Effects of Bioactive Peptides from Atlantic Salmon Processing By-Products on Oxyntopeptic and Enteroendocrine Cells of the Gastric Mucosa of European Seabass and Gilthead Seabream
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Protein Hydrolysate
2.2. Feed Production
2.3. Chemical Analysis
2.4. Rearing Condition and Sampling
2.5. Feed Intake and Growth Calculation
2.6. Immunohistochemistry
2.7. Threshold Binarization Procedure
2.8. Antibody Specificity
2.9. Morphometric Evaluations and Statistical Analysis
3. Results
3.1. Protein Hydrolysate
3.2. Feed Intake and Growth
3.3. Seabream and Seabass Morphological Features
3.4. Seabream Morphometric Results
3.5. Seabass Morphometric Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amarowicz, R.; Shahidi, F. Antioxidant activity of peptide fractions of capelin protein hydrolysates. Food Chem. 1997, 58, 355–359. [Google Scholar] [CrossRef]
- Wu, H.C.; Chen, H.M.; Shiau, C.Y. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int. 2003, 36, 949–957. [Google Scholar] [CrossRef]
- Kim, S.Y.; Je, J.Y.; Kim, S.K. Purification and characterization of antioxidant peptide from Hoki (Johnius belengerii) frame protein by gastrointestinal digestion. J. Nutr. Biochem. 2007, 18, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Klompong, V.; Benjakul, S.; Kantachote, D.; Shahidi, F. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem. 2007, 102, 1317–1327. [Google Scholar] [CrossRef]
- Mendis, E.; Rajapakse, N.; Byun, H.-G.; Kim, S.-K. Investigation of Jumbo Squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sci. 2005, 77, 2166–2178. [Google Scholar] [CrossRef]
- Je, J.Y.; Lee, K.H.; Lee, M.H.; Ahn, C.B. Antioxidant and antihypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Food Res. Int. 2009, 42, 1266–1272. [Google Scholar] [CrossRef]
- Chalamaiah, M.; Dinesh Kumar, B.; Hemalatha, R.; Jyothirmayi, T. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chem. 2012, 135, 3020–3038. [Google Scholar] [CrossRef]
- Ryan, J.T.; Ross, R.P.; Bolton, D.; Fitzgerald, G.F.; Stanton, C. Bioactive peptides from muscle sources: Meat and fish. Nutrients 2011, 3, 765–791. [Google Scholar] [CrossRef]
- Iwaniak, A.; Minkiewicz, P.; Darewicz, M. Food—Originating ACE inhibitors, including antihypertensive peptides, as preventive food components in blood pressure reduction. Compr. Rev. Food Sci. Food Saf. 2014, 13, 114–134. [Google Scholar] [CrossRef]
- Aksnes, A.; Hope, B.; Høstmark, Ø.; Albrektsen, S. Inclusion of size fractionated fish hydrolysate in high plant protein diets for Atlantic cod, Gadus morhua. Aquaculture 2006, 261, 1102–1110. [Google Scholar] [CrossRef]
- Aksnes, A.; Hope, B.; Jönsson, E.; Björnsson, B.T.; Albrektsen, S. Size-fractionated fish hydrolysate as feed ingredient for rainbow trout (Oncorhynchus mykiss) fed high plant protein diets. I: Growth, growth regulation and feed utilization. Aquaculture 2006, 261, 305–317. [Google Scholar] [CrossRef]
- Cahu, C.; Infante, J.Z. Substitution of live food by formulated diets in marine fish larvae. Aquaculture 2001, 200, 161–180. [Google Scholar] [CrossRef]
- Kolkovski, S.; Czesny, S.; Dabrowski, K. Use of krill hydrolysate as feed attractant for fish larvae and juveniles. J. World Aquacult. Soc. 2000, 31, 81–88. [Google Scholar] [CrossRef]
- Refstie, S.; Olli, J.J.; Standal, H. Feed intake, growth, and protein utilisation by post-smolt Atlantic salmon (Salmo salar) in response to graded levels of fish protein hydrolysate in the diet. Aquaculture 2004, 239, 331–349. [Google Scholar] [CrossRef]
- Panjaitan, F.C.A.; Gomez, H.L.R.; Chang, Y.W. In silico analysis of bioactive peptides released from giant grouper (Epinephelus lanceolatus) roe proteins identified by proteomics approach. Molecules 2018, 23, 2910. [Google Scholar] [CrossRef]
- Peredo-Lovillo, A.; Hernández-Mendoza, A.; Vallejo-Cordoba, B.; Romero-Luna, H.E. Conventional and in silico approaches to select promising food-derived bioactive peptides: A review. Food Chem. X 2022, 13, 100183. [Google Scholar] [CrossRef]
- Girgih, A.T.; Udenigwe, C.C.; Hasan, F.M.; Gill, T.A.; Aluko, R.E. Antioxidant properties of Salmon (Salmo salar) protein hydrolysate and peptide fractions isolated by reverse-phase HPLC. Food Res. Int. 2013, 52, 315–322. [Google Scholar] [CrossRef]
