The Distribution and Severity of Corrosion Damage at Eight Distinct Zones of Metallic Femoral Stem Implants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Retrieved Implants Information
2.2. Visual Assessment of Corrosion Damage
2.3. Statistical Analysis
2.3.1. The Ordinal Logistic Regression (OLR) Assumptions
2.3.2. Overall Parameter Estimates
3. Results
3.1. Distribution of Corrosion Scores
3.2. Comparison of Corrosion in the Zones
4. Discussion
5. Conclusions
- The corrosion score level 2 was observed having the highest frequency (46.7%).
- Posterior-proximal and medial-distal were identified as the zones with the least and most severity of corrosion.
- Interestingly, the proximal and distal regions were found to be grouping together with the distal region showing more damage in comparison with the proximal region of the four quadrants.
- Out of the 28 pairwise comparisons of these eight zones, nine pairs of zones were identified to be significantly different regarding corrosion damage. This observation objectively shows the high diversity in corrosion damage across these zones.
- Retrieval studies of taper junctions are, therefore, recommended to score the zones separately and avoid adding up local scores to be used with an interval or ratio level of measurement.
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
References
- Hussenbocus, S.; Kosuge, D.; Solomon, L.B.; Howie, D.W.; Oskouei, R.H. Head-neck taper corrosion in hip arthroplasty. BioMed Res. Int. 2015, 2015, 758123. [Google Scholar] [CrossRef] [PubMed]
- Oskouei, R.H.; Barati, M.R.; Farhoudi, H.; Lucian, M.T.; Solomon, B. A new finding on the in-vivo crevice corrosion damage in a CoCrMo hip implant. Mat. Sci. Eng. C 2017, 79, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.J.; Cooper, H.J.; Urban, R.M.; Wixson, R.L.; Della Valle, C.J. What do we know about taper corrosion in total hip arthroplasty? J. Arthroplasty 2014, 29, 668–669. [Google Scholar] [CrossRef] [PubMed]
- Cooper, H.J.; Della Valle, C.J.; Berger, R.A.; Tetreault, M.; Paprosky, W.G.; Sporer, S.M.; Jacobs, J.J. Corrosion at the head-neck taper as a cause for adverse local tissue reactions after total hip arthroplasty. J. Bone Jt. Surg. Am. 2012, 94, 1655–1661. [Google Scholar] [CrossRef]
- Vundelinckx, B.J.; Verhelst, L.A.; De Schepper, J. Taper corrosion in modular hip prostheses: Analysis of serum metal ions in 19 patients. J. Arthroplasty 2013, 28, 1218–1223. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, J.L.; Buckley, C.A.; Jacobs, J.J. In vivo corrosion of modular hip prosthesis components in mixed and similar metal combinations. The effect of crevice, stress, motion, and alloy coupling. J. Biomed. Mater. Res. 1993, 27, 1533–1544. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, J.R.; Gilbert, J.L.; Jacobs, J.J.; Bauer, T.W.; Paprosky, W.; Leurgans, S. A multicenter retrieval study of the taper interfaces of modular hip prostheses. Clin. Orthop. Relat. Res. 2002, 401, 149–161. [Google Scholar] [CrossRef]
- Hothi, H.S.; Berber, R.; Panagiotopoulos, A.C.; Whittaker, R.K.; Rhead, C.; Skinner, J.A.; Hart, A.J. Clinical significance of corrosion of cemented femoral stems in metal-on-metal hips: A retrieval study. Int. Orthop. 2016, 40, 2247–2254. [Google Scholar] [CrossRef] [PubMed]
- Carlson, J.C.H. Femoral stem fracture and in vivo corrosion of retrieved modular femoral hips. J. Arthroplasty 2012, 27, 1389–1396. [Google Scholar] [CrossRef] [PubMed]
