Fatty Acid Profile and Escherichia coli and Salmonella sp. Load of Wild-Caught Seaweed Fly Fucellia maritima (Haliday, 1838) (Diptera: Anthomyiidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Sampling
2.2. Sample Processing and Analysis
2.3. Lipid Extraction, Phospholipid Identification, and Fatty Acid Analysis
2.4. Microbiological Analysis
3. Results
3.1. Lipid Content, Classes, and Phospholipids
3.2. Fatty Acids’ Relative Abundance
3.3. Microbiological Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2022; ISBN 9789251363645. [Google Scholar]
- Chakraborty, P.; Mallik, A.; Sarang, N.; Lingam, S.S. A review on alternative plant protein sources available for future sustainable aqua feed production. Int. J. Chem. Stud. 2019, 7, 1399–1404. [Google Scholar]
- Ameixa, O.M.C.C.; Duarte, P.M.; Rodrigues, D.P. Insects, Food Security, and Sustainable Aquaculture. In Zero Hunger; Filho, L.W., Azul, A.M., Brandli, L., Özuyar, P.G., Wall, T., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 425–435. [Google Scholar]
- Hua, K.; Cobcroft, J.M.; Cole, A.; Condon, K.; Jerry, D.R.; Mangott, A.; Praeger, C.; Vucko, M.J.; Zeng, C.; Zenger, K.; et al. The Future of Aquatic Protein: Implications for Protein Sources in Aquaculture Diets. One Earth 2019, 1, 316–329. [Google Scholar] [CrossRef]
- Woodgate, S.L.; Wan, A.H.L.; Hartnett, F.; Wilkinson, R.G.; Davies, S.J. The utilisation of European processed animal proteins as safe, sustainable and circular ingredients for global aquafeeds. Rev. Aquac. 2022, 14, 1572–1596. [Google Scholar] [CrossRef]
- Duarte, P.M.; Maciel, E.; Pinho, M.; Domingues, M.R.; Calado, R.; Lillebø, A.I.; Ameixa, O.M.C.C. Omega-3 on the fly: Long-legged fly Machaerium maritimae as a potential source of eicosapentaenoic acid for aquafeeds. J. Insects Food Feed. 2021, 7, 1089–1100. [Google Scholar] [CrossRef]
- Biancarosa, I.; Liland, N.S.; Day, N.; Belghit, I.; Amlund, H.; Lock, E.J.; Gilburn, A.S. The chemical composition of two seaweed flies (Coelopa frigida and Coelopa pilipes) reared in the laboratory. J. Insects Food Feed. 2018, 4, 135–142. [Google Scholar] [CrossRef]
- Lourenço, F.; Calado, R.; Medina, I.; Ameixa, O.M.C.C. The Potential Impacts by the Invasion of Insects Reared to Feed Livestock and Pet Animals in Europe and Other Regions: A Critical Review. Sustainability 2022, 14, 6361. [Google Scholar] [CrossRef]
- Egglishaw, H. The life-history of Fucellia maritima (Haliday)(Diptera, Muscidae). Entomol. Nov. 1960, 93, 225–231. [Google Scholar]
- Lourenço, F.; Prado e Castro, C.; Ameixa, O.M.C.C. First record of Fucellia maritima (Haliday, 1838) (Diptera, Anthomyiidae) populations in Portugal. Nor. J. Entomol. 2020, 67, 246–248. [Google Scholar]
- Løvdal, T.; Lunestad, B.T.; Myrmel, M.; Rosnes, J.T.; Skipnes, D. Microbiological food safety of seaweeds. Foods 2021, 10, 2719. [Google Scholar] [CrossRef] [PubMed]
- European Commission (EC). Council Regulation (EC) 2017/893/ EC of 24 May 2017 amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No 142/2011 as Regards the Provisions on Pro; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Christie, W.W. Lipid Analysis: Isolation, Separation, Identification, and Structural Analysis of Lipids, 2nd ed.; Pergamon Press: Oxford, UK, 1982. [Google Scholar]
- Biesta-Peters, E.G.; Kinders, S.M.; de Boer, E. Validation by an interlaboratory collaborative trial of EN ISO 21528—Microbiology of the food chain—Horizontal methods for the detection and enumeration of Enterobacteriaceae. Int. J. Food Microbiol. 2019, 288, 75–81. [Google Scholar] [CrossRef]