- Kristinsson, H.G.; Rasco, B.A. Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. J. Agric. Food Chem. 2000, 48, 657–666. [Google Scholar] [CrossRef]
- Ono, S.; Hosokawa, M.; Miyashita, K.; Takahashi, K. Inhibition properties of dipeptides from salmon muscle hydrolysate on angiotensin I-converting enzyme. Int. J. Food Sci. Technol. 2006, 41, 383–386. [Google Scholar] [CrossRef]
- Gu, R.Z.; Li, C.Y.; Liu, W.Y.; Yi, W.X.; Cai, M.Y. Angiotensin I-converting enzyme inhibitory activity of low-molecular-weight peptides from Atlantic salmon (Salmo salar L.) skin. Food Res. Int. 2011, 44, 1536–1540. [Google Scholar] [CrossRef]
- Parma, L.; Busti, S.; Ciulli, S.; Volpe, E.; Errani, F.; Oterhals, Å.; Romarheim, O.H.; Aspevik, T.; Dondi, F.; Gatta, P.P.; et al. Growth, plasma biochemistry and immune-related gene expression of European sea bass (Dicentrarchus labrax) fed bioactive peptides from farmed salmon by-products. Aquaculture 2023, 573, 738982. [Google Scholar] [CrossRef]
- Cummings, D.E.; Overduin, J. Gastrointestinal regulation of food intake. J. Clin. Investig. 2007, 117, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Sternini, C.; Anselmi, L.; Rozengurt, E. Enteroendocrine cells: A site of ‘taste’ in gastrointestinal chemosensing. Curr. Opin. Endocrinol. Diabetes Obes. 2008, 15, 73. [Google Scholar] [CrossRef] [PubMed]
- Moran, T.H.; Dailey, M.J. Gut peptides: Targets for antiobesity drug development? Endocrinology 2009, 150, 2526–2530. [Google Scholar] [CrossRef]
- Westerterp-Plantenga, M.S.; Lemmens, S.G.; Westerterp, K.R. Dietary protein–its role in satiety, energetics, weight loss and health. Br. J. Nutr. 2012, 108, S105–S112. [Google Scholar] [CrossRef]
- Bensaid, A.; Tomè, D.; Gietzen, D.; Even, P.; Morens, C.; Gaussercs, N.; Fromentin, G. Protein is more potent than carbohydrate for reducing appetite in rats. Physiol. Behav. 2002, 75, 577–582. [Google Scholar] [CrossRef]
- Caron, J.; Domenger, D.; Dhulster, P.; Ravallec, R.; Cudennec, B. Protein digestion-derived peptides and the peripheral regulation of food intake. Front. Endocrinol. 2017, 8, 85. [Google Scholar] [CrossRef]
- Chaudhri, O.; Small, C.; Bloom, S. Gastrointestinal hormones regulating appetite. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2006, 361, 1187–1209. [Google Scholar] [CrossRef]
- Volkoff, H.; Xu, M.; MacDonald, E.; Hoskins, L. Aspects of the hormonal regulation of appetite in fish with emphasis on goldfish, Atlantic cod and winter flounder: Notes on actions and responses to nutritional, environmental and reproductive changes. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2009, 153, 8–12. [Google Scholar] [CrossRef]
- Jönsson, E. The role of ghrelin in energy balance regulation in fish. Gen. Comp. Endocrinol. 2013, 187, 79–85. [Google Scholar] [CrossRef]
- Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Cummings, D.E.; Purnell, J.Q.; Frayo, R.S.; Schmidova, K.; Wisse, B.E.; Weigle, D.S. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 2001, 50, 1714–1719. [Google Scholar] [CrossRef] [PubMed]
- Cummings, D.E. Ghrelin and the short- and long-term regulation of appetite and body weight. Physiol. Behav. 2006, 89, 71–84. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, E.; Volkoff, H. Cloning, distribution and effects of season and nutritional status on the expression of neuropeptide Y (NPY), cocaine and amphetamine regulated transcript (CART) and cholecystokinin (CCK) in winter flounder (Pseudopleuronectes americanus). Horm. Behav. 2009, 56, 58–65. [Google Scholar] [CrossRef]
- Volkoff, H. The role of neuropeptide Y, orexins, cocaine and amphetamine related transcript, cholecystokinin, amylin and leptin in the regulation of feeding in fish. Comp. Biochem. Physiol. 2006, 144, 325–331. [Google Scholar] [CrossRef]
- Volkoff, H.; Canosa, L.F.; Unniappan, S.; Cerda-Reverter, J.M.; Bernier, N.J.; Kelly, S.P.; Peter, R.E. Neuropeptides and the control of food intake in fish. Gen. Comp. Endocrinol. 2005, 142, 3–19. [Google Scholar] [CrossRef]