- Higgs, G.B. Method of characterizing fretting and corrosion at the various taper connections of retrieved modular components from metal-on-metal total hip arthroplasty. Metal-on-metal total hip replacement devices. ASTM Int. 2013, 1560, 146–156. [Google Scholar] [CrossRef]
- Tan, S.C.; Lau, A.C.; Del Balso, C.; Howard, J.L.; Lanting, B.A.; Teeter, M.G. Tribocorrosion: Ceramic and oxidized zirconium vs cobalt-chromium heads in total hip arthroplasty. J. Arthroplasty 2016, 31, 2064–2071. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.C.; Teeter, M.G.; Del Balso, C.; Howard, J.L.; Lanting, B.A. Effect of taper design on trunnionosis in metal on polyethylene total hip arthroplasty. J. Arthroplasty 2015, 30, 1269–1272. [Google Scholar] [CrossRef] [PubMed]
- Hothi, H.S.; Berber, R.; Whittaker, R.K.; Bills, P.J.; Skinner, J.A.; Hart, A.J. Detailed inspection of metal implants. Hip Int. 2015, 25, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Hothi, H.S.; Matthies, A.K.; Berber, R.; Whittaker, R.K.; Skinner, J.A.; Hart, A.J. The reliability of a scoring system for corrosion and fretting, and its relationship to material loss of tapered, modular junctions of retrieved hip implants. J. Arthroplasty 2014, 29, 1313–1317. [Google Scholar] [CrossRef] [PubMed]
- De Martino, I.; Assini, J.B.; Elpers, M.E.; Wright, T.M.; Westrich, G.H. Corrosion and fretting of a modular hip system: A retrieval analysis of 60 rejuvenate stems. J. Arthroplasty 2015, 30, 1470–1475. [Google Scholar] [CrossRef] [PubMed]
- Munir, S.; Michael, B.C.; Christina, E.; Anna, S.; William, L.W. Corrosion in modular total hip replacements: An analysis of the head–neck and stem–sleeve taper connections. Semin. Arthroplasty 2013, 24, 240–245. [Google Scholar] [CrossRef]
- Stamer, C.M. Assessment of Bore-Cone Taper Junctions in Explanted Modular Total Hip Replacements. Master’s Thesis, Clemson University, Clemson, SC, USA, 2015. [Google Scholar]
- Kao, Y.-Y.J.; Koch, C.N.; Wright, T.M.; Padgett, D.E. Flexural rigidity, taper angle, and contact length affect fretting of the femoral stem trunnion in total hip arthroplasty. J. Arthroplasty 2016, 31, S254–S258. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllopoulos, G.K.; Elpers, M.E.; Burket, J.C.; Esposito, C.I.; Padgett, D.E.; Wright, T.M. Otto aufranc award: Large heads do not increase damage at the head-neck taper of metal-on-polyethylene total hip arthroplasties. Clin. Orthop. Relat. Res. 2015, 474, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, J.L., Jr. In-Vivo Corrosion and Fretting of Modular TI-6AL-4V/CO-CR-MO Hip Prostheses: The Influence of Microstructure and Design Parameters. Master’s Thesis, Florida International University, Miami, FL, USA, 2015. [Google Scholar]
- Kocagöz, S.B.; Underwood, R.J.; Sivan, S.; Gilbert, J.L.; MacDonald, D.W.; Day, J.S.; Kurtz, S.M. Does taper angle clearance influence fretting and corrosion damage at the head–stem interface? A matched cohort retrieval study. Semin. Arthroplasty 2013, 24, 246–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milimonfared, R.; Oskouei, R.H.; Taylor, M.; Solomon, L.B. An intelligent system for image-based rating of corrosion severity at stem taper of retrieved hip replacement implants. Med. Eng. Phys. 2018. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Higgs, G.B.; MacDonald, D.W.; Lowell, J.; Padayatil, A.; Mihalko, W.M.; Siskey, R.L.; Gilbert, J.L.; Rimnac, C.M.; Kurtz, S.M. Is corrosion a threat to the strength of the taper connection in femoral components of total hip replacements? Corrosion 2017, 73, 1538–1543. [Google Scholar] [CrossRef]
