Next Issue
Previous Issue

Table of Contents

Insects, Volume 9, Issue 1 (March 2018)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-35
Export citation of selected articles as:

Editorial

Jump to: Research, Review, Other

Open AccessEditorial Acknowledgement to Reviewers of Insects in 2017
Insects 2018, 9(1), 6; doi:10.3390/insects9010006
Received: 11 January 2018 / Revised: 11 January 2018 / Accepted: 11 January 2018 / Published: 11 January 2018
PDF Full-text (200 KB) | HTML Full-text | XML Full-text
Abstract
Peer review is an essential part in the publication process, ensuring that Insects maintains high quality standards for its published papers [...]
Full article

Research

Jump to: Editorial, Review, Other

Open AccessArticle Monitoring the Attack Incidences and Damage Caused by the Almond Bark Beetle, Scolytus amygdali, in Almond Orchards
Insects 2018, 9(1), 1; doi:10.3390/insects9010001
Received: 8 November 2017 / Revised: 6 December 2017 / Accepted: 22 December 2017 / Published: 1 January 2018
PDF Full-text (1035 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The almond bark beetle, Scolytus amygdali Geurin-Meneville, is responsible for significant loss of fruit production in almond orchards throughout the world. Here, we studied the damage and the incidences of S. amygdali attack on two different scales: (1) at the level of a
[...] Read more.
The almond bark beetle, Scolytus amygdali Geurin-Meneville, is responsible for significant loss of fruit production in almond orchards throughout the world. Here, we studied the damage and the incidences of S. amygdali attack on two different scales: (1) at the level of a single tree; and (2) in an entire orchard. Our results revealed no differences in attack level among four orientations (east, west, south and north sides) for the whole tree. However, the bark that was facing west side in the direction of the prevailing wind was found to be the most suitable for females to initiate attack in Stratum S2. Attack distribution remains the same among different strata (strata is vertical divisions of the tree from the ground to the uppermost twigs with ~40 cm intervals). More than 50% of attack was observed in the trunk of the tree and upper strata. However, multiplication rate (number of emerged adults/maternal gallery) varies significantly between strata. In addition, we studied attack intensity (holes produced by beetle per tree) comparing it to tree morphology (flowers, leaves and circumferences) and gum deposit. Our results revealed a positive correlation between attack intensity and gum deposits, and a negative correlation between attack intensity and tree morphology. This revealed that gum on the tree was an indicator for attack intensity. A positive correlation between attack intensity and the circumference of the tree revealed that older trees were more susceptible to S. amygdali attack. These results, while preliminary, aim to help in the monitoring of S. amygdali populations before deciding to apply any control measures. Full article
(This article belongs to the Special Issue Insect Monitoring and Trapping in Agricultural Systems)
Figures

Figure 1

Open AccessArticle Investigating the (Mis)Match between Natural Pest Control Knowledge and the Intensity of Pesticide Use
Insects 2018, 9(1), 2; doi:10.3390/insects9010002
Received: 15 September 2017 / Revised: 8 November 2017 / Accepted: 24 December 2017 / Published: 5 January 2018
PDF Full-text (1837 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Transforming modern agriculture towards both higher yields and greater sustainability is critical for preserving biodiversity in an increasingly populous and variable world. However, the intensity of agricultural practices varies strongly between crop systems. Given limited research capacity, it is crucial to focus efforts
[...] Read more.
Transforming modern agriculture towards both higher yields and greater sustainability is critical for preserving biodiversity in an increasingly populous and variable world. However, the intensity of agricultural practices varies strongly between crop systems. Given limited research capacity, it is crucial to focus efforts to increase sustainability in the crop systems that need it most. In this study, we investigate the match (or mismatch) between the intensity of pesticide use and the availability of knowledge on the ecosystem service of natural pest control across various crop systems. Using a systematic literature search on pest control and publicly available pesticide data, we find that pest control literature is not more abundant in crops where insecticide input per hectare is highest. Instead, pest control literature is most abundant, with the highest number of studies published, in crops with comparatively low insecticide input per hectare but with high world harvested area. These results suggest that a major increase of interest in agroecological research towards crops with high insecticide input, particularly cotton and horticultural crops such as citrus and high value-added vegetables, would help meet knowledge needs for a timely ecointensification of agriculture. Full article
(This article belongs to the Special Issue Arthropod Pest Control in Orchards and Vineyards)
Figures

Figure 1

Open AccessArticle The Vivarium: Maximizing Learning with Living Invertebrates—An Out-of-School Intervention Is more Effective than an Equivalent Lesson at School
Insects 2018, 9(1), 3; doi:10.3390/insects9010003
Received: 7 December 2017 / Revised: 19 December 2017 / Accepted: 21 December 2017 / Published: 2 January 2018
Cited by 1 | PDF Full-text (2615 KB) | HTML Full-text | XML Full-text
Abstract
The introduction of living invertebrates into the classroom was investigated. First, possible anchor points for a lesson with living invertebrates are explored by referring to the curriculum of primary/secondary schools and to out-of-school learning. The effectiveness of living animals for increasing interest, motivation,
[...] Read more.
The introduction of living invertebrates into the classroom was investigated. First, possible anchor points for a lesson with living invertebrates are explored by referring to the curriculum of primary/secondary schools and to out-of-school learning. The effectiveness of living animals for increasing interest, motivation, and achievement in recent research is discussed. Next, the Vivarium, an out-of-school learning facility with living invertebrates, is described. The effects of an intervention study with living invertebrates on achievement are then investigated at school (School condition) and out of school (University condition); a third group served as a control condition. The sample consisted of 1861 students (an age range of 10–12 years). Invertebrate-inspired achievement was measured as pre-, post-, and follow-up-tests. Measures of trait and state motivation were applied. The nested data structure was treated with three-level analyses. While achievement generally increased in the treatment groups as compared to the control group, there were significant differences by treatment. The University condition was more effective than the School condition. Achievement was positively related to conscientiousness/interest and negatively to tension. The study concludes that out-of-school learning offers achievement gains when compared to the same treatment implemented at school. The outlook focuses on further research questions that could be implemented with the Vivarium. Full article
(This article belongs to the Special Issue Arthropod Education)
Figures

Figure 1

Open AccessArticle Development of Sparganothis sulfureana (Lepidoptera: Tortricidae) on Cranberry Cultivars
Insects 2018, 9(1), 4; doi:10.3390/insects9010004
Received: 22 November 2017 / Revised: 15 December 2017 / Accepted: 21 December 2017 / Published: 2 January 2018
PDF Full-text (1006 KB) | HTML Full-text | XML Full-text
Abstract
Sparganothis fruitworm (Sparganothis sulfureana Clemens) (Lepidoptera: Tortricidae) is a serious pest of cranberry (Vaccinium macrocarpon Aiton), a native North American fruit cultivated in northern regions of the United States and southeastern Canada. This study assessed antibiosis in several cranberry cultivars commonly
[...] Read more.
Sparganothis fruitworm (Sparganothis sulfureana Clemens) (Lepidoptera: Tortricidae) is a serious pest of cranberry (Vaccinium macrocarpon Aiton), a native North American fruit cultivated in northern regions of the United States and southeastern Canada. This study assessed antibiosis in several cranberry cultivars commonly grown in Wisconsin. Five cultivars previously shown to host different levels of populations of S. sulfureana in commercial cranberry were assessed in this study to evaluate the performance of S. sulfureana amongst these cultivars. We measured growth and time to developmental stages of newly emerged larvae to adulthood on selected cranberry cultivars in the laboratory. There was no difference in the rates of survival to pupation and to adult emergence among any of the cultivars tested. Mid-instar larvae that fed on the cultivar ‘Ben Lear’ were heavier than those feeding on ‘GH-1’, ‘Stevens’, or ‘HyRed’, and larvae that fed on ‘Mullica Queen’ were heavier than those feeding on ‘HyRed’. However, there were no significant differences in pupal weights or in the number of days from neonate to adult emergence among varieties. Therefore, this study did not provide evidence of antibiosis among the cultivars tested, and found that larval weight was not correlated with other measurements of performance. Full article
(This article belongs to the Special Issue Insect-Plant Interactions)
Figures

