Calculating Load and Intensity Using Muscle Oxygen Saturation Data
Abstract
:1. Introduction
2. Methods
2.1. Experimental Approach to the Problem
2.2. Subjects
2.3. Procedures
2.4. Assessment Protocols
2.5. Statistical Analysis
3. Results
4. Discussion
5. Practical Applications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Procedure for Calculating Training Load by Muscle Oxygen Saturation
- Training Load Calculation:
- Step 1
Nº | Sprint_1 | Sprint_2 | Sprint_3 | Sprint_4 | Sprint_5 | Sprint_6 | Sprint_7 | Sprint_8 | Sprint_9 | Sprint_10 |
---|---|---|---|---|---|---|---|---|---|---|
Time (s) | 6.62 | 6.33 | 6.54 | 6.74 | 6.74 | 7.01 | 6.72 | 6.66 | 6.42 | 6.50 |
Speed (m/s) | 6.04 | 6.32 | 6.12 | 5.93 | 5.93 | 5.71 | 5.95 | 6.01 | 6.23 | 6.15 |
- Step 2
Sprint_1 | Sprint_2 | Sprint_3 | Sprint_4 | Sprint_5 | Sprint_6 | Sprint_7 | Sprint_8 | Sprint_9 | Sprint_10 | |
---|---|---|---|---|---|---|---|---|---|---|
SmO2 of Sprint work | 18 | 21 | 18 | 17 | 11 | 21 | 25 | 27 | 28 | 28 |
SmO2 of Recovery | 38 | 42 | 40 | 30 | 26 | 35 | 41 | 34 | 52 | 39 |
Sprint_1 | Sprint_2 | Sprint_3 | Sprint_4 | Sprint_5 | Sprint_6 | Sprint_7 | Sprint_8 | Sprint_9 | Sprint_10 | |
---|---|---|---|---|---|---|---|---|---|---|
HR bmp | 145 | 158 | 159 | 162 | 164 | 164 | 166 | 166 | 166 | 166 |
HRMAX (%) | 87 | 95 | 96 | 98 | 99 | 99 | 100 | 100 | 100 | 100 |
- Step 3
- Step 4
References
- Pillitteri, G.; Clemente, F.M.; Petrucci, M.; Rossi, A.; Bellafiore, M.; Bianco, A.; Palma, A.; Battaglia, G. Toward a New Conceptual Approach to “Intensity” in Soccer Player’s Monitoring: A Narrative Review. J. Strength. Cond. Res. 2023, 37, 1896–1911. [Google Scholar] [CrossRef] [PubMed]
- Champion, L.; Middleton, K.; MacMahon, C. Many Pieces to the Puzzle: A New Holistic Workload Approach to Designing Practice in Sports. Sports Med. Open 2023, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, F.M.; Marcora, S.M.; Coutts, A.J. Internal and External Training Load: 15 Years On. Int. J. Sports Physiol. Perform. 2019, 14, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.L.; Stanton, R.; Sargent, C.; Wintour, S.-A.; Scanlan, A.T. The Association Between Training Load and Performance in Team Sports: A Systematic Review. Sports Med. 2018, 48, 2743–2774. [Google Scholar] [CrossRef]
- Lambert, M.I.; Borresen, J. Measuring Training Load in Sports. Int. J. Sports Physiol. Perform. 2010, 5, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Torreño, N.; Munguía-Izquierdo, D.; Coutts, A.; de Villarreal, E.S.; Asian-Clemente, J.; Suarez-Arrones, L. Relationship Between External and Internal Loads of Professional Soccer Players During Full Matches in Official Games Using Global Positioning Systems and Heart-Rate Technology. Int. J. Sports Physiol. Perform. 2016, 11, 940–946. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.J.; Nassis, G.P.; Oetter, E.; Pretorius, J.; Johnston, N.; Medina, D.; Rodas, G.; Myslinski, T.; Howells, D.; Beard, A.; et al. The athlete monitoring cycle: A practical guide to interpreting and applying training monitoring data. Br. J. Sports Med. 2017, 51, 1451–1452. [Google Scholar] [CrossRef] [PubMed]