- ISO, E.N. 16649-2: 2001; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Beta-Glucuronidase-Positive Escherichia coli—Part 2: Colony-Count Technique at 44 Degrees C Using 5-Bromo-4-Chloro-3-Indolyl Beta-D-Glucuronide; International Organization for Standartization: Geneva, Switzerland, 2001. [Google Scholar]
- Mooijman, K.A.; Pielaat, A.; Kuijpers, A.F.A. Validation of EN ISO 6579-1—Microbiology of the food chain—Horizontal method for the detection, enumeration and serotyping of Salmonella—Part 1 detection of Salmonella spp. Int. J. Food Microbiol. 2019, 288, 3–12. [Google Scholar] [CrossRef]
- Lu, S.; Taethaisong, N.; Meethip, W.; Surakhunthod, J.; Sinpru, B.; Sroichak, T.; Archa, P.; Thongpea, S.; Paengkoum, S.; Purba, R.A.P.; et al. Nutritional Composition of Black Soldier Fly Larvae (Hermetia illucens L.) and Its Potential Uses as Alternative Protein Sources in Animal Diets: A Review. Insects 2022, 13, 831. [Google Scholar] [CrossRef]
- Bordiean, A.; Krzyżaniak, M.; Aljewicz, M.; Stolarski, M.J. Influence of Different Diets on Growth and Nutritional Composition of Yellow Mealworm. Foods 2022, 11, 3075. [Google Scholar] [CrossRef]
- Ganda, H.; Zannou, E.T.; Kenis, M.; Abihona, H.A.; Houndonougbo, F.M.; Chrysostome, C.A.A.M.; Chougourou, D.C.; Mensah, G.A. Effect of four rearing substrates on the yield and the chemical composition of housefly larvae, Musca domestica L. 1758 (Diptera: Muscidae). Int. J. Trop. Insect Sci. 2022, 42, 1331–1339. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, D.; Zhou, S.; Duan, H.; Guo, J.; Yan, W. Nutritional Composition, Health Benefits, and Application Value of Edible Insects: A Review. Foods 2022, 11, 3961. [Google Scholar] [CrossRef]
- Kröncke, N.; Benning, R. Influence of Dietary Protein Content on the Nutritional Composition of Mealworm Larvae (Tenebrio molitor L.). Insects 2023, 14, 261. [Google Scholar] [CrossRef]
- Ochiai, M.; Komiya, Y. Detection of edible insect derived phospholipids with polyunsaturated fatty acids by thin-layer chromatography, gas chromatography, and enzymatic methods. J. Food Compos. Anal. 2021, 99, 103869. [Google Scholar] [CrossRef]
- Trenti, F.; Sandron, T.; Guella, G.; Lencioni, V. Insect cold-tolerance and lipidome: Membrane lipid composition of two chironomid species differently adapted to cold. Cryobiology 2022, 106, 84–90. [Google Scholar] [CrossRef]
- Goto, S.G.; Katagiri, C. Effects of acclimation temperature on membrane phospholipids in the flesh fly Sarcophaga similis. Entomol. Sci. 2011, 14, 224–229. [Google Scholar] [CrossRef]
- Smets, R.; Goos, P.; Claes, J.; Van Der Borght, M. Optimisation of the lipid extraction of fresh black soldier fly larvae (Hermetia illucens) with 2-methyltetrahydrofuran by response surface methodology. Sep. Purif. Technol. 2021, 258, 118040. [Google Scholar] [CrossRef]
- Ohtsu, T.; Kimura, M.T.; Katagiri, C. How Drosophila species acquire cold tolerance: Qualitative changes of phospholipids. Eur. J. Biochem. 1998, 252, 608–611. [Google Scholar] [CrossRef]
- Marshall, S.A. Flies: The Natural History & Diversity of Diptera; Firefly Books Ltd.: Richmond Hill, ON, Canada, 2012; ISBN 978-1-77085-100-9. [Google Scholar]
- Diogo, P.; Martins, G.; Gavaia, P.; Pinto, W.; Dias, J.; Cancela, L.; Martínez-Páramo, S. Assessment of nutritional supplementation in phospholipids on the reproductive performance of zebrafish, Danio rerio (Hamilton, 1822). J. Appl. Ichthyol. 2015, 31, 3–9. [Google Scholar] [CrossRef]
