Novel Cu-Rich Nano-Precipitates Strengthening Steel with Excellent Antibacterial Performance
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure
3.2. Tensile Properties and Microhardness
3.3. Precipitation
3.4. The Antibacterial Performance
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Argon, A.S. Strengthening Mechanisms in Crystal Plasticity; Oxford University Press: Oxford, UK, 2008; pp. 100–110. [Google Scholar]
- Lee, W.B.; Hong, S.G.; Park, C.G.; Kim, K.H.; Park, S.H. Influence of Mo on precipitation hardening in hot rolled HSLA steels containing Nb. Scr. Mater. 2000, 43, 319–324. [Google Scholar] [CrossRef]
- Takahashi, A.; Iino, M. Microstructural refinement by Cu addition and its effect on strengthening and toughening of sour service line pipe steels. ISIJ Int. 1996, 36, 241–245. [Google Scholar] [CrossRef]
- Kong, J.H.; Zhen, L.; Guo, B. Influence of Mo content on microstructure and mechanical properties of high strength pipeline steel. Mater. Des. 2004, 25, 723–728. [Google Scholar]
- Koh, S.U.; Lee, J.M.; Yang, B.Y.; Kim, K.Y. Effect of molybdenum and chromium addition on the susceptibility to sulfide stress cracking of high-strength, low-alloy steels. Corrosion 2007, 63, 220–230. [Google Scholar] [CrossRef]
- Wang, Y.M.; Li, M.Y.; Wei, G. Controlled Rolling and Controlled Cooling, 1st ed.; Metallurgical Industry Press: Beijing, China, 2007; pp. 14–19. [Google Scholar]
- Zhang, Z.W. Research development of high strength low alloy (HSLA) steels. Mater. China 2016, 35, 141–150. [Google Scholar]
- Czyryca, E.J.; Vassilaros, M.G. Advances in Low Carbon, High Strength Ferrous Alloys. Key Eng. Mater. 1993, 34, 85–91. [Google Scholar]
- Asfahani, R.; Tither, G. International symposium on low-carbon steels for the 90’s. Mater. Soc. 1993, 1, 511–516. [Google Scholar]
- Vaynman, S.; Fine, M.; Ghosh, G.; Bhat, S. Materials for the new millennium. In Proceedings of the Fourth Materials Engineering Conference, Washington, DC, USA, 10–14 November 1996. [Google Scholar]
- Hattestrand, M.; Andren, H.O. Influence of strain on precipitation reactions during creep of an advanced 9% chromium steel. Acta Mater. 2001, 49, 2123–2128. [Google Scholar] [CrossRef]
- Vaynman, S.; Isheim, D.; Kolli, R.P.; Bhat, S.P.; Seidman, D.N.; Fine, M.E. High-strength low-carbon ferritic steel containing Cu-Fe-Ni-Al-Mn precipitates. Metall. Mater. Trans. A 2008, 39, 363–373. [Google Scholar] [CrossRef]
- Mulholland, M.D.; Seidman, D.N. Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel. Acta Mater. 2011, 59, 1881–1897. [Google Scholar] [CrossRef]
- Xu, W.; Rivera-Diaz-del-Castillo, P.E.J.; Yan, W.; Yang, K.; Martin, D.S.; Kestens, L.A.I.; Van Der Zwaag, S. A new ultrahigh-strength stainless steel strengthened by various coexisting nanoprecipitates. Acta Mater. 2010, 58, 4067–4075. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.W.; Liu, C.T.; Wang, X.L.; Ma, D.; Chen, G.; Williams, J.R.; Chin, B.A. Effects of proton irradiation on nanocluster precipitation in ferritic steel containing fcc alloying additions. Acta Mater. 2012, 60, 3034–3046. [Google Scholar] [CrossRef]
- Jiao, Z.B.; Luan, J.H.; Zhang, Z.W.; Miller, M.K.; Ma, W.B.; Liu, C.T. Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels. Acta Mater. 2013, 61, 5996–6005. [Google Scholar] [CrossRef]
- Yu, X.H.; Caron, J.L.; Babu, S.S.; Lippold, J.C.; Isheim, D.; Seidman, D.N. Characterization of microstructural strengthening in the heat-affected zone of a blast-resistant naval steel. Acta Mater. 2010, 58, 5596–5609. [Google Scholar] [CrossRef]
- Liu, H.W.; Xu, D.K.; Wu, Y.N.; Yang, K.; Liu, H.F. Research progress in corrosion of steels induced by sulfate reducing bacteria. Corros. Sci. Prot. Technol 2015, 27, 409–418. [Google Scholar]
- Videla, H.A. Manual of Biocorrosion, 1st ed.; CRC-Press: Boca Raton, FL, USA, 1996; pp. 24–26.3. [Google Scholar]
- Shi, X.B.; Xu, D.K.; Yan, M.C.; Yan, W.; Shan, Y.Y.; Yang, K. Study on Microbiologically influenced corrosion behavior of novel Cu-bearing pipeline steels. Acta Metall. Sin. 2017, 53, 153–162. [Google Scholar]
- Xia, J.; Xu, D.K.; Nan, L. Study on mechanisms of microbiologically influenced corrision of metal from the perspective of bio-electrochemistry and bio-energetics. Chin. J. Mater. Res. 2016, 30, 161–170. [Google Scholar]
- Kang, Y.L.; Chen, Q.J.; Wang, K.L.; Sun, H.; Yu, H. Heattreatment techniques research of 700 MPa low carbon bainite steel. Tran. Mater. Heat Treat. 2005, 26, 96–99. [Google Scholar]