- Zhou, Y.; Liang, X.F.; Yuan, X.C.; Li, J.; He, Y.; Fang, L.; Guo, X.; Liu, L.; Li, B.; Shen, D. Neuropeptide Y stimulates food intake and regulates metabolism in grass carp, Ctenopharyngodon idellus. Aquaculture 2013, 380–383, 52–61. [Google Scholar] [CrossRef]
- Sheridan, M.A.; Kittilson, J.D. The role of somatostatins in the regulation of metabolism in fish. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2004, 138, 323–330. [Google Scholar] [CrossRef]
- Martínez-Alvarez, O. Hormone—Like Peptides Obtained by Marine—Protein Hydrolysis and Their Bioactivities. In Marine Proteins and Peptides: Biological Activities and Applications; Kim, S.-K., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2013; pp. 351–367. [Google Scholar] [CrossRef]
- Möller, N.P.; Scholz-Ahrens, K.E.; Roos, N.; Schrezenmeir, J. Bioactive peptides and proteins from foods: Indication for health effects. Eur. J. Nutr. 2008, 47, 171–182. [Google Scholar] [CrossRef]
- Kitts, D.D.; Weiler, K. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr. Pharm. Des. 2003, 9, 1309–1323. [Google Scholar] [CrossRef]
- Teschemacher, H. Opioid receptor ligands derived from food proteins. Curr. Pharm. Des. 2003, 9, 1331–1344. [Google Scholar] [CrossRef] [PubMed]
- Fouchereau-Peron, M.; Duvail, L.; Michel, C.; Gildberg, A.; Batista, I.; Le Gal, Y. Isolation of an acid fraction from a fish protein hydrolysate with a calcitonin-gene-related-peptide-like biological activity. Biotechnol. Appl. Biochem. 1999, 29, 87–92. [Google Scholar]
- Martínez-Alvarez, O.; Guimas, L.; Delannoy, C.; Fouchereau-Peron, M. Occurrence of a CGRP like molecule in Siki (Centroscymnus coelolepsis) hydrolysate of industrial origin. J. Agric. Food Chem. 2007, 55, 5469–5475. [Google Scholar] [CrossRef] [PubMed]
- Šližytė, R.; Mozuraitytė, R.; Martínez-Alvarez, O.; Falch, E.; Fouchereau-Peron, M.; Rustad, T. Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (Gadus morhua) backbones. Process Biochem. 2009, 44, 668–677. [Google Scholar] [CrossRef]
- Parma, L.; Yúfera, M.; Navarro-Guillén, C.; Moyano, F.J.; Soverini, M.; D’Amico, F.; Candela, M.; Fontanillas, R.; Gatta, P.P.; Bonaldo, A. Effects of calcium carbonate inclusion in low fishmeal diets on growth, gastrointestinal pH, digestive enzyme activity and gut bacterial community of European sea bass (Dicentrarchus labrax L.) juveniles. Aquaculture 2019, 510, 283–292. [Google Scholar] [CrossRef]
- Parma, L.; Pelusio, N.F.; Gisbert, E.; Esteban, M.A.; D’Amico, F.; Soverini, M.; Candela, M.; Dondi, F.; Gatta, P.P.; Bonaldo, A. Effects of rearing density on growth, digestive conditions, welfare indicators and gut bacterial community of gilthead sea bream (Sparus aurata, L. 1758) fed different fishmeal and fish oil dietary levels. Aquaculture 2020, 518, 734854. [Google Scholar] [CrossRef]
- Jobling, M. National Research Council (NRC): Nutrient requirements of fish shrimp. Aquacult. Int. 2012, 20, 601–602. [Google Scholar] [CrossRef]
- ISO 5983-2:2009; Animal Feeding Stuffs—Determination of Nitrogen Content and Calculation of Crude Protein Content—Part 2: Block Digestion and Steam Distillation Method. ISO: Geneva, Switzerland, 2009.
- ISO 5984-2, 2002; Animal Feeding Stuffs—Determination of Crude Ash. ISO: Geneva, Switzerland, 2002.
- ISO 6469-2, 2002; Electric Road Vehicles—Safety Specifications—Part 2: Functional Safety Means and Protection against Failures. ISO: Geneva, Switzerland, 2002.
- Oterhals, Å.; Samuelsen, T.A. Plasticization effect of solubles in fishmeal. Food Res. Int. 2015, 69, 313–321. [Google Scholar] [CrossRef]
- Busti, S.; Bonaldo, A.; Dondi, F.; Cavallini, D.; Yúfera, M.; Gilannejad, N.; Moyano, F.J.; Gatta, P.P.; Parma, L. Effects of different feeding frequencies on growth, feed utilization, digestive enzyme activities and plasma biochemistry of gilthead sea bream (Sparus aurata) fed with different fishmeal and fish oil dietary levels. Aquaculture 2020, 529, 735616. [Google Scholar] [CrossRef]
- Mazzoni, M.; Lattanzio, G.; Bonaldo, A.; Tagliavia, C.; Parma, L.; Busti, S.; Gatta, P.P.; Bernardi, N.; Clavenzani, P. Effect of essential oils on the oxyntopeptic cells and somatostatin and ghrelin immunoreactive cells in the European Sea Bass (Dicentrarchus labrax) gastric mucosa. Animals 2021, 11, 3401. [Google Scholar] [CrossRef]
