Vector-Borne Pathogens with Veterinary and Public Health Significance in Melophagus ovinus (Sheep Ked) from the Qinghai-Tibet Plateau
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Sites and Sample Collection
4.2. Nucleic Acid Extraction and PCR Amplification
4.3. Sequencing and Phylogenetic Analysis
4.4. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marcos, A.B.S.; Domenico, O. Keds, the enigmatic flies and their role as vectors of pathogens. Acta Trop. 2020, 209, 105521. [Google Scholar]
- Rudolf, I.; Betášová, L.; Bischof, V.; Venclíková, K.; Blažejová, H.; Mendel, J.; Hubálek, Z.; Kosoy, M. Molecular survey of arthropod-borne pathogens in sheep keds (Melophagus ovinus), Central Europe. Parasitol. Res. 2016, 115, 3679–3682. [Google Scholar] [CrossRef]
- Small, R.W. A review of Melophagus ovinus, (L.), the sheep ked. Vet. Parasitol. 2005, 130, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Sertse, T.; Wossene, A. Effect of ectoparasites on quality of pickled skins and their impact on the tanning industries in Amhara regional state, Ethiopia. Small Rum. Res. 2007, 69, 55–61. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Y.Z.; Zhang, H.; Liu, Z.Q.; Wureli, H.Z.; Wang, S.W.; Tu, C.C.; Chen, C.F. First report of Rickettsia raoultii and R. slovaca in Melophagus ovinus, the sheep ked. Parasites Vectors 2016, 9, 600. [Google Scholar] [CrossRef] [Green Version]
- Chu, C.Y.; Jiang, B.G.; Qiu, E.C.; Zhang, F.; Zuo, S.Q.; Yang, H.; Liu, W.; Cao, W.C. Borrelia burgdorferi sensu lato in sheep keds (Melophagus ovinus), Tibet China. Vet. Microbiol. 2011, 149, 526–529. [Google Scholar] [CrossRef]
- Duan, D.Y.; Liu, H.; Cheng, T.Y.; Wang, Y.Q. Microbial population analysis of the midgut of Melophagus ovinus via high-throughput sequencing. Parasites Vectors 2017, 10, 382. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.H.; He, B.; Li, F.; Li, K.R.; Zhang, L.Y.; Li, X.Q.; Zhao, L. Molecular Identification of Bartonella melophagi and Wolbachia Supergroup F from Sheep Keds in Xinjiang, China. Korean J. Parasitol. 2018, 56, 365–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Wang, J.L.; Ding, Y.L.; Li, K.R.; He, B.; Li, F.; Zhang, L.Y.; Li, X.Q.; Liu, Y.H. Theileria ovis (Piroplasmida: Theileriidae) detected in Melophagus ovinus (Diptera: Hippoboscoidea) and Ornithodoros lahorensis (Ixodida: Argasidae) removed from sheep in Xinjiang, China. J. Med. Entomol. 2020, 57, 631–635. [Google Scholar] [CrossRef]
- Halos, L.; Jamal, T.; Maillard, R.; Girard, B.; Guillot, J.; Chomel, B.; Vayssier-Taussat, M.; Boulouis, H.J. Role of Hippoboscidae flies as potential vectors of Bartonella spp. infecting wild and domestic ruminants. Appl. Environ. Microbiol. 2004, 70, 6302–6305. [Google Scholar] [CrossRef] [Green Version]