- Staunton, C.A.; Abt, G.; Weaving, D.; Wundersitz, D.W.T. Misuse of the term ‘load’ in sport and exercise science. J. Sci. Med. Sport 2022, 25, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M. Monitoring training status with HR measures: Do all roads lead to Rome? Front. Physiol. 2014, 5, 71297. [Google Scholar] [CrossRef]
- Vasquez Bonilla, A.A.; González-Custodio, A.; Timón, R.; Camacho-Cardenosa, A.; Camacho-Cardenosa, M.; Olcina, G. Training zones through muscle oxygen saturation during a graded exercise test in cyclists and triathletes. Biol. Sport 2023, 40, 439–448. [Google Scholar] [CrossRef]
- Vasquez-Bonilla, A.A.; González-Custodio, A.; Timón, R.; Olcina, G. A proposal to identify the maximal metabolic steady state by muscle oxygenation and VO2max levels in trained cyclists. Sport. Sci. Health 2023, 19, 919–927. [Google Scholar] [CrossRef]
- Gómez-Carmona, C.; Bastida-Castillo, A.; Pino-Ortega, J. Uso de la espectroscopia de infrarrojo cercano para la medición de la saturación de oxígeno muscular en el deporte. Rev. And. Med. Deporte 2019, 12, 41–46. [Google Scholar] [CrossRef]
- Perrey, S.; Ferrari, M. Muscle Oximetry in Sports Science: A Systematic Review. Sports Med. 2018, 48, 597–616. [Google Scholar] [CrossRef] [PubMed]
- Kirby, B.S.; Clark, D.A.; Bradley, E.M.; Wilkins, B.W. The balance of muscle oxygen supply and demand reveals critical metabolic rate and predicts time to exhaustion. J. Appl. Physiol. 2021, 130, 1915–1927. [Google Scholar] [CrossRef] [PubMed]
- Born, D.-P.; Stöggl, T.; Swarén, M.; Björklund, G. Near-Infrared Spectroscopy: More Accurate Than Heart Rate for Monitoring Intensity in Running in Hilly Terrain. Int. J. Sports Physiol. Perform. 2017, 12, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Vasquez-Bonilla, A.A.; Camacho-Cardeñosa, A.; Timón, R.; Martínez-Guardado, I.; Camacho-Cardeñosa, M.; Olcina, G. Muscle Oxygen Desaturation and Re-Saturation Capacity Limits in Repeated Sprint Ability Performance in Women Soccer Players: A New Physiological Interpretation. Int. J. Environ. Res. Public Health 2021, 18, 3484. [Google Scholar] [CrossRef] [PubMed]
- Boushel, R. Muscle metaboreflex control of the circulation during exercise. Acta Physiol. 2010, 199, 367–383. [Google Scholar] [CrossRef] [PubMed]
- Shoemaker, J.K.; Badrov, M.B.; Al-Khazraji, B.K.; Jackson, D.N. Neural Control of Vascular Function in Skeletal Muscle. In Comprehensive Physiology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 303–329. ISBN 978-0-470-65071-4. [Google Scholar]
- Wagner, P.D. Muscle intracellular oxygenation during exercise: Optimization for oxygen transport, metabolism, and adaptive change. Eur. J. Appl. Physiol. 2012, 112, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Vasquez Bonilla, A.A.; Rojas Valverde, D.; Timón Andrada, R.; Olcina Camacho, G.J. Influence of fat percentage on muscle oxygen uptake and metabolic power during repeated-sprint ability of footballers. Apunts Med. L’esport 2022, 57, 3. [Google Scholar] [CrossRef]