Figure 1

Open AccessArticle Non-Crop Host Sampling Yields Insights into Small-Scale Population Dynamics of Drosophila suzukii (Matsumura)
Insects 2018, 9(1), 5; doi:10.3390/insects9010005
Received: 30 November 2017 / Revised: 23 December 2017 / Accepted: 29 December 2017 / Published: 3 January 2018
PDF Full-text (1271 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Invasive, polyphagous crop pests subsist on a number of crop and non-crop resources. While knowing the full range of host species is important, a seasonal investigation into the use of non-crop plants adjacent to cropping systems provide key insights into some of the
[...] Read more.
Invasive, polyphagous crop pests subsist on a number of crop and non-crop resources. While knowing the full range of host species is important, a seasonal investigation into the use of non-crop plants adjacent to cropping systems provide key insights into some of the factors determining local population dynamics. This study investigated the infestation of non-crop plants by the invasive Drosophila suzukii (Matsumura), a pest of numerous economically important stone and small fruit crops, by sampling fruit-producing non-crop hosts adjacent to commercial plantings weekly from June through November in central New York over a two-year period. We found D. suzukii infestation rates (number of flies emerged/kg fruit) peaked mid-August through early September, with Rubus allegheniensis Porter and Lonicera morrowii Asa Gray showing the highest average infestation in both years. Interannual infestation patterns were similar despite a lower number of adults caught in monitoring traps the second year, suggesting D. suzukii host use may be density independent. Full article
(This article belongs to the Special Issue Arthropod Pest Control in Orchards and Vineyards)
Figures

Figure 1

Open AccessArticle Prey Acceptability and Preference of Oenopia conglobata (Coleoptera: Coccinellidae), a Candidate for Biological Control in Urban Green Areas
Insects 2018, 9(1), 7; doi:10.3390/insects9010007
Received: 4 December 2017 / Revised: 29 December 2017 / Accepted: 5 January 2018 / Published: 12 January 2018
PDF Full-text (933 KB) | HTML Full-text | XML Full-text
Abstract
Oenopia conglobata is one of the most common ladybird species in urban green areas of the Mediterranean region. We have obtained data about its prey acceptability and prey preferences. In a laboratory experiment, we investigated the acceptability of seven aphid and one psyllid
[...] Read more.
Oenopia conglobata is one of the most common ladybird species in urban green areas of the Mediterranean region. We have obtained data about its prey acceptability and prey preferences. In a laboratory experiment, we investigated the acceptability of seven aphid and one psyllid species as prey for this coccinellid: the aphids Chaitophorus populeti, Aphis gossypii, Aphis craccivora Monelliopsis caryae, Eucallipterus tiliae, Aphis nerii (on white poplar, pomegranate, false acacia, black walnut, lime, and oleander, respectively), and the psyllid Acizzia jamatonica on Persian silk tree. These species are abundant in urban green areas in the Mediterranean region. In addition, we tested the acceptability of Rhopalosiphum padi on barley, an aphid species easily reared in the laboratory. We also tested preferences of the predator in cafeteria experiments with three aphid species and one aphid and the psyllid. Adults and larvae of the coccinellid accepted all of the preys offered, except A. nerii, with a clear preference for M. caryae. The predator also showed preference for M. caryae when it was offered in a cafeteria experiment with other aphid species or with the psyllid. The aphid R. padi obtained a good acceptability and could be used for rearing O. conglobata in the laboratory. Full article
Figures

Open AccessArticle Influence of Grapevine Cultivar on the Second Generations of Lobesia botrana and Eupoecilia ambiguella
Insects 2018, 9(1), 8; doi:10.3390/insects9010008
Received: 20 October 2017 / Revised: 19 December 2017 / Accepted: 17 January 2018 / Published: 19 January 2018
PDF Full-text (850 KB) | HTML Full-text | XML Full-text
Abstract
Grapevine cultivar can affect susceptibility to Lobesia botrana and Eupoecilia ambiguella with important implications on control strategies. A four-year study was carried out in north-eastern Italy on 10 cultivars (Cabernet Sauvignon, Carménère, Chardonnay, Merlot, Refosco dal Peduncolo Rosso, Rhine Riesling, Sauvignon Blanc, Terrano,
[...] Read more.
Grapevine cultivar can affect susceptibility to Lobesia botrana and Eupoecilia ambiguella with important implications on control strategies. A four-year study was carried out in north-eastern Italy on 10 cultivars (Cabernet Sauvignon, Carménère, Chardonnay, Merlot, Refosco dal Peduncolo Rosso, Rhine Riesling, Sauvignon Blanc, Terrano, Tocai Friulano and Verduzzo Friulano) grown in the same vineyard to assess whether the cultivar affects second-generation population levels of the two vine moths and L. botrana larval age composition. The influence of bunch traits measured at the peak of egg hatching on demographic parameters was also evaluated. Over the four years, L. botrana significantly prevailed over E. ambiguella in nine cultivars. Chardonnay and Tocai Friulano were the most infested cultivars and Merlot was the least infested. At the sampling date, the age composition of L. botrana varied with cultivar, with the larvae being significantly older on Chardonnay and younger on Carménère, Merlot and Verduzzo Friulano. Older larval age was significantly associated with higher bunch compactness. Larval infestation was not significantly influenced by either bunch compactness or berry volume, which suggested a more important role for contact and volatile substances mostly originating from the berries. These results allow for the improvement of Integrated Pest Management strategy against vine moths. Full article
(This article belongs to the Special Issue Arthropod Pest Control in Orchards and Vineyards)
Figures

Figure 1

Open AccessFeature PaperArticle Environment vs. Plant Ontogeny: Arthropod Herbivory Patterns on European Beech Leaves along the Vertical Gradient of Temperate Forests in Central Germany
Insects 2018, 9(1), 9; doi:10.3390/insects9010009
Received: 27 October 2017 / Revised: 21 December 2017 / Accepted: 22 January 2018 / Published: 26 January 2018
PDF Full-text (6204 KB) | HTML Full-text | XML Full-text
Abstract
Environmental and leaf trait effects on herbivory are supposed to vary among different feeding guilds. Herbivores also show variability in their preferences for plant ontogenetic stages. Along the vertical forest gradient, environmental conditions change, and trees represent juvenile and adult individuals in the
[...] Read more.
Environmental and leaf trait effects on herbivory are supposed to vary among different feeding guilds. Herbivores also show variability in their preferences for plant ontogenetic stages. Along the vertical forest gradient, environmental conditions change, and trees represent juvenile and adult individuals in the understorey and canopy, respectively. This study was conducted in ten forests sites in Central Germany for the enrichment of canopy research in temperate forests. Arthropod herbivory of different feeding traces was surveyed on leaves of Fagus sylvatica Linnaeus (European beech; Fagaceae) in three strata. Effects of microclimate, leaf traits, and plant ontogenetic stage were analyzed as determining parameters for herbivory. The highest herbivory was caused by exophagous feeding traces. Herbivore attack levels varied along the vertical forest gradient for most feeding traces with distinct patterns. If differences of herbivory levels were present, they only occurred between juvenile and adult F. sylvatica individuals, but not between the lower and upper canopy. In contrast, differences of microclimate and important leaf traits were present between the lower and upper canopy. In conclusion, the plant ontogenetic stage had a stronger effect on herbivory than microclimate or leaf traits along the vertical forest gradient. Full article
Figures