- Fang, W.; Liu, Y.; Chen, Q.; Xu, D.; Liu, Q.; Cao, X.; Hao, T.; Zhang, L.; Mai, K.; Ai, Q. Palmitic acid induces intestinal lipid metabolism disorder, endoplasmic reticulum stress and inflammation by affecting phosphatidylethanolamine content in large yellow croaker Larimichthys crocea. Front. Immunol. 2022, 13, 984508. [Google Scholar] [CrossRef]
- Krogdahl, Å.; Hansen, A.K.G.; Kortner, T.M.; Björkhem, I.; Krasnov, A.; Berge, G.M.; Denstadli, V. Choline and phosphatidylcholine, but not methionine, cysteine, taurine and taurocholate, eliminate excessive gut mucosal lipid accumulation in Atlantic salmon (Salmo salar L). Aquaculture 2020, 528, 735552. [Google Scholar] [CrossRef]
- Wang, F.; Guo, Y.; Cao, Y.; Zhang, C. In vitro Antibacterial Activity of Palmitoleic Acid Isolated from Filamentous Microalga Tribonema minus against Fish Pathogen Streptococcus agalactiae. J. Ocean Univ. China 2022, 21, 1615–1621. [Google Scholar] [CrossRef]
- Vieria, L.; Couto, A.; Fonseca, J.M.; Cabrita, A.R.J.; Pous, P.; Castro, C.; Peres, H.; Oliva-teles, A. Dietary oleic acid supplementation improves feed efficiency and modulates fatty acid profile and cell signaling pathway in European sea bass (Dicentrarchus labrax) juveniles fed high-lipid diets. Aquaculture 2023, 576, 739870. [Google Scholar] [CrossRef]
- Librán-Pérez, M.; Pereiro, P.; Figueras, A.; Novoa, B. Antiviral activity of palmitic acid via autophagic flux inhibition in zebrafish (Danio rerio). Fish Shellfish Immunol. 2019, 95, 595–605. [Google Scholar] [CrossRef]
- Opatovsky, I.; Vitenberg, T.; Jonas-Levi, A.; Gutman, R. Does Consumption of Baker’s Yeast (Saccharomyces cerevisiae) by Black Soldier Fly (Diptera: Stratiomyidae) Larvae Affect Their Fatty Acid Composition? J. Insect Sci. 2021, 21, 5. [Google Scholar] [CrossRef]
- Rodrigues, D.P.; Calado, R.; Pinho, M.; Rosário Domingues, M.; Antonio Vázquez, J.; Ameixa, O.M.C.C. Bioconversion and performance of Black Soldier Fly (Hermetia illucens) in the recovery of nutrients from expired fish feeds. Waste Manag. 2022, 141, 183–193. [Google Scholar] [CrossRef]
- Truzzi, C.; Giorgini, E.; Annibaldi, A.; Antonucci, M.; Illuminati, S.; Scarponi, G.; Riolo, P.; Isidoro, N.; Conti, C.; Zarantoniello, M.; et al. Fatty acids profile of black soldier fly (Hermetia illucens): Influence of feeding substrate based on coffee-waste silverskin enriched with microalgae. Anim. Feed. Sci. Technol. 2020, 259, 114309. [Google Scholar] [CrossRef]
- Ameixa, O.M.C.C.; Pinho, M.; Domingues, M.R.; Lillebø, A.I. Bioconversion of olive oil pomace by black soldier fly increases eco-efficiency in solid waste stream reduction producing tailored value-added insect meals. PLoS ONE 2023, 18, e0287986. [Google Scholar] [CrossRef]
- Stefanov, K.; Nechev, J.; Lavchieva-Nacheva, G.; Nikolova, N.; Seizova, K.; Kwartirnikov, M.; Lavchiev, V.; Popov, S. Lipids and sterols in Musca domestica L. (Diptera, Muscidae): Changes after treatment with sucrose and lead. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2002, 131, 543–550. [Google Scholar] [CrossRef]
- Glencross, B.D. Exploring the nutritional demand for essential fatty acids by aquaculture species. Aquac. Res. 2009, 48, 71–124. [Google Scholar] [CrossRef]
- Yao, C.B.; Feng, L.; Wu, P.; Liu, Y.; Jiang, J.; Zhang, L.; Mi, H.F.; Zhou, X.Q.; Jiang, W.D. Promotion of fatty acid metabolism and glucose metabolism in the muscle of sub-adult grass carp (Ctenopharyngodon idella): The role of alpha-linoleic acid/linoleic acid (ALA/LNA) ratios. Food Chem. X 2023, 19, 100752. [Google Scholar] [CrossRef]