- Hornok, S.; de la Fuente, J.; Biró, N.; de Fernández, M.I.G.; Meli, M.L.; Elek, V.; Gönczi, E.; Meili, T.; Tánczos, B.; Farkas, R.; et al. First molecular evidence of Anaplasma ovis and Rickettsia spp. in keds (Diptera: Hippoboscidae) of sheep and wild ruminants. Vector Borne Zoonotic Dis. 2011, 11, 1319–1321. [Google Scholar] [CrossRef] [Green Version]
- Kumsa, B.; Socolovschi, C.; Parola, P.; Rolain, J.M.; Raoult, D. Molecular detection of Acinetobacter species in lice and keds of domestic animals in Oromia Regional State, Ethiopia. PLoS ONE 2012, 7, e52377. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; He, B.; Li, K.R.; Li, F.; Zhang, L.Y.; Li, X.Q.; Liu, Y.H. First report of Anaplasma ovis in pupal and adult Melophagus ovinus (sheep ked) collected in South Xinjiang, China. Parasites Vectors 2018, 11, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.H.; He, B.; Li, K.R.; Li, F.; Zhang, L.Y.; Li, X.Q.; Zhao, L. First report of border disease virus in Melophagus ovinus (sheep ked) collected in Xinjiang, China. PLoS ONE 2019, 14, e0221435. [Google Scholar] [CrossRef] [PubMed]
- Battilani, M.; Arcangeli, S.D.; Balboni, A.; Dondi, F. Genetic diversity and molecular epidemiology of Anaplasma. Infect. Genet. Evol. 2017, 49, 195–211. [Google Scholar] [CrossRef]
- Han, R.; Yang, J.F.; Mukhtar, M.U.; Chen, Z.; Niu, Q.L.; Lin, Y.Q.; Liu, G.Y.; Luo, J.X.; Yin, H.; Liu, Z.J. Molecular detection of Anaplasma infections in ixodid ticks from the Qinghai-Tibet Plateau. Infect. Dis. Poverty 2019, 8, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.F.; Liu, Z.J.; Niu, Q.L.; Liu, J.L.; Han, R.; Liu, G.Y.; Shi, Y.X.; Luo, J.X.; Yin, H. Molecular survey and characterization of a novel Anaplasma species closely related to Anaplasma capra in ticks, northwestern China. Parasites Vectors 2016, 9, 603. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.-R.; Han, F.-J.; Luo, L.-M.; Zhao, F.-M.; Han, H.-J.; Zhang, Z.-T.; Liu, J.-W.; Xue, Z.-F.; Liu, M.-M.; Ma, D.-Q.; et al. Anaplasma species detected in Haemaphysalis longicornis tick from China. Ticks Tick Borne Dis. 2018, 9, 840–843. [Google Scholar] [CrossRef]
- Stuen, S.; Granquist, E.G.; Silaghi, C. Anaplasma phagocytophilum-a widespread multi-host pathogen with highly adaptive strategies. Front. Cell. Infect. Microbiol. 2013, 3, 31. [Google Scholar] [CrossRef] [Green Version]