Figure 1

Open AccessArticle A Molecular Method for the Identification of Honey Bee Subspecies Used by Beekeepers in Russia
Insects 2018, 9(1), 10; doi:10.3390/insects9010010
Received: 3 October 2017 / Revised: 22 December 2017 / Accepted: 22 December 2017 / Published: 27 January 2018
PDF Full-text (2013 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Apis mellifera L. includes several recognized subspecies that differ in their biological properties and agricultural characteristics. Distinguishing between honey bee subspecies is complicated. We analyzed the Folmer region of the COX1 gene in honey bee subspecies cultivated at bee farms in Russia and
[...] Read more.
Apis mellifera L. includes several recognized subspecies that differ in their biological properties and agricultural characteristics. Distinguishing between honey bee subspecies is complicated. We analyzed the Folmer region of the COX1 gene in honey bee subspecies cultivated at bee farms in Russia and identified subspecies-specific SNPs. DNA analysis revealed two clearly distinct haplogroups in A. mellifera mellifera. The first one was characterized by multiple cytosine-thymine (thymine–cytosine) transitions, one adenine-guanine substitution, and one thymine–adenine substitution. The nucleotide sequence of the second haplogroup coincided with sequences from other subspecies, except the unique C/A SNP at position 421 of the 658-bp Folmer region. A. mellifera carnica and A. mellifera carpatica could be distinguished from A. mellifera mellifera and A. mellifera caucasica by the presence of the A/G SNP at position 99 of the 658-bp Folmer region. The G/A SNP at position 448 was typical for A. mellifera carnica. A. mellifera caucasica COX1 sequence lacked all the above-mentioned sites. We developed a procedure for rapid identification of honey bee subspecies by PCR with restriction fragment length polymorphism (RFLP) using mutagenic primers. The developed molecular method for honey bee subspecies identification is fast and inexpensive. Full article
Figures

Figure 1

Open AccessFeature PaperArticle Growing Industries, Growing Invasions? The Case of the Argentine Ant in Vineyards of Northern Argentina
Insects 2018, 9(1), 11; doi:10.3390/insects9010011
Received: 10 December 2017 / Revised: 18 January 2018 / Accepted: 23 January 2018 / Published: 29 January 2018
PDF Full-text (881 KB) | HTML Full-text | XML Full-text
Abstract
The invasive Argentine ant causes ecological and economic damage worldwide. In 2011, this species was reported in vineyards of Cafayate, a wine-producing town in the Andes, Argentina. While the local xeric climate is unsuitable for Argentine ants, populations could establish in association with
[...] Read more.
The invasive Argentine ant causes ecological and economic damage worldwide. In 2011, this species was reported in vineyards of Cafayate, a wine-producing town in the Andes, Argentina. While the local xeric climate is unsuitable for Argentine ants, populations could establish in association with vineyards where human activity and irrigation facilitate propagule introduction and survival. In 2013–2014, we combined extensive sampling of the area using ant-baits with monitoring of the change in land use and vineyard cultivated area over the past 15 years. Our results revealed that the species has thus far remained confined to a relatively isolated small area, owing to an effective barrier of dry shrublands surrounding the infested vineyards; yet the recent expansion of vineyard acreage in this region will soon connect this encapsulated area with the rest of the valley. When this happens, vulnerable ecosystems and the main local industry will be put at risk. This case provides a rare opportunity to study early invasion dynamics and reports, to the best of our knowledge, for the first time, the Argentine ant in high altitude agroecosystems. Full article
(This article belongs to the Special Issue Arthropod Pest Control in Orchards and Vineyards)
Figures

Figure 1

Open AccessArticle Fear and Disgust of Spiders: Factors that Limit University Preservice Middle School Science Teachers
Insects 2018, 9(1), 12; doi:10.3390/insects9010012
Received: 6 December 2017 / Revised: 5 January 2018 / Accepted: 17 January 2018 / Published: 29 January 2018
PDF Full-text (687 KB) | HTML Full-text | XML Full-text
Abstract
Spiders perform many essential ecological services, yet humans often experience negative emotions toward spiders. These emotions can lead to the avoidance of beneficial events. These emotions may affect beliefs about what should or should not be included in a science curriculum. This study
[...] Read more.
Spiders perform many essential ecological services, yet humans often experience negative emotions toward spiders. These emotions can lead to the avoidance of beneficial events. These emotions may affect beliefs about what should or should not be included in a science curriculum. This study investigated how activities with living spiders affected preservice middle school science teachers’ emotions and beliefs. Prior to the activities both groups (i.e., treatment and control) had moderate to extreme fear and disgust toward the spider. The teachers that participated in the spider activities (i.e., treatment group) had much lower levels of fear and disgust after performing the spider activities than the control group that did not participate in the spider activities. The control group continued to have elevated levels of fear and disgust toward the spider throughout the study. Before the spider activities neither group planned to incorporate information about spiders or information about the essential ecological services of spiders into their science classroom. After the treatment group participated in the spider activities, the teachers had definitive plans to teach their students about spiders and the essential ecological services that they provide. The control group remained unchanged and had no plans to teach this information to their students. Full article
(This article belongs to the Special Issue Arthropod Education)
Figures

Open AccessFeature PaperArticle Black Border Increases Stomoxys calcitrans Catch on White Sticky Traps
Insects 2018, 9(1), 13; doi:10.3390/insects9010013
Received: 16 December 2017 / Revised: 31 January 2018 / Accepted: 1 February 2018 / Published: 2 February 2018
PDF Full-text (1297 KB) | HTML Full-text | XML Full-text
Abstract
Stable fly, Stomoxys calcitrans, is a biting fly that can cause severe irritation to livestock resulting in reduced productivity. The most common method of monitoring S. calcitrans is through the use of sticky traps and many designs have been developed using different
[...] Read more.
Stable fly, Stomoxys calcitrans, is a biting fly that can cause severe irritation to livestock resulting in reduced productivity. The most common method of monitoring S. calcitrans is through the use of sticky traps and many designs have been developed using different colours and materials such as alsynite fibreglass and polypropylene sheeting. Laboratory experiments and some field experimentation have demonstrated that colour contrast can attract S. calcitrans. However, this response has not been fully utilised in trap design. To test that simple colour contrast could increase trap efficacy, white sticky traps were mounted on three differently coloured backgrounds (white, yellow, and black) and positioned at five sites on a mixed livestock farm. White sticky traps on a black background caught significantly more S. calcitrans than the yellow or white backgrounds. An incidental result was that Pollenia sp. were caught in greater numbers on the yellow framed traps. The reasons for S. calcitrans attraction to black–white contrast are most likely due to conspicuousness in the environment although the extent to which flies are using this feature as a host-location cue or a perching site are unknown. Full article
(This article belongs to the Special Issue Insect Monitoring and Trapping in Agricultural Systems)
Figures

Open AccessArticle Establishment Success of the Beetle Tapeworm Hymenolepis diminuta Depends on Dose and Host Body Condition
Insects 2018, 9(1), 14; doi:10.3390/insects9010014
Received: 15 January 2018 / Revised: 30 January 2018 / Accepted: 31 January 2018 / Published: 3 February 2018
PDF Full-text (1932 KB) | HTML Full-text | XML Full-text
Abstract
Parasite effects on host fitness and immunology are often intensity-dependent. Unfortunately, only few experimental studies on insect-parasite interactions attempt to control the level of infection, which may contribute substantial variation to the fitness or immunological parameters of interest. The tapeworm Hymenolepis diminuta—flour
[...] Read more.
Parasite effects on host fitness and immunology are often intensity-dependent. Unfortunately, only few experimental studies on insect-parasite interactions attempt to control the level of infection, which may contribute substantial variation to the fitness or immunological parameters of interest. The tapeworm Hymenolepis diminuta—flour beetle Tenebrio molitor model—has been used extensively for ecological and evolutionary host–parasite studies. Successful establishment of H. diminuta cysticercoids in T. molitor relies on ingestion of viable eggs and penetration of the gut wall by the onchosphere. Like in other insect models, there is a lack of standardization of the infection load of cysticercoids in beetles. The aims of this study were to: (1) quantify the relationship between exposure dose and establishment success across several H. diminuta egg concentrations; and (2) test parasite establishment in beetles while experimentally manipulating host body condition and potential immune response to infection. Different egg concentrations of H. diminuta isolated from infected rat feces were fed to individual beetles 7–10 days after eclosion and beetles were exposed to starvation, wounding, or insertion of a nylon filament one hour prior to infection. We found that the establishment of cysticercoids in relation to exposure dose could be accurately predicted using a power function where establishment success was low at three lowest doses and higher at the two highest doses tested. Long-term starvation had a negative effect on cysticercoid establishment success, while insertion of a nylon filament and wounding the beetles did not have any effect compared to control treatment. Thus, our results show that parasite load may be predicted from the exposure dose within the observed range, and that the relationship between dose and parasite establishment success is able to withstand some changes in host body condition. Full article
(This article belongs to the Special Issue Parasite-Insect Interactions)
Figures