- Cahu, C.L.; Infante, J.Z.; Quazuguel, P.; Le Gall, M.M. Protein hydrolysate vs. fish meal in compound diets for 10-day old sea bass Dicentrarchus labrax larvae. Aquaculture 1999, 171, 109–119. [Google Scholar] [CrossRef]
- Hardy, R.W. Fish Hydrolysates: Production and Use in Aquaculture Feeds. In Proceedings of the Aquaculture Feed Processing and Nutrition Workshop; Akiyama, D.M., Tan, R.K.H., Eds.; American Soybean Association: Singapore, 1991; pp. 109–115. [Google Scholar]
- Bøgwald, J.; Dalmo, R.A.; Leifson, R.M.; Stenbern, E.; Gildberg, A. The stimulatory effect of a muscle protein hydrolysate from Atlantic cod, Gadus morhua L. on Atlantic salmon, Salmo salar L., head kidney leucocytes. Fish Shellfish Immunol. 1996, 6, 3–16. [Google Scholar] [CrossRef]
- Gildberg, A.; Bøgwald, J.; Johansen, A.; Stenverg, E. Isolation of acid peptide fractions from a fish protein hydrolysate with strong stimulatory effect on Atlantic salmon (Salmo salar) head kidney leucocytes. Comp. Biochem. Physiol. 1996, 114, 97–101. [Google Scholar] [CrossRef]
- Liang, M.; Wang, J.; Chang, Q.; Mai, K. Effects of different levels of fish protein hydrolysate in the diet on the nonspecific immunity of Japanese sea bass, Lateolabrax japonicus (Cuvier et Valenciennes, 1828). Aquac. Res. 2006, 37, 102–106. [Google Scholar] [CrossRef]
- Hevrǿy, E.M.; Espe, M.; Waagbǿ, R.; Sandnes, K.; Ruud, M.; Hemre, G.-I. Nutrient utilization in Atlantic salmon (Salmo salar L.) fed increased levels of fish protein hydrolysate during a period of fast growth. Aquac. Nutr. 2005, 11, 301–313. [Google Scholar] [CrossRef]
- Siddik, M.A.B.; Howieson, J.; Ilham, I.; Fotedar, R. Growth, biochemical response and liver health of juvenile barramundi (Lates calcarifer) fed fermented and nonfermented tuna hydrolysate as fishmeal protein replacement ingredients. Aquat. Biol. 2018, 6, e4870. [Google Scholar] [CrossRef]
- Nguyen, M.C.; Fotedar, R.; Giridharan, B. The Effects of Fish Protein Hydrolysate as Supplementation on Growth Performance, Feed Utilization and Immunological Response in Fish: A Review. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2023; p. 01020. [Google Scholar]
- Oliva-Teles, A.; Cerqueira, A.L.; Gonçalves, P. The utilization of diets containing high levels of fish protein hydrolysate by turbot (Scophthalmus maximus) juveniles. Aquaculture 1999, 179, 195–201. [Google Scholar] [CrossRef]
- Bui, H.T.D.; Khosravi, S.; Fournier, V.; Herault, M.; Lee, K.J. Growth performance, feed utilization, innate immunity, digestibility and disease resistance of juvenile red sea bream (Pagrus major) fed diets supplemented with protein hydrolysates. Aquaculture 2014, 418–419, 11–16. [Google Scholar] [CrossRef]
- Kotzamanis, Y.P.; Gisbert, E.; Gatesoupe, F.J.; Zambonino, I.; Cahu, C. Effects of different dietary levels of fish protein hydrolysates on growth, digestive enzymes, gut microbiota, and resistance to Vibrio anguillarum in European sea bass (Dicentrarchus labrax) larvae. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2007, 147, 205–214. [Google Scholar] [CrossRef]
- Santos-Hernandez, M.S.; Miralles, B.; Amigo, L.; Recio, I. Intestinal signals of proteins and digestion-derived products relevant to satiety. J. Agric. Food Chem. 2018, 66, 10123–10131. [Google Scholar] [CrossRef]
- Wauson, E.M.; Lorente-Rodriguez, A.; Cobb, M.H. Minireview: Nutrient sensing by G protein-coupled receptors. Mol. Endocrinol. 2013, 27, 1188–1197. [Google Scholar] [CrossRef] [PubMed]
- Tulipano, G. Whey proteins and enteric hormones interplay between food components and the enteroendocrine system. Agro Food Ind. Hi-Tech 2015, 26, 15–19. [Google Scholar]
- Liou, A.P.; Chavez, D.L.; Espero, E.; Hao, S.; Wank, S.A.; Raybould, H.E. Protein hydrolysate-induced cholecystokinin secretion from enteroendocrine cells is indirectly mediated by the intestinal oligopeptide transporter PepT1. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 300, G895–G902. [Google Scholar] [CrossRef] [PubMed]