- Whittaker, R.K.; Hothi, H.S.; Meswania, J.M.; Berber, R.; Blunn, G.W.; Skinner, J.A.; Hart, A.J. The effect of using components from different manufacturers on the rate of wear and corrosion of the head-stem taper junction of metal-on-metal hip arthroplasties. Bone Jt. J. 2016, 98, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Matthies, A.K.; Racasan, R.; Bills, P.; Blunt, L.; Cro, S.; Panagiotidou, A.; Blunn, G.; Skinner, J.; Hart, A.J. Material loss at the taper junction of retrieved large head metal-on-metal total hip replacements. J. Orthop. Res. 2013, 31, 1677–1685. [Google Scholar] [CrossRef] [PubMed]
- Langton, D.J.; Sidaginamale, R.P.; Joyce, T.J.; Meek, R.D.; Bowsher, J.G.; Deehan, D.; Nargol, A.V.F.; Holland, J.P. A comparison study of stem taper material loss at similar and mixed metal head-neck taper junctions. Bone Jt. J. 2017, 99, 1304–1312. [Google Scholar] [CrossRef] [PubMed]
- Higgs, G.B.; Hanzlik, J.A.; MacDonald, D.W.; Gilbert, J.L.; Rimnac, C.M.; Kurtz, S.M. Is increased modularity associated with increased fretting and corrosion damage in metal-on-metal total hip arthroplasty devices?: A retrieval study. J. Arthroplasty 2013, 28, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.A.; Dunbar, M.J.; Amirault, J.D.; Farhat, Z. Early failure of a modular femoral neck total hip arthroplasty component a case report. J. Bone Jt. Surg. Am. 2010, 92, 1514–1517. [Google Scholar] [CrossRef] [PubMed]
- Bishop, N.E.; Hothan, A.; Morlock, M.M. High friction moments in large hard-on-hard hip replacement bearings in conditions of poor lubrication. J. Orthop. Res. 2013, 31, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Lavernia, C.J.; Iacobelli, D.A.; Villa, J.M.; Jones, K.; Gonzalez, J.L.; Jones, W.K. Trunnion-head stresses in THA: Are big heads trouble? J. Arthroplasty 2015, 30, 1085–1088. [Google Scholar] [CrossRef] [PubMed]
- Porter, D.A.; Urban, R.M.; Jacobs, J.J.; Gilbert, J.L.; Rodriguez, J.A.; Cooper, H.J. Modern trunnions are more flexible: A mechanical analysis of THA taper designs. Clin. Orthop. Relat. Res. 2014, 472, 3963–3970. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.J.; Gilbert, J.L.; Urban, R.M. Corrosion of metal orthopaedic implants. J. Bone Jt. Surg. Am. 1998, 80, 268–282. [Google Scholar] [CrossRef]
- Osman, K.; Panagiotidou, A.P.; Khan, M.; Blunn, G.; Haddad, F.S. Corrosion at the head-neck interface of current designs of modular femoral components essential questions and answers relating to corrosion in modular head-neck junctions. Bone Jt. J. 2016, 98, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Cook, S.D.; Barrack, R.L.; Clemow, A.J.T. Corrosion and wear at the modular interface of uncemented femoral stems. J. Bone Jt. Surg. Br. 1994, 76, 68–72. [Google Scholar] [CrossRef]
Predictor | Quantity (% Frequency) | Median | Range |
---|---|---|---|
Head Material | |||
CoCr | 60 (43.8) | ||
Stainless Steel (SS) | 7 (5.1) | ||
Ceramic | 8 (5.8) | ||
Stem Material | |||
CoCr | 54 (39.4) | ||
Stainless Steel (SS) | 41 (29.9) | ||
Titanium | 31 (22.6) | ||
Stem Fixation | |||
Cemented | 76 (55.5) | ||
Cementless | 50 (36.5) | ||
Gender | |||
Female | 57 (45.2) | ||
Male | 69 (54.8) | ||
Stem Taper | |||
12/14 | 52(38.0) | ||
V40 | 19 (13.9) | ||
9/10 | 12 (8.8) | ||
6° | 8 (5.8) | ||
C-TAPER | 8 (5.8) | ||
TYPE 1 | 2 (1.5) | ||
11/13 | 3 (2.2) | ||
10/12 | 1 (0.7) | ||
Joint Side | |||
Right | 69 (54.8) | ||