Open AccessArticle Heat Coma Temperature and Supercooling Point in Oceanic Sea Skaters (Heteroptera, Gerridae)
Insects 2018, 9(1), 15; doi:10.3390/insects9010015
Received: 11 September 2017 / Revised: 26 December 2017 / Accepted: 26 January 2018 / Published: 3 February 2018
PDF Full-text (1190 KB) | HTML Full-text | XML Full-text
Abstract
Heat coma temperatures (HCTs) and super cooling points (SCPs) were examined for nearly 1000 oceanic sea skaters collected from in the Pacific and Indian Oceans representing four Halobates species; H. germanus, H. micans, H. sericeus, and H. sp. Analysis was
[...] Read more.
Heat coma temperatures (HCTs) and super cooling points (SCPs) were examined for nearly 1000 oceanic sea skaters collected from in the Pacific and Indian Oceans representing four Halobates species; H. germanus, H. micans, H. sericeus, and H. sp. Analysis was conducted using the entire dataset because a negative correlation was seen between the HCTs and SCPs in all four species. A weak negative correlation was seen between HCTs and SCPs with a cross tolerance between warmer HCTs and colder SCPs. The weakness of the correlation may be due to the large size of the dataset and to the variability in ocean surface temperature. The negative correlation does however suggest that oceanic sea skaters may have some form of cross tolerance with a common physiological mechanism for their high and low temperature tolerances. Full article
Figures

Figure 1

Open AccessFeature PaperArticle In Their Own Words: The Significance of Participant Perceptions in Assessing Entomology Citizen Science Learning Outcomes Using a Mixed Methods Approach
Insects 2018, 9(1), 16; doi:10.3390/insects9010016
Received: 31 December 2017 / Revised: 18 January 2018 / Accepted: 30 January 2018 / Published: 6 February 2018
PDF Full-text (239 KB) | HTML Full-text | XML Full-text
Abstract
A mixed methods study was used to transcend the traditional pre-, post-test approach of citizen science evaluative research by integrating adults’ test scores with their perceptions. We assessed how contributory entomology citizen science affects participants’ science self-efficacy, self-efficacy for environmental action, nature relatedness
[...] Read more.
A mixed methods study was used to transcend the traditional pre-, post-test approach of citizen science evaluative research by integrating adults’ test scores with their perceptions. We assessed how contributory entomology citizen science affects participants’ science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects. Pre- and post-test score analyses from citizen scientists (n = 28) and a control group (n = 72) were coupled with interviews (n = 11) about science experiences and entomological interactions during participation. Considering quantitative data alone, no statistically significant changes were evident in adults following participation in citizen science when compared to the control group. Citizen scientists’ pre-test scores were significantly higher than the control group for self-efficacy for environmental action, nature relatedness and attitude towards insects. Interview data reveal a notable discrepancy between measured and perceived changes. In general, citizen scientists had an existing, long-term affinity for the natural world and perceived increases in their science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects. Perceived influences may act independently of test scores. Scale instruments may not show impacts with variances in individual’s prior knowledge and experiences. The value of mixed methods on citizen science program evaluation is discussed. Full article
(This article belongs to the Special Issue Arthropod Education)
Figures

Open AccessArticle Gene Expression Profile Analysis is Directly Affected by the Selected Reference Gene: The Case of Leaf-Cutting Atta Sexdens
Insects 2018, 9(1), 18; doi:10.3390/insects9010018
Received: 8 January 2018 / Revised: 31 January 2018 / Accepted: 2 February 2018 / Published: 8 February 2018
PDF Full-text (1057 KB) | HTML Full-text | XML Full-text
Abstract
Although several ant species are important targets for the development of molecular control strategies, only a few studies focus on identifying and validating reference genes for quantitative reverse transcription polymerase chain reaction (RT-qPCR) data normalization. We provide here an extensive study to identify
[...] Read more.
Although several ant species are important targets for the development of molecular control strategies, only a few studies focus on identifying and validating reference genes for quantitative reverse transcription polymerase chain reaction (RT-qPCR) data normalization. We provide here an extensive study to identify and validate suitable reference genes for gene expression analysis in the ant Atta sexdens, a threatening agricultural pest in South America. The optimal number of reference genes varies according to each sample and the result generated by RefFinder differed about which is the most suitable reference gene. Results suggest that the RPS16, NADH and SDHB genes were the best reference genes in the sample pool according to stability values. The SNF7 gene expression pattern was stable in all evaluated sample set. In contrast, when using less stable reference genes for normalization a large variability in SNF7 gene expression was recorded. There is no universal reference gene suitable for all conditions under analysis, since these genes can also participate in different cellular functions, thus requiring a systematic validation of possible reference genes for each specific condition. The choice of reference genes on SNF7 gene normalization confirmed that unstable reference genes might drastically change the expression profile analysis of target candidate genes. Full article
Figures

Open AccessArticle Preliminary Investigation of Species Diversity of Rice Hopper Parasitoids in Southeast Asia
Insects 2018, 9(1), 19; doi:10.3390/insects9010019
Received: 13 November 2017 / Revised: 5 January 2018 / Accepted: 26 January 2018 / Published: 9 February 2018
PDF Full-text (4768 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Ongoing intensification of rice production systems in Southeast Asia is causing devastating yield losses each year due to rice hoppers. Their continuing development of immunity to resistant rice varieties and pesticide applications further complicates this problem. Hence, there is a high demand for
[...] Read more.
Ongoing intensification of rice production systems in Southeast Asia is causing devastating yield losses each year due to rice hoppers. Their continuing development of immunity to resistant rice varieties and pesticide applications further complicates this problem. Hence, there is a high demand for biological control agents of rice hoppers. Egg parasitoid wasps are among the most important natural enemies of rice hoppers, such as Nilaparvata lugens and Nephotettix spp. However, our knowledge of their diversity is still very limited, due to their small size and the lack of available morphological information. Classifying these parasitoids is the first step to properly understanding their role in the rice agroecosystem. We used traditional morphological identification, as well as DNA sequencing of the 28S rRNA and the COI genes, to investigate the diversity of four important hopper egg parasitoid genera in the Philippines. Parasitoids of the genera Anagrus, Oligosita, Gonatocerus, and Paracentrobia were collected in eight study landscapes located in Luzon. Our findings illustrate that characterization of species diversity using morphological and molecular analyses were concordant only for the genus Paracentrobia. The genera Anagrus and Gonatocerus exhibited more genetic diversity than estimated with the morphological analysis, while the opposite was observed for Oligosita. This is the first study investigating the molecular diversity of rice hopper parasitoids in the Philippines. More research combining morphological, behavioral, and molecular methods, as well as the establishment of a comprehensive DNA database, are urgently needed to assess the performance and suitability of these organisms as biocontrol agents. Full article
Figures