- Qi, M.; Cui, Y.Y.; Song, X.M.; Zhao, A.Y.; Bo, J.; Zheng, M.L.; Ning, C.S.; Tao, D.Y. Common occurrence of Theileria annulata and the first report of T. ovis in dairy cattle from Southern Xinjiang, China. Ticks Tick Borne Dis. 2018, 9, 1446–1450. [Google Scholar] [CrossRef]
- Li, Y.Q.; Guan, G.Q.; Ma, M.L.; Liu, J.L.; Ren, Q.Y.; Luo, J.X.; Yin, H. Theileria ovis discovered in China. Exp. Parasitol. 2011, 127, 304–307. [Google Scholar] [CrossRef]
- Yang, Y.; Mao, Y.J.; Kelly, P.; Yang, Z.P.; Luan, L.; Zhang, J.L.; Li, J.; EI-Mahallawy, H.S.; Wang, C.M. A pan-Theileria FRET-qPCR survey for Theileria spp. in ruminants from nine provinces of China. Parasites Vectors 2014, 7, 413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.X.; Jian, Y.N.; Jia, L.J.; Galon, E.M.; Benedicto, B.; Wang, G.P.; Cai, Q.G.; Liu, M.M.; Li, Y.C.; Ji, J.W.; et al. Molecular characterization of tick-borne bacteria and protozoans in yaks (Bos grunniens), Tibetan sheep (Ovis aries) and Bactrian camels (Camelus bactrianus) in the Qinghai-Tibetan Plateau Area, China. Ticks Tick Borne Dis. 2020, 11, 101466. [Google Scholar] [CrossRef]
- Hao, L.L.; Yuan, D.B.; Li, S.H.; Jia, T.; Guo, L.; Hou, W.; Lu, Z.P.; Mo, X.; Yin, J.; Yang, A.G.; et al. Detection of Theileria spp. in ticks, sheep keds (Melophagus ovinus), and livestock in the eastern Tibetan Plateau, China. Parasitol. Res. 2020, 119, 2641–2648. [Google Scholar] [CrossRef]
- Li, H.; Zheng, Y.-C.; Ma, L.; Jia, N.; Jiang, B.-G.; Jiang, R.-R.; Huo, Q.-B.; Wang, Y.-W.; Liu, H.-B.; Chu, Y.-L.; et al. Human infection with a novel tick-borne Anaplasma species in China: A surveillance study. Lancet Infect. Dis. 2015, 15, 663–670. [Google Scholar] [CrossRef]
- Torina, A.; Agnone, A.; Blanda, V.; Alongi, A.; D’Agostino, R.; Caracappa, S.; Marino, A.M.F.; Marco, V.D.; de la Fuente, J. Development and validation of two PCR tests for the detection of and differentiation between Anaplasma ovis and Anaplasma marginale. Ticks Tick Borne Dis. 2012, 3, 283–287. [Google Scholar] [CrossRef]
- Wang, H.N.; Yang, J.F.; Mukhtar, M.U.; Liu, Z.J.; Zhang, M.H.; Wang, X.L. Molecular detection and identification of tick-borne bacteria and protozoans in goats and wild Siberian roe deer (Capreolus pygargus) from Heilongjiang Province, northeastern China. Parasites Vectors 2019, 12, 296. [Google Scholar] [CrossRef] [Green Version]
- Anstead, C.A.; Chilton, N.B. A novel Rickettsia species detected in vole ticks (Ixodes angustus) from Western Canada. Appl. Environ. Microbiol. 2013, 79, 7583–7589. [Google Scholar] [CrossRef] [Green Version]