- Vasquez-Bonilla, A.A.; Tomas-Carus, P.; Brazo-Sayavera, J.; Malta, J.; Folgado, H.; Olcina, G. Muscle oxygenation is associated with bilateral strength asymmetry during isokinetic testing in sport teams. Sci. Sports 2023, 38, 426.e1–426.e9. [Google Scholar] [CrossRef]
- Evans, M.; Tierney, P.; Gray, N.; Hawe, G.; Macken, M.; Egan, B. Acute Ingestion of Caffeinated Chewing Gum Improves Repeated Sprint Performance of Team Sport Athletes with Low Habitual Caffeine Consumption. Int. J. Sport Nutr. Exer. Metabol. 2018, 28, 221–227. [Google Scholar] [CrossRef]
- Reynolds, C.M.E.; Evans, M.; Halpenny, C.; Hughes, C.; Jordan, S.; Quinn, A.; Hone, M.; Egan, B. Acute ingestion of beetroot juice does not improve short-duration repeated sprint running performance in male team sport athletes. J. Sports Sci. 2020, 38, 2063–2070. [Google Scholar] [CrossRef]
- Woods, A.; Garvican-Lewis, L.A.; Saunders, P.U.; Lovell, G.; Hughes, D.; Fazakerley, R.; Anderson, B.; Gore, C.J.; Thompson, K.G. Four Weeks of IV Iron Supplementation Reduces Perceived Fatigue and Mood Disturbance in Distance Runners. PLoS ONE 2014, 9, e108042. [Google Scholar] [CrossRef]
- Oguri, K.; Du, N.; Kato, Y.; Miyamoto, K.; Masuda, T.; Shimizu, K.; Matsuoka, T. Effect of Moderate Altitude on Peripheral Muscle Oxygenation During Leg Resistance Exercise in Young Males. J. Sports Sci. Med. 2004, 3, 182–189. [Google Scholar]
- Wang, B.; Xu, G.; Tian, Q.; Sun, J.; Sun, B.; Zhang, L.; Luo, Q.; Gong, H. Differences between the Vastus Lateralis and Gastrocnemius Lateralis in the Assessment Ability of Breakpoints of Muscle Oxygenation for Aerobic Capacity Indices during an Incremental Cycling Exercise. J. Sports Sci. Med. 2012, 11, 606–613. [Google Scholar]
- Gómez-Carmona, C.D.; Bastida Castillo, A.; Rojas-Valverde, D.; de la Cruz Sánchez, E.; García-Rubio, J.; Ibáñez, S.J.; Pino-Ortega, J. Lower-limb dynamics of muscle oxygen saturation during the back-squat exercise: Effects of training load and effort level. J. Strength Condit. Res. 2020, 34, 1227–1236. [Google Scholar] [CrossRef]
- Bonilla, A.A.V.; Timon, R.; Camacho-Cardeñosa, A.; Camacho-cardeñosa, M.; Guerrero, S.; Olcina, G. Fatigue Increases in Resting Muscle Oxygen Consumption after a Women’s Soccer Match. Int. J. Sports Med. 2020, 41, e2–e8. [Google Scholar] [CrossRef]
- Schimpchen, J.; Correia, P.F.; Meyer, T. Validity and reproducibility of match-derived ratios of selected external and internal load parameters in soccer players: A simple way to monitor physical fitness? Biol. Sport 2023, 40, 1039–1046. [Google Scholar] [CrossRef]
- Whipp, B.J.; Higgenbotham, M.B.; Cobb, F.C. Estimating exercise stroke volume from asymptotic oxygen pulse in humans. J. Appl. Physiol. 1996, 81, 2674–2679. [Google Scholar] [CrossRef] [PubMed]