- Daly, K.; Al-Rammahi, M.; Moran, A.; Marcello, M.; Ninomiya, Y.; Shirazi-Beechey, S.P. Sensing of amino acids by the gut expressed taste receptor T1R1-T1R3 stimulates CCK secretion. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 304, G271–G282. [Google Scholar] [CrossRef] [PubMed]
- Geraedts, M.C.P.; Troost, F.J.; Fisher, M.A.J.G.; Edens, L.; Saris, W.H.M. Direct induction of CCK and GLP-1 release from murine endocrine cells by intact dietary proteins. Mol. Nutr. Food Res. 2011, 55, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Tulipano, G.; Faggi, L.; Cacciamali, A.; Caroli, A.M. Food protein-derived peptide sensing by enteroendocrine cells compared to osteoblast-like cells: Role of peptide length and peptide composition, focusing on products of beta-lactoglobulin hydrolysis. Int. Dairy J. 2017, 72, 55–62. [Google Scholar] [CrossRef]
- Tulipano, G. Role of bioactive peptide sequences in the potential impact of dairy protein intake on metabolic health. Int. J. Mol. Sci. 2020, 21, 8881. [Google Scholar] [CrossRef]
- Choi, S.; Lee, M.; Shiu, A.L.; Yo, S.J.; Hallden, G.; Aponte, G.W. GPR93 activation by protein hydrolysate induces CCK transcription and secretion in STC-1 cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292, G1366–G1375. [Google Scholar] [CrossRef]
- Cudennec, B.; Ravallec-Plé, R.; Courois, E.; Fouchereau-Peron, M. Peptides from fish and crustacean by-products hydrolysates stimulate cholecystokinin release in STC-1 cells. Food Chem. 2008, 111, 970–975. [Google Scholar] [CrossRef]
- Moughan, P.J.; Cranwell, P.D.; Smith, W.C. An evaluation with piglets of bovine milk, hydrolysed bovine milk, and isolated soybean proteins included in infant milk formulas. II. Stomach emptying rate and the postprandial change in gastric pH and milk-clotting enzyme activity. J. Pediatr. Gastroenterol. Nutr. 1991, 12, 253–259. [Google Scholar] [CrossRef]
- Daniel, H. Molecular and integrative physiology of intestinal peptide transport. Annu. Rev. Physiol. 2004, 66, 361–384. [Google Scholar] [CrossRef] [PubMed]
- Rønnestad, I.; Gavaia, J.P.; Viegas, C.S.B.; Verri, T.; Romano, A.; Nilsen, T.O.; Jordal, A.E.O.; Kamisaka, Y.; Cancela, M.L. Oligopeptide transporter PepT1 in Atlantic cod (Gadus morhua L.): Cloning, tissue expression and comparative aspects. J. Exp. Biol. 2007, 210, 3883–3896. [Google Scholar] [CrossRef] [PubMed]
- Maffia, M.; Rizzello, A.; Acierno, R.; Verri, T.; Rollo, M.; Danieli, A.; Döring, F.; Daniel, H.; Storelli, C. Characterisation of intestinal peptide transporter of the Antarctic haemoglobinless teleost Chionodraco hamatus. J. Exp. Biol. 2003, 206, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Verri, T.; Kotta, G.; Romano, A.; Tiso, N.; Peric, M.; Maffia, M.; Boli, M.; Argenton, F.; Daniel, H.; Storelli, C. Molecular and functional characterization of the zebrafish (Danio rerio) PEPT1-type peptide transporter. FEBS Lett. 2003, 549, 115–122. [Google Scholar] [CrossRef]
- Amberg, J.J.; Myr, C.; Kamisaka, Y.; Jordal, A.E.O.; Rust, M.B.; Hardy, R.W.; Koedijk, R.; Rønnestad, I. Expression of the oligopeptide transporter, PepT1, in larval Atlantic cod (Gadus morhua). Comp. Biochem. Physiol. B 2008, 150, 177–182. [Google Scholar] [CrossRef]
- Ostaszewska, T.; Kamaszewski, M.; Grochowski, P.; Dabrowski, K.; Verri, T.; Aksakal, E.; Szatkowska, I.; Nowak, Z.; Dobosz, S. The effect of peptide absorption on PepT1 gene expression and digestive system hormones in rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. Comp. Biochem. Phys. A 2010, 155, 107–114. [Google Scholar] [CrossRef]
- Lo Cascio, P.; Calabrò, C.; Bertuzzio, C.; Ilaria, C.; Marino, F.; Denaro, M.G. Immunohistochemical characterization of PepT1 and ghrelin in gastrointestinal tract of zebrafish: Effects of Spirulina vegetarian diet on the neuroendocrine system cells after alimentary stress. Front. Physiol. 2018, 9, 614. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, M.; Li, Y.; Zhang, Y.; Xu, W.; Zhao, D.; Chen, Y.; Zuo, A.; Qu, F.; Tang, J.; et al. Effects of ghrelin on intestinal cell proliferation, the expression of protein absorption and metabolism factors in juvenile grass carp (Ctenopharyngodon idella). Aquac. Rep. 2022, 22, 100928. [Google Scholar] [CrossRef]