- Rijpkema, S.G.; Molkenboer, M.J.; Schouls, L.M.; Jongejan, F.; Schellekens, J.F. Simultaneous detection and genotyping of three genomic groups of Borrelia burgdorferi sensu lato in Dutch Ixodes ricinus ticks by characterization of the amplified intergenic spacer region between 5S and 23S rRNA genes. J. Clin. Microbiol. 1995, 33, 3091–3095. [Google Scholar] [CrossRef] [Green Version]
- Roux, V.; Fournier, P.E.; Raoult, D. Differentiation of spotted fever group rickettsiae by sequencing and analysis of restriction fragment length polymorphism of PCR-amplified DNA of the gene encoding the protein rOmpA. J. Clin. Microbiol. 1996, 34, 2058–2065. [Google Scholar] [CrossRef] [Green Version]
County/Average Altitude | Number of Pooled | Number of Infected (n)/Infection Rate (%) | |||
---|---|---|---|---|---|
A. ovis | A. bovis | A. phagocytophilum | T. ovis | ||
Xunhua/3000 m | 8 | 6/75.0 | 3/37.5 | 1/12.5 | 8/100 |
Maqin/3800 m | 37 | 10/27.0 | 1/2.7 | 1/2.7 | 32/86.5 |
Dari/4100 m | 15 | 4/26.7 | 2/13.3 | 0/0 | 14/93.3 |
Zhiduo/4100 m | 32 | 16/50.0 | 10/31.3 | 7/21.9 | 28/87.5 |
Total | 92 | 36/39.1 | 16/17.4 | 9/9.8 | 82/89.1 |
Group | Number of Pooled | Number of Infected (n)/Infection Rate (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
A. ovis | p-Value | A. bovis | p-Value | A. phagocytophilum | p-Value | T. ovis | p-Value | |||
Region | Haidong | 8 | 6/75.0 | 0.01 | 3/37.5 | 0.003 | 1/12.5 | 0.011 | 8/100 | 0.581 |
Golog | 52 | 14/26.9 | 3/5.8 | 1/1.9 | 46/88.5 | |||||
Yushu | 32 | 16/50.0 | 10/31.3 | 7/21.9 | 28/87.5 | |||||
Gender | Female | 41 | 18/43.9 | 0.40 | 5/12.2 | 0.238 | 6/14.6 | 0.160 | 36/87.8 | 0.714 |
Male | 51 | 18/35.3 | 11/21.7 | 3/5.9 | 46/90.2 | |||||
Altitude | 3000 m | 8 | 6/75.0 | 0.033 | 3/37.5 | 0.007 | 1/12.5 | 0.169 | 8/100 | 0.537 |
3800 m | 37 | 10/27.0 | 1/2.7 | 1/2.7 | 32/86.5 | |||||
4100 m | 47 | 20/42.6 | 12/25.5 | 7/14.9 | 42/89.4 |
Pathogens | Target Gene | Methods | Primers | Product (bp) | Annealing T (°C) | Reference | |
---|---|---|---|---|---|---|---|
A. bovis | 16S rRNA | PCR | EE1 EE2 | 5′-TCCTGGCTCAGAACGAACGCTGGCGGC-3′ 5′-AGTCACTGACCCAACCTTAAATGGCTG-3′ | 1430 | 55 | [27] |
nPCR † | AB1f AB1r | 5′-CTCGTAGCTTGCTATGAGAAC-3′ 5′-TCTCCCGGACTCCAGTCTG-3′ | 551 | 60 | [27] | ||
A. phagocytephilum | 16S rRNA | PCR | EE1 EE2 | 5′-TCCTGGCTCAGAACGAACGCTGGCGGC-3′ 5′-AGTCACTGACCCAACCTTAAATGGCTG-3′ | 1430 | 55 | [27] |
nPCR | SP2f SP2r | 5′-GCTGAATGTGGGGATAATTTAT-3′ 5′-ATGGCTGCTTCCTTTCGGTTA-3′ | 641 | 60 | [27] | ||
A. centrale | 16S rRNA | PCR | EE1 EE2 | 5′-TCCTGGCTCAGAACGAACGCTGGCGGC-3′ 5′-AGTCACTGACCCAACCTTAAATGGCTG-3′ | 1430 | 55 | [27] |
nPCR | AC1f AC1r | 5′-CTGCTTTTAATACTGCAGGACTA-3′ 5′-ATGCAGCACCTGTGTGAGGT-3′ | 426 | 60 | [27] | ||
A. platys | 16S rRNA | PCR | EE1 EE2 | 5′-TCCTGGCTCAGAACGAACGCTGGCGGC-3′ 5′-AGTCACTGACCCAACCTTAAATGGCTG-3′ | 1430 | 55 | [27] |