- Goodman, S.R.; Brenner, S.S.; Low, J.R. An FIM-atom probe study of the precipitation of copper from lron-1.4 at. pct copper. Part II: Atom probe analyses. Metall. Trans. 1973, 4, 2371–2378. [Google Scholar] [CrossRef]
- Isheim, D.; Kolli, R.P.; Fine, M.E.; Seidman, D.N. An atom-probe tomographic study of the temporal evolution of the nanostructure of Fe-Cu based high-strength low-carbon steels. Scr. Mater. 2006, 55, 35–40. [Google Scholar] [CrossRef]
- Kolli, R.P.; Seidman, D.N. Comparison of compositional and morphological atom-probe tomography analyses for a multicomponent Fe-Cu steel. Microsc. Microanal. 2007, 13, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Kolli, R.P.; Mao, Z.; Seidman, D.N.; Keane, D.T. Identification of a Ni0.5(Al0.5−xMnx) B2 phase at the heterophase interfaces of Cu-rich precipitates in an α-Fe matrix. Appl. Phys. Lett. 2007, 91, 1903–1908. [Google Scholar] [CrossRef]
- Kolli, R.P.; Seidman, D.N. The temporal evolution of the decomposition of a concentrated multicomponent Fe-Cu-based steel. Acta Mater. 2008, 56, 2073–2088. [Google Scholar] [CrossRef]
- Mulholland, M.D.; Seidman, D.N. Multiple dispersed phases in a high-strength low-carbon steel: An atom-probe tomographic and synchrotron X-ray diffraction study. Scr. Mater. 2009, 60, 992–995. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Liu, C.T.; Miller, M.K.; Wang, X.; Wen, Y.R.; Fujita, T.; Hirata, A.; Chen, M.W.; Chen, G. A nanoscale co-precipitation approach for property enhancement of Fe-base alloys. Sci. Rep. 2013, 3, 1327–1334. [Google Scholar] [CrossRef]
- Kolli, R.P.; Seidman, D.N. Co-Precipitated and Collocated Carbides and Cu-Rich Precipitates in a Fe–Cu Steel Characterized by Atom-Probe Tomography. Microsc. Microanal. 2014, 20, 1727–1739. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Studies on Aging Behavior of Cu-Enriched Nano Cluster Strengthened HSLA Steels. Master’s Thesis, Harbin Engineering University, Harbin, China, 2015. [Google Scholar]
- Wang, S.; Yang, C.G.; Xu, D. Effect of heat treatment on antibacterial performance of 3Cr13MoCu martensitic stainless steel. Acta Metall. 2014, 50, 1453–1460. [Google Scholar]
- Khalid, H.; Shamaila, S.; Zafar, N.; Sharif, R.; Nazir, J.; Rafique, M.; Ghani, S.; Saba, H. Antibacterial behavior of laser-ablated copper nanoparticles. Acta Metall. 2016, 29, 748–754. [Google Scholar] [CrossRef]
- Yin, H.X. Copper Precipitation Mechanism and Performance Control of Ferritic Antibacterial Stainless Steel. Ph.D. Thesis, University of Science and Technology Beijing, Beijing, China, 2015. [Google Scholar]
- Jeffrey, C.P. Alcamo’s Fundamentals of Microbiology, 9th ed.; Jones and Bartlett Publishers: Burlington, MA, USA, 2011; pp. 57–85. [Google Scholar]
- Pinto, T.D.J.A.; Okamoto, R.T.; Traple, M.A.L.; Lourenco, F.R. Development and validation of microbiological assay for ceftriaxone and its application in photo-stability study. Current Pharmaceutical Analysis. Curr. Pharm. Anal. 2013, 9, 573–580. [Google Scholar]
- Malathi, S.; Ramya, V.; Ezhilarasu, T.; Abiraman, T.; Balasubramanian, S.J. Green Synthesis of Novel Jasmine Bud-Shaped Copper Nanoparticles. Int. J. Nanotechnol. 2014, 1, 34–40. [Google Scholar]
C | Si | Mn | S | P | Cu + Ni + Nb + Ti |
---|---|---|---|---|---|
0.03 | 0.2 | 1.73 | 0.004 | 0.005 | <3.0 |
Elements in Precipitates | C | O | Si | Ti | Mn | Fe | Ni | Cu | Total |
---|---|---|---|---|---|---|---|---|---|
content/% | 7.16 | 2.68 | 0.34 | 0.6 | 2.81 | 33.43 | 1.4 | 51.58 | 100 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Ma, C.; Li, S.; Zhang, H. Novel Cu-Rich Nano-Precipitates Strengthening Steel with Excellent Antibacterial Performance. Metals 2019, 9, 52. https://doi.org/10.3390/met9010052
Fan Y, Ma C, Li S, Zhang H. Novel Cu-Rich Nano-Precipitates Strengthening Steel with Excellent Antibacterial Performance. Metals. 2019; 9(1):52. https://doi.org/10.3390/met9010052
Chicago/Turabian StyleFan, Yanqiu, Changwen Ma, Shaopo Li, and Hai Zhang. 2019. "Novel Cu-Rich Nano-Precipitates Strengthening Steel with Excellent Antibacterial Performance" Metals 9, no. 1: 52. https://doi.org/10.3390/met9010052
APA StyleFan, Y., Ma, C., Li, S., & Zhang, H. (2019). Novel Cu-Rich Nano-Precipitates Strengthening Steel with Excellent Antibacterial Performance. Metals, 9(1), 52. https://doi.org/10.3390/met9010052