- Blomqvist, A.G.; Söderberg, C.; Lundell, I.; Milner, R.J.; Larhammar, D. Strong evolutionary conservation of neuropeptide Y: Sequences of chicken, goldfish, and Torpedo marmorata DNA clones. Proc. Natl. Acad. Sci. USA 1992, 89, 2350–2354. [Google Scholar] [CrossRef]
- Kurokawa, T.; Suzuki, T. Development of Neuropeptide Y-related peptides in the digestive organs during the larval stage of Japanese flounder, Paralichthys olivaceus. Gen. Comp. Endocrinol. 2002, 126, 30–38. [Google Scholar] [CrossRef]
- Tatemoto, K.; Carlquist, M.; Mutt, V. Neuropeptide Y—A novel brain peptide with structural similarities to peptide YY and pan-creatic polypeptide. Nature 1982, 296, 659–660. [Google Scholar] [CrossRef] [PubMed]
- Sundström, G.; Larsson, T.; Xu, B.; Heldin, J.; Larhammar, D. Interactions of zebrafish peptide YYb with the neuropeptide Y-family receptors Y4, Y7, Y8a, and Y8b. Front. Neurosci. 2013, 7, 29. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, K.; Azuma, M.; Kang, K.S. Orexin System in Teleost Fish. In Vitamins and Hormones, 1st ed.; Harris, R.S., Lorraine, J.A., Munson, P.L., Glover, J., Aurbach, G.D., Thiman, T.V., Wool, I.G., Diczfalusy, E., Olsen, R., McCormick, D.B., Eds.; Elsevier: London, UK, 2012; Volume 89, pp. 341–361. [Google Scholar] [CrossRef]
- Cerdá-Reverter, J.; Larhammar, D. Neuropeptide Y family of peptides: Structure, anatomical expression, function, and molecular evolution. Biochem. Cell Biol. 2000, 78, 371–392. [Google Scholar] [CrossRef] [PubMed]
- López-Patiño, M.A.; Guijarro, A.I.; Isorna, E.; Delgado, M.J.; Alonso-Bedate, M.; de Pedro, N. Neuropeptide Y has a stimulatory action on feeding behavior in Goldfish (Carassius Auratus). Eur. J. Pharmacol. 1999, 377, 147–153. [Google Scholar] [CrossRef]
- Tang, Z.; Sun, C.; Yan, A.; Wu, S.; Qin, C.; Zhang, Y.; Li, W. Genes involved in fatty acid metabolism: Molecular characterization and hypothalamic mRNA response to energy status and neuropeptide Y treatment in the orange-spotted grouper Epinephelus coioides. Mol. Cell. Endocrinol. 2013, 376, 114–124. [Google Scholar] [CrossRef]
- Murashita, K.; Kurokawa, T.; Nilsen, T.O.; Rønnestad, I. Ghrelin, cholecystokinin, and peptide YY in Atlantic salmon (Salmo salar): Molecular cloning and tissue expression. Gen. Comp. Endocrinol. 2009, 160, 223–235. [Google Scholar] [CrossRef]
- Narnaware, Y.K.; Peyon, P.P.; Lin, X.; Peter, R.E. Regulation of food intake by neuropeptide Y in goldfish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 279, 1025–1034. [Google Scholar] [CrossRef]
- Liang, X.-F.; Li, G.-Z.; Yao, W.; Cheong, L.-W.; Liao, W.-Q. Molecular characterization of neuropeptide Y gene in Chinese perch, an acanthomorph fish. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2007, 148, 55–64. [Google Scholar] [CrossRef]
- Narnaware, Y.K.; Peter, R.E. Influence of diet composition on food intake and neuropeptide Y (NPY) gene expression in goldfish brain. Regul. Pept. 2022, 103, 75–83. [Google Scholar] [CrossRef]
- Fredriksson, R.; Larson, E.T.; Yan, Y.-L.; Postlethwait, J.H.; Larhammar, D. Novel Neuropeptide Y Y2-Like receptor subtype in zebrafish and frogs supports early vertebrate chromosome duplications. J. Mol. Evol. 2004, 58, 106–114. [Google Scholar] [CrossRef]
- Fredriksson, R.; Sjödin, P.; Larson, E.T.; Conlon, J.M.; Larhammar, D. Cloning and characterization of a zebrafish Y2 receptor. Regul. Pept. 2006, 133, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Lundell, I.; Berglund, M.M.; Starback, P.; Salaneck, E.; Gehlert, D.R.; Larhammar, D. Cloning and characterization of a novel neuropeptide Y receptor subtype in the zebrafish. DNA Cell Biol. 1997, 16, 1357. [Google Scholar] [CrossRef]
- Assan, D.; Mustapha, U.F.; Chen, H.; Li, Z.; Peng, Y.; Li, G. The roles of neuropeptide Y (Npy) and peptide YY (Pyy) in Teleost food intake: A mini review. Life 2021, 11, 547. [Google Scholar] [CrossRef] [PubMed]
- Bar, F.; Foh, B.; Pagel, R.; Schroder, T.; Schlichting, H.; Hirose, M.; Sina, C. Carboxypeptidase E modulates intestinal immune homeostasis and protects against experimental colitis in mice. PLoS ONE 2014, 9, e102347. [Google Scholar] [CrossRef]