- Chee, W.L.; Turchini, G.M.; Teoh, C.Y.; Ng, W.K. Dietary arachidonic acid and the impact on growth performance, health and tissues fatty acids in Malabar red snapper (Lutjanus malabaricus) fingerlings. Aquaculture 2020, 519, 734757. [Google Scholar] [CrossRef]
- Qi, H.; Liu, Y.; Jian, F.; Xing, X.; Wang, J.; Li, C. Effects of dietary arachidonic acid (ARA) on immunity, growth and fatty acids of Apostichopus japonicus. Fish Shellfish Immunol. 2022, 127, 901–909. [Google Scholar] [CrossRef]
- Rivero-Ramírez, F.; Torrecillas, S.; Betancor, M.B.; Izquierdo, M.S.; Caballero, M.J.; Montero, D. Effects of dietary arachidonic acid in European sea bass (Dicentrarchus labrax) distal intestine lipid classes and gut health. Fish Physiol. Biochem. 2020, 46, 681–697. [Google Scholar] [CrossRef]
- Xu, H.; Meng, X.; Wei, Y.; Ma, Q.; Liang, M.; Turchini, G.M. Arachidonic acid matters. Rev. Aquac. 2022, 14, 1912–1944. [Google Scholar] [CrossRef]
- Qian, C.; Hart, B.; Colombo, S.M. Re-evaluating the dietary requirement of EPA and DHA for Atlantic salmon in freshwater. Aquaculture 2020, 518, 734870. [Google Scholar] [CrossRef]
- Yadav, A.K.; Rossi, W.; Habte-Tsion, H.M.; Kumar, V. Impacts of dietary eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) level and ratio on the growth, fatty acids composition and hepatic-antioxidant status of largemouth bass (Micropterus salmoides). Aquaculture 2020, 529, 735683. [Google Scholar] [CrossRef]
- Mejri, S.C.; Tremblay, R.; Audet, C.; Wills, P.S.; Riche, M. Essential Fatty Acid Requirements in Tropical and Cold-Water Marine Fish Larvae and Juveniles. Front. Mar. Sci. 2021, 8, 680003. [Google Scholar] [CrossRef]
- Bou, M.; Berge, G.M.; Baeverfjord, G.; Sigholt, T.; Ostbye, T.K.; Romarheim, O.H.; Hatlen, B.; Leeuwis, R.; Venegas, C.; Ruyter, B. Requirements of n-3 very long-chain PUFA in Atlantic salmon (Salmo salar L.): Effects of different dietary levels of EPA and DHA on fish performance and tissue composition and integrity. Br. J. Nutr. 2017, 117, 30–47. [Google Scholar] [CrossRef]
- Baldacchino, F.; Spagnoletta, A.; Lamaj, F.; Vitale, M.L.; Verrastro, V. First Optimization of Tomato Pomace in Diets for Tenebrio molitor (L.) (Coleoptera: Tenebrionidae). Insects 2023, 14, 854. [Google Scholar] [CrossRef]
- Kolobe, S.D.; Manyelo, T.G.; Malematja, E.; Sebola, N.A.; Mabelebele, M. Fats and major fatty acids present in edible insects utilised as food and livestock feed. Vet. Anim. Sci. 2023, 22, 100312. [Google Scholar] [CrossRef]
- Yu, X.B.; Shen, Y.Y.; Cui, Q.M.; Chen, Y.; Sun, W.; Huang, X.Z.; Zhu, Y. Silkworm (Bombyx mori) has the Capability to Accumulate C20 and C22 Polyunsaturated Fatty Acids. Eur. J. Lipid Sci. Technol. 2018, 120, 1700268. [Google Scholar] [CrossRef]
- Mohammad Taghi Gharibzahedi, S.; Altintas, Z. Lesser mealworm (Alphitobius diaperinus L.) larvae oils extracted by pure and binary mixed organic solvents: Physicochemical and antioxidant properties, fatty acid composition, and lipid quality indices. Food Chem. 2023, 408, 135209. [Google Scholar] [CrossRef]
- Stanley-Samuelson, D.W.; Jurenka, R.A.; Cripps, C.; Blomquist, G.J.; de Renobales, M. Fatty acids in insects: Composition, metabolism, and biological significance. Arch. Insect Biochem. Physiol. 1988, 9, 1–33. [Google Scholar] [CrossRef]
