Kuembet, U.; Wicke, M. Comparative study of the quality of broiler and turkey meat. Br. Poult. Sci. 2009, 50, 318–324. [Google Scholar] [CrossRef]
- Spranghers, T.; Ottoboni, M.; Klootwijk, C.; Ovyn, A.; Deboosere, S.; De Meulenaer, B.; Michiels, J.; Eeckhout, M.; De Clercq, P.; De Smet, S. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 2017, 97, 2594–2600. [Google Scholar] [CrossRef]
- Mohan, K.; Ganesan, A.R.; Muralisankar, T.; Jayakumar, R.; Sathishkumar, P.; Uthayakumar, V.; Chandirasekar, R.; Revathi, N. Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trends Food Sci. Technol. 2020, 105, 17–42. [Google Scholar] [CrossRef]
- Son, Y.J.; Hwang, I.K.; Nho, C.W.; Kim, S.M.; Kim, S.H. Determination of Carbohydrate Composition in Mealworm (Tenebrio molitor L.) Larvae and Characterization of Mealworm Chitin and Chitosan. Foods 2021, 10, 640. [Google Scholar] [CrossRef]
- Nurfikari, A.; de Boer, W. Chitin Determination in Residual Streams Derived From Insect Production by LC-ECD and LC-MS/MS Methods. Front. Sustain. Food Syst. 2021, 5, 493. [Google Scholar] [CrossRef]
- Hahn, T.; Tafi, E.; Paul, A.; Salvia, R.; Falabella, P.; Zibek, S. Current state of chitin purification and chitosan production from insects. J. Chem. Technol. Biotechnol. 2020, 95, 2775–2795. [Google Scholar] [CrossRef]
- Paoletti, M.G.; Norberto, L.; Damini, R.; Musumeci, S. Human gastric juice contains chitinases that can degrade chitin. Ann. Nutr. Metabol. 2007, 51, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Cappelli, A.; Oliva, N.; Bonaccorsi, G.; Lorini, C.; Cini, E. Assessment of the rheological properties and bread characteristics obtained by innovative protein sources (Cicer arietinum, Acheta domesticus, Tenebrio molitor): Novel food or potential improvers for wheat flour? LWT-Food Sci. Technol. 2020, 118, 108867. [Google Scholar] [CrossRef]
- Scholliers, J.; Steen, L.; Fraeye, I. Partial replacement of meat by superworm (Zophobas morio larvae) in cooked sausages: Effect of heating temperature and insect: Meat ratio on structure and physical stability. Innov. Food Sci. Emerg. Technol. 2020, 66, 102535. [Google Scholar] [CrossRef]
- Choi, Y.S.; Kim, T.K.; Choi, H.D.; Park, J.D.; Sung, J.M.; Jeon, K.H.; Paik, H.D.; Kim, Y.B. Optimization of Replacing Pork Meat with Yellow Worm (Tenebrio molitor L.) for Frankfurters. Korean J. Food Sci. Anim. Res. 2017, 37, 617–625. [Google Scholar] [CrossRef]
- Bessa, L.W.; Pieterse, E.; Sigge, G.; Hoffman, L.C. An Exploratory Study into the Use of Black Soldier fly larvae (Hermetia illucens) in the production of vienna-style sausage. Meat Muscle Biol. 2019, 3, 289–298. [Google Scholar] [CrossRef]
- Park, Y.S.; Choi, Y.S.; Hwang, K.E.; Kim, T.K.; Lee, C.W.; Shin, D.M.; Han, S.G. Physicochemical Properties of Meat Batter Added with Edible Silkworm Pupae (Bombyx mori) and Transglutaminase. Korean J. Food Sci. Anim. Res. 2017, 37, 351–359. [Google Scholar] [CrossRef]