- Gomez, G.A.; Englander, E.W.; Greeley, G.H. Postpyloric Gastrointestinal Peptides. In Physiology of the Gastrointestinal Tract; Johnson, L.R., Ed.; Elsevier Inc.: New York, NY, USA, 2012; Volume 1, pp. 155–198. [Google Scholar]
- Vigliano, F.A.; Munoz, L.; Hernandez, D.; Cerutti, P.; Bermudez, R.; Quiroga, M.I. An immunohistochemical study of the gut neuroendocrine system in juvenile pejerrey Odontesthes bonariensis (Valenciennes). J. Fish Biol. 2011, 78, 901–911. [Google Scholar] [CrossRef]
- Hernández, D.R.; Vigliano, F.A.; Sanchez, S.; Bermudez, R.; Domitrovic, H.A.; Quiroga, M.I. Neuroendocrine system of the digestive tract in Rhamdia quelen juvenile: An immunohistochemical study. Tissue Cell 2012, 44, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.T.; Costa, L.S.; Oliveira, I.R.; Araujo, J.C.; Aerts, M.; Vigliano, F.A.; Rosa, P.V. Relative distribution of gastrin-, CCK-8-, NPY- and CGRP-immunoreactive cells in the digestive tract of dorado (Salminus brasiliensis). Tissue Cell 2015, 47, 123–136. [Google Scholar] [CrossRef]
- Lin, X.; Wang, P.; Ou, Y.; Li, J.; Wen, J. An immunohistochemical study on endocrine cells in the neuroendocrine system of the digestive tract of milkfish Chanos chanos (Forsskal, 1775). Aquac. Res. 2017, 48, 1439–1449. [Google Scholar] [CrossRef]
- Pereira, R.T.; Rodriguez de Freitas, T.; Cardozo de Oliveira, I.R.; Costa, L.S.; Vigliano, F.A.; Rosa, P.V. Endocrine cells producing peptide hormones in the intestine of Nile tilapia: Distribution and effects of feeding and fasting on the cell density. Fish Physiol. Biochem. 2017, 43, 1399–1412. [Google Scholar] [CrossRef]
- Ji, W.; Ping, H.C.; Wei, K.J.; Zhang, G.R.; Shi, Z.C.; Yang, R.B.; Wang, W.M. Ghrelin, neuropeptide Y (NPY) and cholecystokinin (CCK) in blunt snout bream (Megalobrama amblycephala): cDNA cloning, tissue distribution and mRNA expression changes responding to fasting and refeeding. Gen. Comp. Endocrinol. 2015, 223, 108–119. [Google Scholar] [CrossRef]
- Hernández, D.R.; Barrios, C.E.; Santinón, J.J.; Sánchez, S.; Baldisserotto, B. Effect of fasting and feeding on growth, intestinal morphology and enteroendocrine cell density in Rhamdia quelen juveniles. Aquac. Res. 2018, 49, 1512–1520. [Google Scholar] [CrossRef]
- Kondo, F.; Ohta, T.; Iwai, T.; Ido, A.; Miura, C.; Miura, T. Effect of the squid viscera hydrolysate on growth performance and digestion in the red sea bream Pagrus major. Fish Physiol. Biochem. 2017, 43, 1543–1555. [Google Scholar] [CrossRef] [PubMed]
- Gorissen, M.H.A.G.; Flik, G.; Huising, M. Peptides and proteins regulating food intake: A comparative view. Anim. Biol. 2006, 56, 447–473. [Google Scholar] [CrossRef]
- Volkoff, H. The neuroendocrine regulation of food intake in fish: A review of current knowledge. Front. Neurosci. 2016, 10, 540. [Google Scholar] [CrossRef] [PubMed]
- Jensen, C.; Dale, H.F.; Hausken, T.; Hatlebakk, J.G.; Brønstad, I.; Lied, G.A.; Hoff, D.A.L. The effect of supplementation with low doses of a cod protein hydrolysate on satiety hormones and inflammatory biomarkers in adults with metabolic syndrome: A randomized, double-blind study. Nutrients 2020, 12, 3421. [Google Scholar] [CrossRef]
- Günther, T.; Tulipano, G.; Dournaud, P.; Bousquet, C.; Csaba, Z.; Kreienkamp, H.J.; Lupp, A.; Korbonits, M.; Castaño, J.P.; Wester, H.J.; et al. International union of basic and clinical pharmacology. CV. Somatostatin receptors: Structure, function, ligands, and new nomenclature. Pharmacol. Rev. 2018, 70, 763–835. [Google Scholar] [CrossRef]
- Holstein, B.; Cederberg, C. Effect of somatostatin on basal and stimulated gastric secretion in the cod, Gadus morhua. Am. J. Physiol. 1988, 254, G183–G188. [Google Scholar] [CrossRef]
- Holstein, B.; Humphrey, C.S. Stimulation of gastric acid secretion and suppression of VIP-like immunoreactivity by bombesin in the Atlantic codfish, Gadus morhua. Acta Physiol. Scand. 1980, 109, 217–223. [Google Scholar] [CrossRef]
- Uneyama, H.; Niijima, A.; San Gabriel, A.; Torii, K. Luminal amino acid sensing in the rat gastric mucosa. Am. J. Physiol. 2006, 291, G1163–G1170. [Google Scholar] [CrossRef]
- Niijima, A. Effects of oral and intestinal stimulation with umami substance on gastric vagus activity. Physiol. Behav. 1991, 49, 1025–1028. [Google Scholar] [CrossRef]