- Murias, J.M.; Spencer, M.D.; Paterson, D.H. The Critical Role of O2 Provision in the Dynamic Adjustment of Oxidative Phosphorylation. Exerc. Sport Sci. Rev. 2014, 42, 4. [Google Scholar] [CrossRef] [PubMed]
- Bourdon, P.C.; Cardinale, M.; Murray, A.; Gastin, P.; Kellmann, M.; Varley, M.C.; Gabbett, T.J.; Coutts, A.J.; Burgess, D.J.; Gregson, W.; et al. Monitoring Athlete Training Loads: Consensus Statement. Int. J. Sports Physiol. Perform. 2017, 12, S2-161–S2-170. [Google Scholar] [CrossRef]
- Campos-Vazquez, M.A.; Mendez-Villanueva, A.; Gonzalez-Jurado, J.A.; León-Prados, J.A.; Santalla, A.; Suarez-Arrones, L. Relationships between Rating-of-Perceived-Exertion- and Heart-Rate-Derived Internal Training Load in Professional Soccer Players: A Comparison of On-Field Integrated Training Sessions. Int. J. Sports Physiol. Perform. 2015, 10, 587–592. [Google Scholar] [CrossRef]
- Lima-Alves, A.; Claudino, J.G.; Boullosa, D.; Couto, C.R.; Teixeira-Coelho, F.; Pimenta, E.M. The relationship between internal and external loads as a tool to monitor physical fitness status of team sport athletes: A systematic review. Biol. Sport 2022, 39, 629–638. [Google Scholar] [CrossRef]
- Ly, A.; Raj, A.; Etz, A.; Marsman, M.; Gronau, Q.F.; Wagenmakers, E.-J. Bayesian Reanalyses From Summary Statistics: A Guide for Academic Consumers. Adv. Methods Pract. Psychol. Sci. 2018, 1, 367–374. [Google Scholar] [CrossRef]
- Wagenmakers, E.-J.; Love, J.; Marsman, M.; Jamil, T.; Ly, A.; Verhagen, J.; Selker, R.; Gronau, Q.F.; Dropmann, D.; Boutin, B.; et al. Bayesian inference for psychology. Part II: Example applications with JASP. Psychon. Bull. Rev. 2018, 25, 58–76. [Google Scholar] [CrossRef]
- Primer, A.P. Quantitative methods in psychology: A power primer. Psychol. Bull. 1992, 112, 1155–1159. [Google Scholar]
- Boukhris, O.; Zghal, F.; Trabelsi, K.; Suppiah, H.; Ammar, A.; Jahrami, H.; Hsouna, H.; Abdessalem, R.; Glenn, J.M.; Chtourou, H.; et al. The impact of a 40-min nap on neuromuscular fatigue profile and recovery following the 5-m shuttle run test. J. Sleep Res. 2024, 33, e14052. [Google Scholar] [CrossRef]
- Tominaga, T.; Ma, S.; Sugama, K.; Kanda, K.; Omae, C.; Choi, W.; Hashimoto, S.; Aoyama, K.; Yoshikai, Y.; Suzuki, K. Changes in Urinary Biomarkers of Organ Damage, Inflammation, Oxidative Stress, and Bone Turnover Following a 3000-m Time Trial. Antioxidants 2021, 10, 79. [Google Scholar] [CrossRef]
- Olcina, G.; Perez-Sousa, M.Á.; Escobar-Alvarez, J.A.; Timón, R. Effects of Cycling on Subsequent Running Performance, Stride Length, and Muscle Oxygen Saturation in Triathletes. Sports 2019, 7, 115. [Google Scholar] [CrossRef] [PubMed]
- MacInnis, M.J.; Gibala, M.J. Physiological adaptations to interval training and the role of exercise intensity. J. Physiol. 2017, 595, 2915–2930. [Google Scholar] [CrossRef] [PubMed]
- Nolfi-Donegan, D.; Braganza, A.; Shiva, S. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 2020, 37, 101674. [Google Scholar] [CrossRef]