Figure 1

Open AccessArticle Potential of Extracted Locusta Migratoria Protein Fractions as Value-Added Ingredients
Insects 2018, 9(1), 20; doi:10.3390/insects9010020
Received: 6 December 2017 / Revised: 26 January 2018 / Accepted: 6 February 2018 / Published: 9 February 2018
PDF Full-text (715 KB) | HTML Full-text | XML Full-text
Abstract
Although locusts can be sustainably produced and are nutrient rich, the thought of eating them can be hard to swallow for many consumers. This paper aims to investigate the nutritional composition of Locusta migratoria, including the properties of extracted locust protein, contributing
[...] Read more.
Although locusts can be sustainably produced and are nutrient rich, the thought of eating them can be hard to swallow for many consumers. This paper aims to investigate the nutritional composition of Locusta migratoria, including the properties of extracted locust protein, contributing to limited literature and product development opportunities for industry. Locusts sourced from Dunedin, New Zealand, contained a high amount of protein (50.79% dry weight) and fat (34.93%), which contained high amounts of omega-3 (15.64%), creating a desirably low omega-3/omega-6 ratio of 0.57. Three protein fractions including; insoluble locust fraction, soluble locust fraction, and a supernatant fraction were recovered following alkali isoelectric precipitation methodology. Initially, proteins were solubilised at pH 10 then precipitated out at the isoelectric point (pH 4). All fractions had significantly higher protein contents compared with the whole locust. The insoluble protein fraction represented 37.76% of the dry weight of protein recovered and was much lighter in colour and greener compared to other fractions. It also had the highest water and oil holding capacity of 5.17 mL/g and 7.31 mL/g, possibly due to larger particle size. The high supernatant yield (56.60%) and low soluble protein yield (9.83%) was unexpected and could be a result of experimental pH conditions chosen. Full article
Figures

Figure 1

Open AccessArticle Roadside Survey of Ants on Oahu, Hawaii
Insects 2018, 9(1), 21; doi:10.3390/insects9010021
Received: 12 September 2017 / Revised: 29 January 2018 / Accepted: 6 February 2018 / Published: 11 February 2018
PDF Full-text (1993 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Hawaii is home to over 60 ant species, including five of the six most damaging invasive ants. Although there have been many surveys of ants in Hawaii, the last island-wide hand-collection survey of ants on Oahu was conducted in 1988–1994. In 2012, a
[...] Read more.
Hawaii is home to over 60 ant species, including five of the six most damaging invasive ants. Although there have been many surveys of ants in Hawaii, the last island-wide hand-collection survey of ants on Oahu was conducted in 1988–1994. In 2012, a timed hand-collection of ants was made at 44 sites in a systematic, roadside survey throughout Oahu. Ants were identified and species distribution in relation to elevation, precipitation and soil type was analyzed. To assess possible convenience sampling bias, 15 additional sites were sampled further from roads to compare with the samples near roads. Twenty-four species of ants were found and mapped; Pheidole megacephala (F.), Ochetellus glaber (Mayr), and Technomyrmex difficilis Forel were the most frequently encountered ants. For six ant species, a logistic regression was performed with elevation, average annual precipitation, and soil order as explanatory variables. O. glaber was found in areas with lower precipitation around Oahu. Paratrechina longicornis (Latrielle) and Tetramorium simillimum (Smith, F.) were found more often in lower elevations and in areas with the Mollisol soil order. Elevation, precipitation, and soil type were not significant sources of variation for P. megacephala, Plagiolepis alluaudi Emery, and T. difficilis. P. megacephala was associated with fewer mean numbers of ants where it occurred. Ant assemblages near and far from roads did not significantly differ. Many species of ants remain established on Oahu, and recent invaders are spreading throughout the island. Mapping ant distributions contributes to continued documentation and understanding of these pests. Full article
(This article belongs to the Special Issue Urban Pest Management)
Figures

Figure 1

Open AccessArticle A Point Mutation V419L in the Sodium Channel Gene from Natural Populations of Aedes aegypti Is Involved in Resistance to λ-Cyhalothrin in Colombia
Insects 2018, 9(1), 23; doi:10.3390/insects9010023
Received: 9 November 2017 / Revised: 11 January 2018 / Accepted: 17 January 2018 / Published: 14 February 2018
PDF Full-text (2154 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Resistance to pyrethroids in mosquitoes is mainly caused by target site insensitivity known as knockdown resistance (kdr). In this work, we examined the point mutations present in portions of domains I, II, III, and IV of the sodium channel gene in
[...] Read more.
Resistance to pyrethroids in mosquitoes is mainly caused by target site insensitivity known as knockdown resistance (kdr). In this work, we examined the point mutations present in portions of domains I, II, III, and IV of the sodium channel gene in Aedes aegypti mosquitoes from three Colombian municipalities. A partial region coding for the sodium channel gene from resistant mosquitoes was sequenced, and a simple allele-specific PCR-based assay (AS-PCR) was used to analyze mutations at the population level. The previously reported mutations, V1016I and F1534C, were found with frequencies ranging from 0.04 to 0.41, and 0.56 to 0.71, respectively, in the three cities. Moreover, a novel mutation, at 419 codon (V419L), was found in Ae. aegypti populations from Bello, Riohacha and Villavicencio cities with allelic frequencies of 0.06, 0.36, and 0.46, respectively. Interestingly, the insecticide susceptibility assays showed that mosquitoes from Bello were susceptible to λ-cyhalothrin pyrethroid whilst those from Riohacha and Villavicencio were resistant. A positive association between V419L and V1016I mutations with λ-cyhalothrin resistance was established in Riohacha and Villavicencio. The frequency of the F1534C was high in the three populations, suggesting that this mutation could be conferring resistance to insecticides other than λ-cyhalothrin, particularly type I pyrethroids. Further studies are required to confirm this hypothesis. Full article
Figures

Figure 1

Open AccessArticle PCR Diagnosis of Small Hive Beetles
Insects 2018, 9(1), 24; doi:10.3390/insects9010024
Received: 11 January 2018 / Revised: 29 January 2018 / Accepted: 12 February 2018 / Published: 14 February 2018
PDF Full-text (1395 KB) | HTML Full-text | XML Full-text
Abstract
Small hive beetles (SHBs), Aethina tumida, are parasites of social bee colonies native to sub-Saharan Africa and have become an invasive species at a global scale. Reliable Polymerase Chain Reaction (PCR) diagnosis of this mandatory pest is required to limit its further
[...] Read more.
Small hive beetles (SHBs), Aethina tumida, are parasites of social bee colonies native to sub-Saharan Africa and have become an invasive species at a global scale. Reliable Polymerase Chain Reaction (PCR) diagnosis of this mandatory pest is required to limit its further spread and impact. Here, we have developed SHB primers, which amplify for 10 native African locations and 10 reported introductions, but not for three closely related species (Aethina concolor, Aethina flavicollis, and Aethina inconspicua). We also show that adult honey bee workers can be used as matrices for PCR-based detection of SHBs. The sensitivity of this novel method appears to be 100%, which is identical to conventional visual screenings. Furthermore, the specificity of this novel approach was also high (90.91%). Since both sensitivity and specificity are high, we recommend this novel PCR method and the new primers for routine surveillance of hives in high-risk areas. Full article
Figures