nPCR | APf APr | 5′-AAGTCGAACGGATTTTTGTC-3′ 5′-CTTTAACTTACCGAACC-3′ | 506 | 60 | [27] | ||
A. ovis | msp4 | PCR | oMSP4Fw oMSP4Rev | 5′-TGAAGGGAGCGGGGTCATGGG-3′ 5′-GAGTAATTGCAGCCAGGGACTCT-3′ | 347 | 62 | [26] |
A. marginale | msp4 | PCR | mMSP4Fw mMSP4Rev | 5′-CTGAAGGGGGAGTAATGGG-3′ 5′-GGTAATAGCTGCCAGAGATTCC-3′ | 344 | 60 | [26] |
A. capra | gltA | PCR | Outer-f Outer-r | 5′-GCGATTTTAGAGTGYGGAGATTG-3′ 5′-TACAATACCGGAGTAAAAGTCAA-3′ | 1031 | 55 | [25] |
nPCR | Inner-f Inner-r | 5′-TCATCTCCTGTTGCACGGTGCCC-3′ 5′-CTCTGAATGAACATGCCCACCCT-3′ | 594 | 60 | [25] | ||
16s rRNA | PCR | Capra-F Capra-R | 5′-GCAAGTCGAACGGACCAAATCTGT-3′ 5′-CCACGATTACTAGCGATTCCGACTTC-3′ | 1261 | 60 | [26] | |
Piroplasm | 18S rRNA | PCR | Piro1-S Piro3-AS | 5′-CTTGACGGTAGGGTATTGGC-3′ 5′-CCTTCCTTTAAGTGATAAGGTTCAC-3′ | 1410 | 55 | [27] |
nPCR | PIRO-A1 PIRO-B | 5′-CGCAAATTACCCAATCCTGACA-3′ 5′-TTAAATACGAATGCCCCCAAC-3′ | 430 | 55 | [27] | ||
BDV ‡ | 5′-UTR | RT-PCR | PBD1 PBD2 | 5′-TCGTGGTGAGATCCCTGAG-3′ 5′-GCAGAGATTTTTTATACTAGCCTATRC-3′ | 225 | 54 | [14] |
Rickettsia spp. | 16S rRNA | PCR | Rick-16S-F3 Rick-16S-R4 | 5′-ATCAGTACGGAATAACTTTTA-3′ 5′-TGCCTCTTGCGTTAGCTCAC-3′ | 1284 | 58 | [28] |
OmpA | PCR | Rr190.70 Rr190.701 | 5′-ATGGCGAATATTTCTCCAAAA-3′ 5′-GTTCCGTTAATGGCAGCATCT-3′ | 632 | 50 | [30] | |
Borrelia spp. | ITS 5S-23S rRNA | PCR | Outer23SN1 Outer23SC1 | 5′-ACCATAGACTCTTATTACTTTGAC-3′ 5′-TAAGCTGACTAATACTAATTACCC-3′ | 380 | 52 | [29] |
nPCR | Inter-23SN2 Inter-23SC2 | 5′-ACCATAGACTCTTATTACTTTGACCA-3′ 5′-GAGAGTAGGTTATTGCCAGGG-3′ | 230 | 55 | [29] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.-X.; Wang, Y.; Li, Y.; Han, S.-Y.; Wang, B.; Yuan, G.-H.; Zhang, P.-Y.; Yang, Z.-W.; Wang, S.-L.; Chen, J.-Y.; et al. Vector-Borne Pathogens with Veterinary and Public Health Significance in Melophagus ovinus (Sheep Ked) from the Qinghai-Tibet Plateau. Pathogens 2021, 10, 249. https://doi.org/10.3390/pathogens10020249
Zhang Q-X, Wang Y, Li Y, Han S-Y, Wang B, Yuan G-H, Zhang P-Y, Yang Z-W, Wang S-L, Chen J-Y, et al. Vector-Borne Pathogens with Veterinary and Public Health Significance in Melophagus ovinus (Sheep Ked) from the Qinghai-Tibet Plateau. Pathogens. 2021; 10(2):249. https://doi.org/10.3390/pathogens10020249
Chicago/Turabian StyleZhang, Qing-Xun, Ye Wang, Ying Li, Shu-Yi Han, Bo Wang, Guo-Hui Yuan, Pei-Yang Zhang, Zi-Wen Yang, Shuang-Ling Wang, Ji-Yong Chen, and et al. 2021. "Vector-Borne Pathogens with Veterinary and Public Health Significance in Melophagus ovinus (Sheep Ked) from the Qinghai-Tibet Plateau" Pathogens 10, no. 2: 249. https://doi.org/10.3390/pathogens10020249