Left | 57 (45.2) | ||
Head Diameter (mm) | 28 | 22–55 | |
Time to Revision (year) | 6 | 0–35 | |
Weight (kg) | 77 | 51–178 | |
Age at Primary (year) | 63.5 | 22–85 |
Score | Visual Criteria |
---|---|
1 (None) | No Visible Corrosion |
2 (Mild) | <30% Surface Discoloured/Dull |
3 (Moderate) | >30% Surface Discoloured/Dull or <10% Containing Black Debris, Pits or Etch Marks |
4 (Severe) | >10% of Surface Containing Black Debris, Pits, or Etch Marks |
Binomial Regression | Event Category | Non-Event Categories |
---|---|---|
1 | Probability (score ≤ 1) | Probability (score > 1) |
“none” | “mild”, “moderate”, and “severe” | |
2 | Probability (score ≤ 2) | Probability (score > 2) |
“none” and “mild” | “moderate” and “severe” | |
3 | Probability (score ≤ 3) | Probability (score > 3) |
“none”, “mild”, and “moderate” | “severe” |
Score | Quantity (%) |
---|---|
1 | 359 (32.8) |
2 | 512 (46.7) |
3 | 174 (15.9) |
4 | 51 (4.7) |
Zone Pair | OR | p-Value | CI (p < 0.05) | |
---|---|---|---|---|
AD (AP) | 1.493 | 0.077 | 0.957 | 2.329 |
AD (LD) | 0.882 | 0.577 | 0.566 | 1.372 |
AD (LP) | 1.365 | 0.169 | 0.876 | 2.128 |
AD (MD) | 0.755 | 0.212 | 0.485 | 1.175 |
AD (MP) | 1.524 | 0.063 | 0.977 | 2.378 |
AD (PD) | 0.998 | 0.993 | 0.641 | 1.554 |
AD (PP) | 1.634 | 0.031 | 1.047 | 2.551 |
AP (LD) | 0.590 | 0.020 | 0.379 | 0.921 |
AP (LP) | 0.914 | 0.693 | 0.586 | 1.427 |
AP (MD) | 0.505 | 0.003 | 0.324 | 0.789 |
AP (MP) | 1.021 | 0.928 | 0.654 | 1.594 |
AP (PD) | 0.668 | 0.076 | 0.429 | 1.043 |
AP (PP) | 1.094 | 0.692 | 0.701 | 1.709 |
LD (LP) | 1.549 | 0.054 | 0.993 | 2.414 |
LD (MD) | 0.856 | 0.490 | 0.550 | 1.331 |
LD (MP) | 1.729 | 0.016 | 1.108 | 2.697 |
LD (PD) | 1.132 | 0.583 | 0.727 | 1.762 |
LD (PP) | 1.853 | 0.007 | 1.187 | 2.894 |
LP (MD) | 0.553 | 0.009 | 0.355 | 0.862 |
LP (MP) | 1.116 | 0.628 | 0.715 | 1.742 |
LP (PD) | 0.731 | 0.167 | 0.469 | 1.140 |
LP (PP) | 1.197 | 0.429 | 0.767 | 1.869 |
MD (MP) | 2.019 | 0.002 | 1.294 | 3.152 |
MD (PD) | 1.322 | 0.216 | 0.850 | 2.058 |
MD (PP) | 2.165 | 0.001 | 1.386 | 3.382 |
MP (PD) | 0.655 | 0.062 | 0.420 | 1.022 |
MP (PP) | 1.072 | 0.760 | 0.686 | 1.675 |
PD (PP) | 1.637 | 0.030 | 1.049 | 2.556 |
Zone | C1 | C2 | C1 + C2 |
---|---|---|---|
Posterior Proximal (PP) | 0 | 0 | 0 |
Medial Proximal (MP) | 1 | 0 | 1 |
Anteriori Proximal (AP) | 2 | 0 | 2 |
Lateral Proximal (LP) | 2 | 1 | 3 |
Anterior Distal (AD) | 4 | 0 | 4 |
Posterior Distal (PD) | 1 | 4 | 5 |
Lateral Distal (LD) | 4 | 2 | 6 |
Medial Distal (MD) | 3 | 4 | 7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milimonfared, R.; Oskouei, R.H.; Taylor, M.; Solomon, L.B. The Distribution and Severity of Corrosion Damage at Eight Distinct Zones of Metallic Femoral Stem Implants. Metals 2018, 8, 840. https://doi.org/10.3390/met8100840
Milimonfared R, Oskouei RH, Taylor M, Solomon LB. The Distribution and Severity of Corrosion Damage at Eight Distinct Zones of Metallic Femoral Stem Implants. Metals. 2018; 8(10):840. https://doi.org/10.3390/met8100840
Chicago/Turabian StyleMilimonfared, Roohollah, Reza H. Oskouei, Mark Taylor, and Lucian B. Solomon. 2018. "The Distribution and Severity of Corrosion Damage at Eight Distinct Zones of Metallic Femoral Stem Implants" Metals 8, no. 10: 840. https://doi.org/10.3390/met8100840
APA StyleMilimonfared, R., Oskouei, R. H., Taylor, M., & Solomon, L. B. (2018). The Distribution and Severity of Corrosion Damage at Eight Distinct Zones of Metallic Femoral Stem Implants. Metals, 8(10), 840. https://doi.org/10.3390/met8100840