Open AccessArticle Oviposition Deterrent and Larvicidal and Pupaecidal Activity of Seven Essential Oils and their Major Components against Culex quinquefasciatus Say (Diptera: Culicidae): Synergism–antagonism Effects
Insects 2018, 9(1), 25; doi:10.3390/insects9010025
Received: 6 January 2018 / Revised: 9 February 2018 / Accepted: 12 February 2018 / Published: 14 February 2018
PDF Full-text (1606 KB) | HTML Full-text | XML Full-text
Abstract
The larvicidal activity of essential oils cinnamon (Cinnamomum verum J. Presl), Mexican lime (Citrus aurantifolia Swingle) cumin (Cuminum cyminum Linnaeus), clove (Syzygium aromaticum (L.) Merr. & L.M.Perry), laurel (Laurus nobilis Linnaeus), Mexican oregano (Lippia berlandieri Schauer) and
[...] Read more.
The larvicidal activity of essential oils cinnamon (Cinnamomum verum J. Presl), Mexican lime (Citrus aurantifolia Swingle) cumin (Cuminum cyminum Linnaeus), clove (Syzygium aromaticum (L.) Merr. & L.M.Perry), laurel (Laurus nobilis Linnaeus), Mexican oregano (Lippia berlandieri Schauer) and anise (Pimpinella anisum Linnaeus)) and their major components are tested against larvae and pupae of Culex quinquefasciatus Say. Third instar larvae and pupae are used for determination of lethality and mortality. Essential oils with more than 90% mortality after a 30-min treatment are evaluated at different time intervals. Of the essential oils tested, anise and Mexican oregano are effective against larvae, with a median lethal concentration (LC50) of 4.7 and 6.5 µg/mL, respectively. Anise essential oil and t-anethole are effective against pupae, with LC50 values of 102 and 48.7 µg/mL, respectively. Oregano essential oil and carvacrol also have relevant activities. A kinetic analysis of the larvicidal activity, the oviposition deterrent effect and assays of the effects of the binary mixtures of chemical components are undertaken. Results show that anethole has synergistic effects with other constituents. This same effect is observed for carvacrol and thymol. Limonene shows antagonistic effect with β-pinene. The high larvicidal and pupaecidal activities of essential oils and its components demonstrate that they can be potential substitutes for chemical compounds used in mosquitoes control programs. Full article
(This article belongs to the Special Issue Integrative Mosquito Biology: From Molecules to Ecosystems)
Figures

Open AccessArticle Interest in Insects: The Role of Entomology in Environmental Education
Insects 2018, 9(1), 26; doi:10.3390/insects9010026
Received: 31 December 2017 / Revised: 18 February 2018 / Accepted: 21 February 2018 / Published: 23 February 2018
PDF Full-text (198 KB) | HTML Full-text | XML Full-text
Abstract
University-based outreach programs have a long history of offering environmental education programs to local schools, but often these lessons are not evaluated for their impact on teachers and students. The impact of these outreach efforts can be influenced by many things, but the
[...] Read more.
University-based outreach programs have a long history of offering environmental education programs to local schools, but often these lessons are not evaluated for their impact on teachers and students. The impact of these outreach efforts can be influenced by many things, but the instructional delivery method can affect how students are exposed to new topics or how confident teachers feel about incorporating new concepts into the classroom. A study was conducted with a series of university entomology outreach programs using insects as a vehicle for teaching environmental education. These programs were used to assess differences between three of the most common university-based outreach delivery methods (Scientist in the Classroom, Teacher Training Workshops, and Online Curriculum) for their effect on student interest and teacher self-efficacy. Surveys administered to 20 fifth grade classrooms found that the delivery method might not be as important as simply getting insects into activities. This study found that the lessons had a significant impact on student interest in environmental and entomological topics, regardless of treatment. All students found the lessons to be more interesting, valuable, and important over the course of the year. Treatment also did not influence teacher self-efficacy, as it remained high for all teachers. Full article
(This article belongs to the Special Issue Arthropod Education)
Figures

Open AccessArticle Eight-Legged Encounters—Arachnids, Volunteers, and Art help to Bridge the Gap between Informal and Formal Science Learning
Insects 2018, 9(1), 27; doi:10.3390/insects9010027
Received: 9 January 2018 / Revised: 7 February 2018 / Accepted: 16 February 2018 / Published: 26 February 2018
PDF Full-text (2987 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Increased integration and synergy between formal and informal learning environments is proposed to provide multiple benefits to science learners. In an effort to better bridge these two learning contexts, we developed an educational model that employs the charismatic nature of arachnids to engage
[...] Read more.
Increased integration and synergy between formal and informal learning environments is proposed to provide multiple benefits to science learners. In an effort to better bridge these two learning contexts, we developed an educational model that employs the charismatic nature of arachnids to engage the public of all ages in science learning; learning that aligns with the Next Generation Science Standards (NGSS Disciplinary Core Ideas associated with Biodiversity and Evolution). We created, implemented, and evaluated a family-focused, interactive science event—Eight-Legged Encounters (ELE)—which encompasses more than twenty modular activities. Volunteers facilitated participant involvement at each activity station and original artwork scattered throughout the event was intended to attract visitors. Initial ELE goals were to increase interest in arachnids and science more generally, among ELE participants. In this study, we tested the efficacy of ELE in terms of (i) activity-specific visitation rates and self-reported interest levels, (ii) the self-reported efficacy of our use of volunteers and original artwork on visitor engagement, and (iii) self-reported increases in interest in both spiders and science more generally. We collected survey data across five ELE events at four museum and zoo sites throughout the Midwest. We found that all activities were successful at attracting visitors and capturing their interest. Both volunteers and artwork were reported to be effective at engaging visitors, though likely in different ways. Additionally, most participants reported increased interest in learning about arachnids and science. In summary, ELE appears effective at engaging the public and piquing their interest. Future work is now required to assess learning outcomes directly, as well as the ability for participants to transfer knowledge gain across learning environments. Full article
(This article belongs to the Special Issue Arthropod Education)
Figures

Figure 1

Open AccessArticle Cross-Resistance: A Consequence of Bi-partite Host-Parasite Coevolution
Insects 2018, 9(1), 28; doi:10.3390/insects9010028
Received: 28 November 2017 / Revised: 2 February 2018 / Accepted: 19 February 2018 / Published: 26 February 2018
PDF Full-text (1620 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Host-parasite coevolution can influence interactions of the host and parasite with the wider ecological community. One way that this may manifest is in cross-resistance towards other parasites, which has been observed to occur in some host-parasite evolution experiments. In this paper, we test
[...] Read more.
Host-parasite coevolution can influence interactions of the host and parasite with the wider ecological community. One way that this may manifest is in cross-resistance towards other parasites, which has been observed to occur in some host-parasite evolution experiments. In this paper, we test for cross-resistance towards Bacillus thuringiensis and Pseudomonas entomophila in the red flour beetle Tribolium castaneum, which was previously allowed to coevolve with the generalist entomopathogenic fungus Beauveria bassiana. We combine survival and gene expression assays upon infection to test for cross-resistance and underlying mechanisms. We show that larvae of T. castaneum that evolved with B. bassiana under coevolutionary conditions were positively cross-resistant to the bacterium B. thuringiensis, but not P. entomophila. Positive cross-resistance was mirrored at the gene expression level with markers that were representative of the oral route of infection being upregulated upon B. bassiana exposure. We find that positive cross-resistance towards B. thuringiensis evolved in T. castaneum as a consequence of its coevolutionary interactions with B. bassiana. This cross-resistance appears to be a consequence of resistance to oral toxicity. The fact that coevolution with B. bassiana results in resistance to B. thuringiensis, but not P. entomophila implies that B. thuringiensis and B. bassiana may share mechanisms of infection or toxicity not shared by P. entomophila. This supports previous suggestions that B. bassiana may possess Cry-like toxins, similar to those found in B. thuringiensis, which allow it to infect orally. Full article
(This article belongs to the Special Issue Parasite-Insect Interactions)
Figures