- Anthony, H.; Benford, D.; Noteborn, H.P.J.M.; Halldorsson, T.I.; Schlatter, J.; Solecki, R.A.; Jeger, M.; Knutsen, H.K.; More, S.; Mortensen, A.; et al. Risk profile related to production and consumption of insects as food and feed. EFSA J. 2015, 13, 4257. [Google Scholar] [CrossRef]
- Dos Santos, J.S.; Biduski, B.; dos Santos, L.R. Listeria monocytogenes: Health risk and a challenge for food processing establishments. Arch. Microbiol. 2021, 203, 5907–5919. [Google Scholar] [CrossRef]
- Kim, T.K.; Lee, M.H.; Yong, H.I.; Jung, S.; Paik, H.D.; Jang, H.W.; Choi, Y.S. Effect of Interaction between Mealworm Protein and Myofibrillar Protein on the Rheological Properties and Thermal Stability of the Prepared Emulsion Systems. Foods 2020, 9, 1443. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Setyabrata, D.; Lee, Y.J.; Jones, O.G.; Kim, Y.H.B. Pre-treated mealworm larvae and silkworm pupae as a novel protein ingredient in emulsion sausages. Innov. Food Sci. Emerg. Technol. 2016, 38, 116–123. [Google Scholar] [CrossRef]
- Ho, I.; Peterson, A.; Madden, J.; Huang, E.; Amin, S.; Lammert, A. Will It Cricket? Product Development and Evaluation of Cricket (Acheta domesticus) Powder Replacement in Sausage, Pasta, and Brownies. Foods 2022, 11, 3128. [Google Scholar] [CrossRef] [PubMed]
- Klettner, P.G. Influence of the pH value on different parameters of cooked sausage. Fleischwirtschaft 2002, 82, 122–124. [Google Scholar]
- Kim, H.W.; Setyabrata, D.; Lee, Y.; Jones, O.G.; Kim, Y.H.B. Effect of House Cricket (Acheta domesticus) Flour Addition on Physicochemical and Textural Properties of Meat Emulsion Under Various Formulations. J. Food Sci. 2017, 82, 2787–2793. [Google Scholar] [CrossRef]
- Larouche, J.; Deschamps, M.H.; Saucier, L.; Lebeuf, Y.; Doyen, A.; Vandenberg, G.W. Effects of Killing Methods on Lipid Oxidation, Colour and Microbial Load of Black Soldier Fly (Hermetia illucens) Larvae. Animals 2019, 9, 182. [Google Scholar] [CrossRef]
- Cruz-Lopez, S.O.; Alvarez-Cisneros, Y.M.; Dominguez-Soberanes, J.; Escalona-Buendia, H.B.; Sanchez, C.N. Physicochemical and Sensory Characteristics of Sausages Made with Grasshopper (Sphenarium purpurascens) Flour. Foods 2022, 11, 704. [Google Scholar] [CrossRef]
- Liu, C.; Masri, J.; Perez, V.; Maya, C.; Zhao, J. Growth Performance and Nutrient Composition of Mealworms (Tenebrio Molitor) Fed on Fresh Plant Materials-Supplemented Diets. Foods 2020, 9, 151. [Google Scholar] [CrossRef]
- Rovai, D.; Ortgies, M.; Amin, S.; Kuwahara, S.; Schwartz, G.; Lesniauskas, R.; Garza, J.; Lammert, A. Utilization of Carrot Pomace to Grow Mealworm Larvae (Tenebrio molitor). Sustainability 2021, 13, 9341. [Google Scholar] [CrossRef]
- Toviho, O.A.; Barsony, P. Nutrient Composition and Growth of Yellow Mealworm (Tenebrio molitor) at Different Ages and Stages of the Life Cycle. Agriculture 2022, 12, 1924. [Google Scholar] [CrossRef]