- Niijima, A.; Torii, K.; Uneyama, H. Role played by vagal chemical sensors in the hepato-portal region and duodeno-intestinal canal: An electrophysiological study. Chem. Senses. 2005, 30, i178–i179. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, E.; Hasumura, M.; Uneyama, H.; Torii, K. Luminal amino acid-sensing cells in gastric mucosa. Digestion 2011, 83, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Schubert, M.L. Gastric secretion. Curr. Opin. Gastroenterol. 2003, 19, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Schubert, M.L. Gastric secretion. Curr. Opin. Gastroenterol. 2005, 21, 636–643. [Google Scholar] [CrossRef]
- Shamburek, R.D.; Schubert, M.L. Control of gastric acid secretion. Histamine H2-receptor antagonists and H+, K+-ATPase inhibitors. Gastroenterol. Clin. N. Am. 1992, 21, 527–550. [Google Scholar] [CrossRef]
- Van Op den Bosch, J.; Adriaensen, D.; Van Nassauw, L.; Timmermans, J.P. The role(s) of somatostatin, structurally related peptides and somatostatin receptors in the gastrointestinal tract: A review. Regul. Pept. 2009, 156, 1–8. [Google Scholar] [CrossRef]
Experimental Diets | |||
---|---|---|---|
CTR | BP5 | BP10 | |
Ingredients, % | |||
Salmon hydrolysate | - | 5.00 | 10.00 |
Fish meal | 15.00 | 10.00 | 5.00 |
Soybean meal | 15.00 | 15.00 | 15.00 |
Wheat | 15.28 | 16.02 | 16.87 |
Wheat gluten | 12.20 | 11.30 | 10.30 |
Corn gluten | 8.00 | 8.00 | 8.00 |
Soy protein concentrate | 5.40 | 5.40 | 5.40 |
Fish oil | 10.00 | 9.90 | 9.80 |
Rapeseed oil | 5.00 | 5.00 | 5.00 |
Horse beans | 10.00 | 10.00 | 10.00 |
Lecithin from rapeseed | 1.00 | 1.00 | 1.00 |
* Vitamin premix | 0.50 | 0.50 | 0.50 |
* Mineral premix | 0.50 | 0.50 | 0.50 |
Monosodiumphosphate | 3.00 | 3.00 | 3.00 |
L-Lysine | 0.40 | 0.40 | 0.40 |
DL-Methionin | 0.05 | 0.05 | 0.05 |
Proximate composition % | |||
Moisture | 6.41 | 6.46 | 6.57 |
Protein | 39.90 | 39.50 | 39.22 |
Lipids | 19.20 | 18.75 | 18.04 |
Ash | 6.79 | 6.29 | 5.73 |
Protein Hydrolysate | |
---|---|
Crude protein | 82.8 |
Water soluble protein | 68.3 |
Total dry matter | 98.3 |
Ash | 6.3 |
Fat | 11.2 |
Molecular weight (kDa) % | |
>20 | 0.1 |
15–20 | <0.1 |
10–15 | 0.1 |
8–10 | 0.2 |
6–8 | 0.9 |
4–6 | 3.9 |
2–4 | 16.5 |
1–2 | 24.3 |
0.5–1 | 19.4 |
0.2–0.5 | 13.9 |
<0.2 | 20.7 |
Primary Antibodies | Code | Species | Dilution | Supplier |
---|---|---|---|---|
Ghrelin | AM26736PU-N | mouse | 1:500 | Acris |
Somatostatin | ab16007 | rat | 1:500 | Enzo Life Sciences |
Neuropeptide Y | NBP1-46535 | goat | 1:1000 | Novus Biological |
Na+K+-ATPase | GLP-1(1-36) # 9153 | rabbit | 1:600 | Abcam |
Secondary antibodies | Dilution | Supplier | ||
goat anti-rat FITC | 1:1000 | Proteintech® | ||
goat anti-rabbit Alexa Fluor® 594 | 1:1000 | Thermofisher/Invitrogen | ||
donkey anti-mouse Alexa Fluor® 594 | 1:1000 | Thermofisher/Invitrogen | ||
donkey anti-goat Alexa Fluor® 488 | 1:1200 | Thermofisher/Invitrogen |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clavenzani, P.; Lattanzio, G.; Bonaldo, A.; Parma, L.; Busti, S.; Oterhals, Å.; Romarheim, O.H.; Aspevik, T.; Gatta, P.P.; Mazzoni, M. Effects of Bioactive Peptides from Atlantic Salmon Processing By-Products on Oxyntopeptic and Enteroendocrine Cells of the Gastric Mucosa of European Seabass and Gilthead Seabream. Animals 2023, 13, 3020. https://doi.org/10.3390/ani13193020
Clavenzani P, Lattanzio G, Bonaldo A, Parma L, Busti S, Oterhals Å, Romarheim OH, Aspevik T, Gatta PP, Mazzoni M. Effects of Bioactive Peptides from Atlantic Salmon Processing By-Products on Oxyntopeptic and Enteroendocrine Cells of the Gastric Mucosa of European Seabass and Gilthead Seabream. Animals. 2023; 13(19):3020. https://doi.org/10.3390/ani13193020
Chicago/Turabian StyleClavenzani, Paolo, Giulia Lattanzio, Alessio Bonaldo, Luca Parma, Serena Busti, Åge Oterhals, Odd Helge Romarheim, Tone Aspevik, Pier Paolo Gatta, and Maurizio Mazzoni. 2023. "Effects of Bioactive Peptides from Atlantic Salmon Processing By-Products on Oxyntopeptic and Enteroendocrine Cells of the Gastric Mucosa of European Seabass and Gilthead Seabream" Animals 13, no. 19: 3020. https://doi.org/10.3390/ani13193020