Figure 1

Open AccessArticle Towards the Development of a More Accurate Monitoring Procedure for Invertebrate Populations, in the Presence of an Unknown Spatial Pattern of Population Distribution in the Field
Insects 2018, 9(1), 29; doi:10.3390/insects9010029
Received: 8 December 2017 / Revised: 1 February 2018 / Accepted: 20 February 2018 / Published: 27 February 2018
PDF Full-text (5058 KB) | HTML Full-text | XML Full-text
Abstract
Studies addressing many ecological problems require accurate evaluation of the total population size. In this paper, we revisit a sampling procedure used for the evaluation of the abundance of an invertebrate population from assessment data collected on a spatial grid of sampling locations.
[...] Read more.
Studies addressing many ecological problems require accurate evaluation of the total population size. In this paper, we revisit a sampling procedure used for the evaluation of the abundance of an invertebrate population from assessment data collected on a spatial grid of sampling locations. We first discuss how insufficient information about the spatial population density obtained on a coarse sampling grid may affect the accuracy of an evaluation of total population size. Such information deficit in field data can arise because of inadequate spatial resolution of the population distribution (spatially variable population density) when coarse grids are used, which is especially true when a strongly heterogeneous spatial population density is sampled. We then argue that the average trap count (the quantity routinely used to quantify abundance), if obtained from a sampling grid that is too coarse, is a random variable because of the uncertainty in sampling spatial data. Finally, we show that a probabilistic approach similar to bootstrapping techniques can be an efficient tool to quantify the uncertainty in the evaluation procedure in the presence of a spatial pattern reflecting a patchy distribution of invertebrates within the sampling grid. Full article
(This article belongs to the Special Issue Insect Monitoring and Trapping in Agricultural Systems)
Figures

Figure 1

Open AccessArticle Xyleborus bispinatus Reared on Artificial Media in the Presence or Absence of the Laurel Wilt Pathogen (Raffaelea lauricola)
Insects 2018, 9(1), 30; doi:10.3390/insects9010030
Received: 12 January 2018 / Revised: 12 February 2018 / Accepted: 24 February 2018 / Published: 28 February 2018
Cited by 1 | PDF Full-text (1148 KB) | HTML Full-text | XML Full-text
Abstract
Like other members of the tribe Xyleborini, Xyleborus bispinatus Eichhoff can cause economic damage in the Neotropics. X. bispinatus has been found to acquire the laurel wilt pathogen Raffaelea lauricola (T. C. Harr., Fraedrich & Aghayeva) when breeding in a host affected by
[...] Read more.
Like other members of the tribe Xyleborini, Xyleborus bispinatus Eichhoff can cause economic damage in the Neotropics. X. bispinatus has been found to acquire the laurel wilt pathogen Raffaelea lauricola (T. C. Harr., Fraedrich & Aghayeva) when breeding in a host affected by the pathogen. Its role as a potential vector of R. lauricola is under investigation. The main objective of this study was to evaluate three artificial media, containing sawdust of avocado (Persea americana Mill.) and silkbay (Persea humilis Nash.), for rearing X. bispinatus under laboratory conditions. In addition, the media were inoculated with R. lauricola to evaluate its effect on the biology of X. bispinatus. There was a significant interaction between sawdust species and R. lauricola for all media. Two of the media supported the prolific reproduction of X. bispinatus, but the avocado-based medium was generally more effective than the silkbay-based medium, regardless whether or not it was inoculated with R. lauricola. R. lauricola had a neutral or positive effect on beetle reproduction. The pathogen was frequently recovered from beetle galleries, but only from a few individuals which were reared on inoculated media, and showed limited colonization of the beetle’s mycangia. Two media with lower water content were most effective for rearing X. bispinatus. Full article
Figures

Open AccessCommunication Honeybees Tolerate Cyanogenic Glucosides from Clover Nectar and Flowers
Insects 2018, 9(1), 31; doi:10.3390/insects9010031
Received: 30 January 2018 / Revised: 21 February 2018 / Accepted: 9 March 2018 / Published: 13 March 2018
PDF Full-text (836 KB) | HTML Full-text | XML Full-text
Abstract
Honeybees (Apis mellifera) pollinate flowers and collect nectar from many important crops. White clover (Trifolium repens) is widely grown as a temperate forage crop, and requires honeybee pollination for seed set. In this study, using a quantitative LC-MS (Liquid
[...] Read more.
Honeybees (Apis mellifera) pollinate flowers and collect nectar from many important crops. White clover (Trifolium repens) is widely grown as a temperate forage crop, and requires honeybee pollination for seed set. In this study, using a quantitative LC-MS (Liquid Chromatography-Mass Spectrometry) assay, we show that the cyanogenic glucosides linamarin and lotaustralin are present in the leaves, sepals, petals, anthers, and nectar of T. repens. Cyanogenic glucosides are generally thought to be defense compounds, releasing toxic hydrogen cyanide upon degradation. However, increasing evidence indicates that plant secondary metabolites found in nectar may protect pollinators from disease or predators. In a laboratory survival study with chronic feeding of secondary metabolites, we show that honeybees can ingest the cyanogenic glucosides linamarin and amygdalin at naturally occurring concentrations with no ill effects, even though they have enzyme activity towards degradation of cyanogenic glucosides. This suggests that honeybees can ingest and tolerate cyanogenic glucosides from flower nectar. Honeybees retain only a portion of ingested cyanogenic glucosides. Whether they detoxify the rest using rhodanese or deposit them in the hive should be the focus of further research. Full article
Figures

Figure 1

Open AccessFeature PaperArticle The Six-Legged Subject: A Survey of Secondary Science Teachers’ Incorporation of Insects into U.S. Life Science Instruction
Insects 2018, 9(1), 32; doi:10.3390/insects9010032
Received: 19 February 2018 / Revised: 19 February 2018 / Accepted: 9 March 2018 / Published: 14 March 2018
PDF Full-text (3552 KB) | HTML Full-text | XML Full-text
Abstract
To improve students’ understanding and appreciation of insects, entomology education efforts have supported insect incorporation in formal education settings. While several studies have explored student ideas about insects and the incorporation of insects in elementary and middle school classrooms, the topic of how
[...] Read more.
To improve students’ understanding and appreciation of insects, entomology education efforts have supported insect incorporation in formal education settings. While several studies have explored student ideas about insects and the incorporation of insects in elementary and middle school classrooms, the topic of how and why insects are incorporated in secondary science classrooms remains relatively unexplored. Using survey research methods, this study addresses the gap in the literature by (1) describing in-service secondary science teachers’ incorporation of insects in science classrooms; (2) identifying factors that support or deter insect incorporation and (3) identifying teachers’ preferred resources to support future entomology education efforts. Findings indicate that our sample of U.S. secondary science teachers commonly incorporate various insects in their classrooms, but that incorporation is infrequent throughout the academic year. Insect-related lesson plans are commonly used and often self-created to meet teachers’ need for standards-aligned curriculum materials. Obstacles to insect incorporation include a perceived lack of alignment of insect education materials to state or national science standards and a lack of time and professional training to teach about insects. Recommendations are provided for entomology and science education organizations to support teachers in overcoming these obstacles. Full article
(This article belongs to the Special Issue Arthropod Education)
Figures

Figure 1

Open AccessArticle Spider Communities and Biological Control in Native Habitats Surrounding Greenhouses
Insects 2018, 9(1), 33; doi:10.3390/insects9010033
Received: 19 January 2018 / Revised: 4 March 2018 / Accepted: 10 March 2018 / Published: 14 March 2018
PDF Full-text (1513 KB) | HTML Full-text | XML Full-text
Abstract
The promotion of native vegetation as a habitat for natural enemies, which could increase their abundance and fitness, is especially useful in highly simplified settings such as Mediterranean greenhouse landscapes. Spiders as generalist predators may also be involved in intra-guild predation. However, the
[...] Read more.
The promotion of native vegetation as a habitat for natural enemies, which could increase their abundance and fitness, is especially useful in highly simplified settings such as Mediterranean greenhouse landscapes. Spiders as generalist predators may also be involved in intra-guild predation. However, the niche complementarity provided by spiders as a group means that increased spider diversity may facilitate complementary control actions. In this study, the interactions between spiders, the two major horticultural pests, Bemisia tabaci and Frankliniella occidentalis, and their naturally occurring predators and parasitoids were evaluated in a mix of 21 newly planted shrubs selected for habitat management in a highly disturbed horticultural system. The effects of all factors were evaluated using redundancy analysis (RDA) and the generalized additive model (GAM) to assess the statistical significance of abundance of spiders and pests. The GAM showed that the abundance of both pests had a significant effect on hunter spider’s abundance, whereas the abundance of B. tabaci, but not F. occidentalis, affected web-weavers’ abundance. Ordination analysis showed that spider abundance closely correlated with that of B. tabaci but not with that of F. occidentalis, suggesting that complementarity occurs, and thereby probability of biocontrol, with respect to the targeted pest B. tabaci, although the temporal patterns of the spiders differed from those of F. occidentalis. Conservation strategies involving the establishment of these native plants around greenhouses could be an effective way to reduce pest populations outdoors. Full article
Figures