- Hamaoka, T.; Iwane, H.; Shimomitsu, T.; Katsumura, T.; Murase, N.; Nishio, S.; Osada, T.; Kurosawa, Y.; Chance, B. Noninvasive measures of oxidative metabolism on working human muscles by near-infrared spectroscopy. J. Appl. Physiol. 1996, 81, 1410–1417. [Google Scholar] [CrossRef] [PubMed]
- Dunst, A.; Manunzio, C.; Feldmann, A.; Hesse, C. Applications of near-infrared spectroscopy in “anaerobic” diagnostics–SmO2 kinetics reflect PCr dephosphorylation and correlate with maximal lactate accumulation and maximal pedalling rate. Biol. Sport 2023, 40, 1019–1031. [Google Scholar] [CrossRef] [PubMed]
- Grassi, B. Delayed metabolic activation of oxidative phosphorylation in skeletal muscle at exercise onset. Med. Sci. Sports Exerc. 2005, 37, 1567–1573. [Google Scholar] [CrossRef] [PubMed]
- Vasquez-Bonilla, A.A.; Brazo-Sayavera, J.; Timón, R.; Olcina, G. Monitoring Muscle Oxygen Asymmetry as a Strategy to Prevent Injuries in Footballers. Res. Q. Exerc. Sport 2023, 94, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, A.; Schmitz, R.W.; Erlacher, D. Near-infrared spectroscopy-derived muscle oxygen saturation on a 0% to 100% scale: Reliability and validity of the Moxy Monitor. J. Biomed. Opt. 2019, 24, 115001. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.; Chiesa, S.T.; Chaturvedi, N.; Hughes, A.D. Recent developments in near-infrared spectroscopy (NIRS) for the assessment of local skeletal muscle microvascular function and capacity to utilise oxygen. Artery Res. 2016, 16, 25–33. [Google Scholar] [CrossRef]
- Klein, J.C.; Crandall, C.G.; Brothers, R.M.; Carter, J.R. Combined Heat and Mental Stress Alters Neurovascular Control in Humans. J. Appl. Physiol. 2010, 109, 1880–1886. [Google Scholar] [CrossRef]
- Buchheit, M.; Ufland, P. Effect of endurance training on performance and muscle reoxygenation rate during repeated-sprint running. Eur. J. Appl. Physiol. 2011, 111, 293–301. [Google Scholar] [CrossRef]
- Burgess, D.J. The Research Doesn’t Always Apply: Practical Solutions to Evidence-Based Training-Load Monitoring in Elite Team Sports. Int. J. Sports Physiol. Perform. 2017, 12, S2-136–S2-141. [Google Scholar] [CrossRef]
- Ammann, L.; Ruf, L.; Beavan, A.; Chmura, P.; Altmann, S. Advancing and critical appraisal of an integrative load monitoring approach in microcycles in professional soccer. PLoS ONE 2023, 18, e0286372. [Google Scholar] [CrossRef]
Intensity (Arbitrary Units) | Effindex (Arbitrary Units) |
---|---|
[(m/min) × HRMAX (%)] | [(m/min) ÷ HRMAX (%)] |
[(m/min) × (∇% SmO2)] | [(m/min) ÷ (∇% SmO2)] |
[(m/s) × Desaturation rate (%/seg)] | [(m/s) ÷ Desaturation rate (%/seg)] |
[(m/min) × CMOI (%)] | [(m/min) ÷ CMOI (%)] |
External Load Indicators | Test | Mean | SD | BF10 | ±% | p | ES |
---|---|---|---|---|---|---|---|
Total time (s) | 40-MST | 72.74 | 5.21 | 1.98 × 10−20 | 2.88 × 10−24 | <0.001 * | 14.55 |
3000 m | 871.80 | 247.80 | |||||