- Blomquist, G.J.; Borgeson, C.E.; Vundla, M. Polyunsaturated fatty acids and eicosanoids in insects. Insect Biochem. 1991, 21, 99–106. [Google Scholar] [CrossRef]
- Committee, E.S. Risk profile related to production and consumption of insects as food and feed. EFSA J. 2015, 13, 60. [Google Scholar] [CrossRef]
- Saucier, L.; M’ballou, C.; Ratti, C.; Deschamps, M.H.; Lebeuf, Y.; Vandenberg, G.W. Comparison of black soldier fly larvae pre-treatments and drying techniques on the microbial load and physico-chemical characteristics. J. Insects Food Feed. 2020, 8, 45–64. [Google Scholar] [CrossRef]
- Jaxion-Harm, J. Effects of dietary phospholipids on early stage Atlantic Salmon (Salmo salar) performance: A comparison among phospholipid sources. Aquaculture 2021, 544, 737055. [Google Scholar] [CrossRef]
- Hachero-Cruzado, I.; Manchado, M. Dietary Phospholipids Enhance Growth Performance and Modulate Cold Tolerance in Meagre (Argyrosomus regius) Juveniles. Animals 2021, 11, 2750. [Google Scholar] [CrossRef]
- Lourenço, F.; Prado e Castro, C.; Ameixa, O.M.C.C. Primer registro de Malacomyia sciomyzina (Haliday, 1833) (Diptera, Coelopidae) en Portugal continental, con notas sobre su ciclo de vida. Graellsia 2023, 79, e192. [Google Scholar] [CrossRef]
- Barbot, Y.; Al-Ghaili, H.; Benz, R. A Review on the Valorization of Macroalgal Wastes for Biomethane Production. Mar. Drugs 2016, 14, 120. [Google Scholar] [CrossRef]
μg/mg Lipid | % of Total Phospholipids | |
---|---|---|
Cardiolipin (CL) | 4.9 | 8.3 |
Phosphatidic acid (PA) | 1.1 | 2.0 |
Phosphatidylcholine (PC) | 10.0 | 17.1 |
Phosphatidylethanolamine (PE) | 35.7 | 60.8 |
Phosphatidylinositol (PI) | 3.4 | 5.8 |
Phosphatidylserine (PS) | 3.4 | 5.8 |
Fatty Acids | Relative Abundance (%) ± SD |
---|---|
C12:0 (Lauric acid) | 0.0 ± 0.0 |
C14:0 (Myristic acid) | 0.1 ± 0.4 |
C15:0 (Pentadecanoic acid) | 0.4 ± 0.1 |
C16:0 (Palmitic acid, PA) | 14.9 ± 1.9 |
C17:0 (Heptadecanoic acid) | 0.2 ± 0.1 |
C18:0 (Stearic acid) | 2.4 ± 0.5 |
SFA | 18.8 ± 0.7 |
C14:1 n-5 (Myristoleic acid) | 0.9 ± 0.1 |
C15:1 (Pentadecanoic acid cis-10) | 0.1 ± 0.1 |
C16:1 n-7 (Palmitoleic acid) | 34.9 ± 4.3 |
C17:1 (Heptadecanoic acid cis-10) | 1.2 ± 0.4 |
C18:1 n-9 (Oleic acid) | 30.4 ± 2.3 |
MUFA | 66.9 ± 1.2 |
C18:2 n-6 (Linoleic acid) | 3.4 ± 1.3 |
C18:3 n-3 (α-Linolenic acid) | 3.4 ± 1.9 |
C20:4 n-6 (Arachidonic acid) | 1.1 ± 0.3 |
C20:5 n-3 (Eicosapentaenoic acid) | 6.1 ± 1.2 |
PUFA | 14.0 ± 1.1 |
n-6 PUFAs | 4.5 ± 0.9 |
n-3 PUFAs | 9.5 ± 1.2 |
n-6/n-3 ratio | 0.5 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lourenço, F.; Calado, R.; Pinho, M.; Domingues, M.R.; Medina, I.; Ameixa, O.M.C.C. Fatty Acid Profile and Escherichia coli and Salmonella sp. Load of Wild-Caught Seaweed Fly Fucellia maritima (Haliday, 1838) (Diptera: Anthomyiidae). Insects 2024, 15, 163. https://doi.org/10.3390/insects15030163
Lourenço F, Calado R, Pinho M, Domingues MR, Medina I, Ameixa OMCC. Fatty Acid Profile and Escherichia coli and Salmonella sp. Load of Wild-Caught Seaweed Fly Fucellia maritima (Haliday, 1838) (Diptera: Anthomyiidae). Insects. 2024; 15(3):163. https://doi.org/10.3390/insects15030163
Chicago/Turabian StyleLourenço, Felipe, Ricardo Calado, Marisa Pinho, Maria Rosário Domingues, Isabel Medina, and Olga M. C. C. Ameixa. 2024. "Fatty Acid Profile and Escherichia coli and Salmonella sp. Load of Wild-Caught Seaweed Fly Fucellia maritima (Haliday, 1838) (Diptera: Anthomyiidae)" Insects 15, no. 3: 163. https://doi.org/10.3390/insects15030163