- Finke, M.D. Complete nutrient content of four species of commercially available feeder insects fed enhanced diets during growth. Zoo Biol. 2015, 34, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Smets, R.; Verbinnen, B.; Van de Voorde, I.; Aerts, G.; Claes, J.; Van der Borght, M. Sequential Extraction and Characterisation of Lipids, Proteins, and Chitin from Black Soldier Fly (Hermetia illucens) Larvae, Prepupae, and Pupae. Waste Biomass Valoriz. 2020, 11, 6455–6466. [Google Scholar] [CrossRef]
- Ravi, H.K.; Degrou, A.; Costil, J.; Trespeuch, C.; Chemat, F.; Vian, M.A. Effect of devitalization techniques on the lipid, protein, antioxidant, and chitin fractions of black soldier fly (Hermetia illucens) larvae. Eur. Food Res. Technol. 2020, 246, 2549–2568. [Google Scholar] [CrossRef]
- Son, Y.-J.; Choi, S.Y.; Hwang, I.-K.; Nho, C.W.; Kim, S.H. Could Defatted Mealworm (Tenebrio molitor) and Mealworm Oil Be Used as Food Ingredients-Supplements. Foods 2020, 9, 40. [Google Scholar] [CrossRef]
- Boles, J.A.; Shand, P.J. Effect of muscle location, fiber direction, and slice thickness on the processing characteristics and tenderness of beef stir-fry strips from the round and chuck. Meat Sci. 2008, 78, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Prado, I.N.; Campo, M.M.; Muela, E.; Valero, M.V.; Catalan, O.; Olleta, J.L.; Sanudo, C. Effects of castration age, dietary protein level and lysine-methionine ratio on animal performance, carcass and meat quality of Friesian steers intensively reared. Animal 2014, 8, 1561–1568. [Google Scholar] [CrossRef] [PubMed]
- Karnjanapratum, S.; Kaewthong, P.; Indriani, S.; Petsong, K.; Takeungwongtrakul, S. Characteristics and nutritional value of silkworm (Bombyx mori) pupae-fortified chicken bread spread. Sci. Rep. 2022, 12, 1492. [Google Scholar] [CrossRef]
- Cavalheiro, C.P.; Rui-Capillas, C.; Herrero, A.M.; Pintado, T.; da Matta Pires Cruz, T.; da Silva, M.C.A. Cricket (Acheta domesticus) flour as meat replacer in frankfurters-Nutritional, technological, structural, and sensory characteristics. Innov. Food Sci. Emerg. Technol. 2023, 83, 103245. [Google Scholar] [CrossRef]
- Flores, D.R.; Casados, L.E.; Velasco, S.F.; Ramirez, A.C.; Velazquez, G. Comparative study of composition, antioxidant and antimicrobial activity of two adult edible insects from Tenebrionidae family. BMC Chem. 2020, 14, 55. [Google Scholar] [CrossRef]
- Decuypere, J.A.; Dierick, N.A. The combined use of triacylglycerols containing medium-chain fatty acids and exogenous lipolytic enzymes as an alternative to in-feed antibiotics in piglets: Concept, possibilities and limitations. An overview. Nutr. Res. Rev. 2003, 16, 193–209. [Google Scholar] [CrossRef]
- Skrivanova, E.; Marounek, M.; Benda, V.; Brezina, P. Susceptibility of Escherichia coli, Salmonella sp and Clostridium perfringens to organic acids and monolaurin. Vet. Med. 2006, 51, 81–88. [Google Scholar] [CrossRef]