Open AccessArticle Do Aphids Alter Leaf Surface Temperature Patterns During Early Infestation?
Insects 2018, 9(1), 34; doi:10.3390/insects9010034
Received: 30 January 2018 / Revised: 12 March 2018 / Accepted: 13 March 2018 / Published: 14 March 2018
PDF Full-text (5172 KB) | HTML Full-text | XML Full-text
Abstract
Arthropods at the surface of plants live in particular microclimatic conditions that can differ from atmospheric conditions. The temperature of plant leaves can deviate from air temperature, and leaf temperature influences the eco-physiology of small insects. The activity of insects feeding on leaf
[...] Read more.
Arthropods at the surface of plants live in particular microclimatic conditions that can differ from atmospheric conditions. The temperature of plant leaves can deviate from air temperature, and leaf temperature influences the eco-physiology of small insects. The activity of insects feeding on leaf tissues, may, however, induce changes in leaf surface temperatures, but this effect was only rarely demonstrated. Using thermography analysis of leaf surfaces under controlled environmental conditions, we quantified the impact of presence of apple green aphids on the temperature distribution of apple leaves during early infestation. Aphids induced a slight change in leaf surface temperature patterns after only three days of infestation, mostly due to the effect of aphids on the maximal temperature that can be found at the leaf surface. Aphids may induce stomatal closure, leading to a lower transpiration rate. This effect was local since aphids modified the configuration of the temperature distribution over leaf surfaces. Aphids were positioned at temperatures near the maximal leaf surface temperatures, thus potentially experiencing the thermal changes. The feedback effect of feeding activity by insects on their host plant can be important and should be quantified to better predict the response of phytophagous insects to environmental changes. Full article
(This article belongs to the Special Issue Insect-Plant Interactions)
Figures

Review

Jump to: Editorial, Research, Other

Open AccessReview Enlightening Butterfly Conservation Efforts: The Importance of Natural Lighting for Butterfly Behavioral Ecology and Conservation
Insects 2018, 9(1), 22; doi:10.3390/insects9010022
Received: 11 January 2018 / Revised: 29 January 2018 / Accepted: 6 February 2018 / Published: 12 February 2018
PDF Full-text (3918 KB) | HTML Full-text | XML Full-text
Abstract
Light is arguably the most important abiotic factor for living organisms. Organisms evolved under specific lighting conditions and their behavior, physiology, and ecology are inexorably linked to light. Understanding light effects on biology could not be more important as present anthropogenic effects are
[...] Read more.
Light is arguably the most important abiotic factor for living organisms. Organisms evolved under specific lighting conditions and their behavior, physiology, and ecology are inexorably linked to light. Understanding light effects on biology could not be more important as present anthropogenic effects are greatly changing the light environments in which animals exist. The two biggest anthropogenic contributors changing light environments are: (1) anthropogenic lighting at night (i.e., light pollution); and (2) deforestation and the built environment. I highlight light importance for butterfly behavior, physiology, and ecology and stress the importance of including light as a conservation factor for conserving butterfly biodiversity. This review focuses on four parts: (1) Introducing the nature and extent of light. (2) Visual and non-visual light reception in butterflies. (3) Implications of unnatural lighting for butterflies across several different behavioral and ecological contexts. (4). Future directions for quantifying the threat of unnatural lighting on butterflies and simple approaches to mitigate unnatural light impacts on butterflies. I urge future research to include light as a factor and end with the hopeful thought that controlling many unnatural light conditions is simply done by flipping a switch. Full article
(This article belongs to the Special Issue Butterfly Conservation)
Figures

Other

Jump to: Editorial, Research, Review

Open AccessShort Note Differential Regulation of Immune Signaling and Survival Response in Drosophila melanogaster Larvae upon Steinernema carpocapsae Nematode Infection
Insects 2018, 9(1), 17; doi:10.3390/insects9010017
Received: 9 December 2017 / Revised: 27 January 2018 / Accepted: 1 February 2018 / Published: 8 February 2018
PDF Full-text (1058 KB) | HTML Full-text | XML Full-text
Abstract
Drosophila melanogaster is an excellent model to dissect the molecular components and pathways of the innate anti-pathogen immune response. The nematode parasite Steinernema carpocapsae and its mutualistic bacterium Xenorhabdus nematophila form a complex that is highly pathogenic to insects, including D. melanogaster.
[...] Read more.
Drosophila melanogaster is an excellent model to dissect the molecular components and pathways of the innate anti-pathogen immune response. The nematode parasite Steinernema carpocapsae and its mutualistic bacterium Xenorhabdus nematophila form a complex that is highly pathogenic to insects, including D. melanogaster. We have used symbiotic (carrying X. nematophila) and axenic (lacking X. nematophila) nematodes to probe the regulation of genes belonging to different immune signaling pathways in D. melanogaster larvae and assess the survival response of certain mutants to these pathogens. We found that both types of S. carpocapsae upregulate MyD88 (Toll), but not PGRP-LE (Imd); whereas axenic S. carpocapsae strongly upregulate Wengen (Jnk), Domeless (Jak/Stat), Dawdle (TGFβ, Activin), and Decapentaplegic (TGFβ, BMP). We further found that inactivation of Wengen and Decapentaplegic confers a survival advantage to larvae infected with axenic S. carpocapsae, whereas mutating PGRP-LE promotes the survival of larvae infected with symbiotic nematodes. Full article
(This article belongs to the Special Issue Parasite-Insect Interactions)
Figures

Open AccessBrief Report Repellent Effect of Volatile Fatty Acids on Lesser Mealworm (Alphitobius diaperinus)
Insects 2018, 9(1), 35; doi:10.3390/insects9010035
Received: 26 January 2018 / Revised: 10 March 2018 / Accepted: 14 March 2018 / Published: 16 March 2018
PDF Full-text (907 KB) | HTML Full-text | XML Full-text
Abstract
Volatile fatty acids (VFAs) are a group of common metabolites and semiochemicals mediating information transfer between higher organisms and bacteria, either from microbiome or external environment. VFAs commonly occur among various insect orders. There are numerous studies exploring their influence on the behavior
[...] Read more.
Volatile fatty acids (VFAs) are a group of common metabolites and semiochemicals mediating information transfer between higher organisms and bacteria, either from microbiome or external environment. VFAs commonly occur among various insect orders. There are numerous studies exploring their influence on the behavior of different insect species. In relation to the papers published by J. E. McFarlane in 1985, we assessed the effects of formic, acetic, propionic, butyric and valeric acids on the spatial preference of the lesser mealworm (Alphitobius diaperinus), a common pest of stored food grain products and the poultry industry. The main aim of the presented study was to provide new angles in VFA research, recreating the classical study both with new methods and on economically significant pest species. This paper presents a novel method of continuous, simultaneous assessment of site preference and the travelled distance in a constant-flow olfactometer. All the tested VFAs, except valeric acid, had a significant repellent effect, with formic acid being effective even at the lowest used concentration. Additionally, the VFAs significantly altered the distance travelled by the insects. The obtained results indicate a potential role for VFAs in the olfactory guided behavior of A. diaperinus. It is suspected that the reaction to the presence of VFAs may deviate from the specificity of species’ original habitat. Full article
(This article belongs to the Special Issue Chemical Ecology)
Figures

Back to Top