Fatigue Index (a.u.) | 40-MST | 7.74 | 4.80 | 1.46 × 10+6 | 9.15 × 10−13 | <0.001 * | 2.17 |
3000 m | 164.24 | 71.02 | |||||
Average speed (m/min) | 40-MST | 331 | 22.8 | 6.25 × 10+6 | 1.32 × 10−13 | <0.001 * | 2.39 |
3000 m | 222 | 56.8 |
Internal Load Indicators | Test | Mean | SD | BF10 | ±% | p | ES |
---|---|---|---|---|---|---|---|
HR (bmp) | 40-MST | 164.4 | 12.7 | 0.609 | 6.51 × 10−5 | 0.150 | 0.335 |
3000-m | 156.1 | 25.1 | |||||
HRMAX (%) | 40-MST | 94.9 | 2.2 | 18.33 | 3.23 × 10−6 | 0.002 * | 0.790 |
3000-m | 86.5 | 11.9 | |||||
SmO2 | 40-MST | 34.0 | 11.2 | 3669 | 1.39 × 10−9 | <0.001 * | 1.379 |
3000-m | 51.7 | 8.6 | |||||
∇% SmO2 | 40-MST | 37.189 | 14.881 | 0.262 | 2.14 × 10−4 | 0.612 | 0.115 |
3000-m | 39.155 | 10.184 | |||||
Desaturation rate (%) | 40-MST | 2.807 | 1.236 | 167,290 | 4.94 × 10−13 | <0.001 * | 1.867 |
3000-m | 0.558 | 0.109 | |||||
CMOI (%) | 40-MST | 39.20 | 15.44 | 1.70 | 2.99 × 10−5 | 0.039 * | 0.496 |
3000-m | 30.51 | 8.67 |
Workload (Arbitrary Units) | Test | Mean | SD | BF10 | ±% | p | ES |
---|---|---|---|---|---|---|---|
(m/min) × HRMAX (%) | 40-MST | 314.65 | 24.281 | 5.08 × 10+6 | 2.68 × 10−13 | <0.001 * | 2.332 |
3000-m | 210.00 | 53.435 | |||||
(m/min) × (∇% SmO2) | 40-MST | 122.65 | 47.61 | 12.5 | 4.36 × 10−6 | 0.003 * | 0.746 |
3000-m | 85.77 | 27.40 | |||||
(m/s) × Desaturation rate (%/s) | 40-MST | 15.55 | 6.77 | 583,387 | 1.32 × 10−12 | <0.001 * | 2.040 |
3000-m | 2.06 | 0.85 | |||||
(m/min) × CMOI (%) | 40-MST | 129.27 | 49.446 | 169.6 | 1.17 × 10−8 | <0.001 * | 1.040 |
3000-m | 70.63 | 32.98 |
Workload (Arbitrary Units) | Test | Mean | SD | BF10 | ±% | p | ES |
---|---|---|---|---|---|---|---|
(m/min) ÷ HRMAX (%) | 40-MST | 3.49 | 0.235 | 5197.999 | 8.84 × 10−10 | <0.001 * | 1.419 |
3000-m | 2.60 | 0.717 | |||||
(m/min) ÷ (∇% SmO2) | 40-MST | 10.19 | 4.17 | 137.03 | 1.07 × 10−8 | <0.001 * | 1.016 |
3000-m | 6.06 | 2.21 | |||||
(m/s) ÷ Desaturation rate (%/seg) | 40-MST | 2.25 | 0.815 | 1.80 × 10+10 | 2.91 × 10−17 | <0.001 * | 3.912 |
3000-m | 7.31 | 0.994 | |||||
(m/min) ÷ CMOI (%) | 40-MST | 9.69 | 4.115 | 1.861 | 3.17 × 10−5 | 0.035 * | 0.509 |
3000-m | 7.55 | 1.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasquez-Bonilla, A.; Yáñez-Sepúlveda, R.; Gómez-Carmona, C.D.; Olcina, G.; Olivares-Arancibia, J.; Rojas-Valverde, D. Calculating Load and Intensity Using Muscle Oxygen Saturation Data. Sports 2024, 12, 113. https://doi.org/10.3390/sports12040113
Vasquez-Bonilla A, Yáñez-Sepúlveda R, Gómez-Carmona CD, Olcina G, Olivares-Arancibia J, Rojas-Valverde D. Calculating Load and Intensity Using Muscle Oxygen Saturation Data. Sports. 2024; 12(4):113. https://doi.org/10.3390/sports12040113
Chicago/Turabian StyleVasquez-Bonilla, Aldo, Rodrigo Yáñez-Sepúlveda, Carlos D. Gómez-Carmona, Guillermo Olcina, Jorge Olivares-Arancibia, and Daniel Rojas-Valverde. 2024. "Calculating Load and Intensity Using Muscle Oxygen Saturation Data" Sports 12, no. 4: 113. https://doi.org/10.3390/sports12040113