- Nitbani, F.O.; Tjitda, P.J.P.; Nitti, F.; Jumina, J.; Detha, A.I.R. Antimicrobial Properties of Lauric Acid and Monolaurin in Virgin Coconut Oil: A Review. ChemBioEng Rev. 2022, 9, 442–461. [Google Scholar] [CrossRef]
- Borrelli, L.; Varriale, L.; Dipineto, L.; Pace, A.; Menna, L.F.; Fioretti, A. Insect Derived Lauric Acid as Promising Alternative Strategy to Antibiotics in the Antimicrobial Resistance Scenario. Front. Microbiol. 2021, 12, 620798. [Google Scholar] [CrossRef]
- Islam, S.; Bhuiyan, M.A.R.; Islam, M.N. Chitin and Chitosan: Structure, Properties and Applications in Biomedical Engineering. J. Polym. Environ. 2017, 25, 854–866. [Google Scholar] [CrossRef]
Ingredient/Group | Control | Tenebrio molitor | Hermetia illucens | ||
---|---|---|---|---|---|
T 10 | T 20 | H 10 | H 20 | ||
Pork 1 | 40 | 32 | 26 | 32 | 26 |
Beef 1 | 16 | 14 | 10 | 14 | 10 |
Water 1 | 20 | 20 | 20 | 20 | 20 |
Pork fat 1 | 24 | 24 | 24 | 24 | 24 |
Tenebrio molitor 1 | 0 | 10 | 20 | 0 | 0 |
Hermetia illucens 1 | 0 | 0 | 0 | 10 | 20 |
Curing salt NaNO2 2 | 20 | 20 | 20 | 20 | 20 |
Glucose 2 | 5 | 5 | 5 | 5 | 5 |
Phosphate 2 | 6 | 6 | 6 | 6 | 6 |
Ascorbic acid 2 | 3 | 3 | 3 | 3 | 3 |
Meat Product Group | L* Values | a* Values | b* Values | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
Control | 70.0 am | 0.1 | 11.4 | 4.0 | 15.3 by | 1.4 |
T 10 | 66.8 abn | 0.6 | 11.5 | 0.5 | 17.3 ayx | 0.1 |
T 20 | 62.7 abo | 1.7 | 10.4 | 0.4 | 19.1 ax | 0.4 |
H 10 | 64.1 bn | 1.0 | 9.8 | 0.8 | 17.7 ax | 0.7 |
H 20 | 57.6 bo | 2.2 | 6.9 | 0.4 | 17.5 ax | 0.3 |
p value S | 0.011 | 0.076 | 0.0032 | |||
p-value C | 0.0001 | 0.086 | 0.18 | |||
p-value S*C | 0.15 | 0.412 | 0.048 |
Meat Product Group | L* Values | a* Values | b* Values | Sensory Analysis | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day 7 | Day 21 | Day 7 | Day 21 | Day 7 | Day 21 | Day 7 | Day 21 | |||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Control | 70.1 am | 0.4 | 65.9 | 0.4 | 13.8 amx | 0.2 | 13.0 a | 2.4 | 14.6 boz | 0.3 | 14.4 | 2.9 | 4.8 ax | 0.2 | 3.8 a | 1.1 |
T 10 | 66.9 an | 1.0 | 71.0 | 1.0 | 11.5 bny | 0.6 | 12.5 ab | 1.3 | 17.3 any | 0.4 | 17.2 | 2.7 | 3.6 by | 0.1 | 3.2 ab | 0.8 |
T 20 | 62.9 ao | 1.3 | 68.1 | 1.3 | 10.4 boy | 0.6 | 11.1 ab | 0.5 | 19.0 amx | 0.4 | 19.1 | 1.8 | 2.8 by | 0.3 | 2.7 ab | 0.5 |
H 10 | 63.5 bn | 0.7 | 66.2 | 6.1 | 9.8 cny | 0.4 | 10.2 b | 1.0 | 17.2 any | 1.5 | 18.9 | 1.3 | 2.4 cz | 0.5 | 2.3 b | 1.0 |
H 20 | 57.3 bo | 2.0 | 62.4 | 2.0 | 6.2 coz | 1.1 | 8.6 b | 2.0 | 17.1 amy | 0.2 | 17.5 | 1.9 | 1.3 cz | 0.3 | 1.1 b | 0.0 |
p-value S | 0.0013 | 0.36 | 0.0003 | 0.018 | <0.0001 | 0.85 | <0.0001 | 0.0094 | ||||||||
p-value C | <0.0001 | 0.42 | <0.0001 | 0.13 | 0.0003 | 0.96 | 0.003 | 0.096 | ||||||||
p-value S*C | 0.15 | 0.90 | 0.0066 | 0.91 | 0.001 | 0.22 | 0.29 | 0.45 |
Meat Product Group | Hardness (N) | Gumminess (N) | Cohesiveness | Chewiness (N) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day 7 | Day 21 | Day 7 | Day 21 | Day 7 | Day 21 | Day 7 | Day 21 | |||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Control | 27.2 a | 5.9 | 32.3 am | 2.2 | 1624 a | 811 | 2138 a | 175 | 583 | 911 | 797 | 1268 | 959 | 1094 | 1297 | 1131 |
T 10 | 19.5 b | 6.7 | 25.7 bn | 1.5 | 1249 ab | 267 | 1685 b | 225 | 476 | 711 | 646 | 1010 | 842 | 807 | 1016 | 904 |
T 20 | 16.7 b | 2.1 | 19.5 bo | 0.7 | 1047 ab | 202 | 1250 b | 133 | 415 | 626 | 477 | 714 | 610 | 549 | 747 | 663 |
H 10 | 16.8 b | 1.4 | 17.8 cn | 4.5 | 959 b | 302 | 1055 c | 577 | 395 | 592 | 191 | 213 | 597 | 584 | 827 | 725 |
H 20 | 11.3 b | 0.6 | 12.5 co | 2.9 | 633 b | 103 | 717 c | 217 | 224 | 288 | 186 | 213 | 437 | 379 | 515 | 446 |
p value S | 0.0038 | 0.0001 | 0.04 | 0.0008 | 0.81 | 0.48 | 0.64 | 0.51 | ||||||||
p-value C | 0.11 | 0.0039 | 0.29 | 0.056 | 0.76 | 0.85 | 0.64 | 0.55 | ||||||||
p-value S*C | 0.59 | 0.76 | 0.80 | 0.79 | 0.88 | 0.86 | 0.93 | 0.96 |
Meat Product Group | Bacillus cereus | Listeria monocytogenes | Escherichia coli | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day 0 | Day 7 | Day 21 | Day 0 | Day 7 | Day 21 | Day 0 | Day 7 | Day 21 | ||||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Control | 4.0 | 0.3 | 3.6 | 0.3 | 2.7 | 1.0 | 6.3 | 0.4 | 6.1 | 0.2 | 5.9 | 0.5 | 6.5 | 0.3 | 6.5 | 0.6 | 6.4 | 0.8 |
T 10 | 3.9 | 0.3 | 2.3 | 1.3 | 2.1 | 1.6 | 6.3 | 0.1 | 6.2 | 0.2 | 5.9 | 0.6 | 6.3 | 0.5 | 6.5 | 0.5 | 6.2 | 0.3 |
T 20 | 4.0 | 0.2 | 2.4 | 1.4 | 1.7 | 1.8 | 6.6 | 0.3 | 6.1 | 0.3 | 5.9 | 0.8 | 6.5 | 0.5 | 6.4 | 0.5 | 6.2 | 0.2 |
H 10 | 4.1 | 0.6 | 2.1 | 0.6 | 2.1 | 1.4 | 6.3 | 0.1 | 6.3 | 0.2 | 5.9 | 1.1 | 6.4 | 0.5 | 6.4 | 0.6 | 6.2 | 0.4 |
H 20 | 4.0 | 0.4 | 2.5 | 1.1 | 2.4 | 1.3 | 6.2 | 0.1 | 6.2 | 0.2 | 6.0 | 0.6 | 6.6 | 0.5 | 6.4 | 0.5 | 5.9 | 0.2 |
p value S | 0.61 | 0.94 | 0.66 | 0.19 | 0.46 | 0.92 | 0.73 | 0.91 | 0.52 | |||||||||
p-value C | 0.99 | 0.70 | 0.95 | 0.74 | 0.73 | 0.90 | 0.45 | 0.83 | 0.48 | |||||||||
p-value S*C | 0.58 | 0.78 | 0.73 | 0.14 | 0.95 | 0.90 | 0.96 | 0.97 | 0.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemke, B.; Siekmann, L.; Grabowski, N.T.; Plötz, M.; Krischek, C. Impact of the Addition of Tenebrio molitor and Hermetia illucens on the Physicochemical and Sensory Quality of Cooked Meat Products. Insects 2023, 14, 487. https://doi.org/10.3390/insects14050487
Lemke B, Siekmann L, Grabowski NT, Plötz M, Krischek C. Impact of the Addition of Tenebrio molitor and Hermetia illucens on the Physicochemical and Sensory Quality of Cooked Meat Products. Insects. 2023; 14(5):487. https://doi.org/10.3390/insects14050487
Chicago/Turabian StyleLemke, Barbara, Lisa Siekmann, Nils Th. Grabowski, Madeleine Plötz, and Carsten Krischek. 2023. "Impact of the Addition of Tenebrio molitor and Hermetia illucens on the Physicochemical and Sensory Quality of Cooked Meat Products" Insects 14, no. 5: 487. https://doi.org/10.3390/insects14050487