Next Article in Journal
Fast Planar Detection System Using a GPU-Based 3D Hough Transform for LiDAR Point Clouds
Next Article in Special Issue
Special Issue on Fatigue and Fracture of Non-Metallic Materials and Structures
Previous Article in Journal
Automated Detection of Multiple Lesions on Chest X-ray Images: Classification Using a Neural Network Technique with Association-Specific Contexts
Previous Article in Special Issue
Comparative Fatigue Life Assessment of Wind Turbine Blades Operating with Different Regulation Schemes
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Correction

Correction: Bennati et al. An Elastic Interface Model for the Delamination of Bending-Extension Coupled Laminates. Appl. Sci. 2019, 9, 3560

Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, I-56122 Pisa, Italy
*
Author to whom correspondence should be addressed.
Appl. Sci. 2020, 10(5), 1711; https://doi.org/10.3390/app10051711
Submission received: 18 October 2019 / Accepted: 27 January 2020 / Published: 3 March 2020
(This article belongs to the Special Issue Fatigue and Fracture of Non-metallic Materials and Structures)
We, the authors, wish to make the following corrections to our paper [1].
Equations (26), (27), (28), and (41) were affected by some typos and should be substituted by the following ones (corrections are colored in red):
u 1 x = a 1 + b 1 h 1 f 5 λ 5 2 exp λ 5 x + f 6 λ 6 2 exp λ 6 x + b 1 i = 1 4 f i λ i 3 exp λ i x + a 1 + b 1 h 1 f 7 + b 1 f 10 x 2 2 a 1 f 8 + b 1 f 12 x + f 14 , w 1 x = i = 1 4 d 1 λ i 2 c 1 f i λ i 2 exp λ i x d 1 h 1 + b 1 f 5 λ 5 3 exp λ 5 x + f 6 λ 6 3 exp λ 6 x + + d 1 h 1 + b 1 f 7 + d 1 f 10 x 3 6 + b 1 f 8 + d 1 f 12 x 2 2 f 16 + c 1 f 10 x + f 15 , and φ 1 x = d 1 i = 1 4 f i λ i 3 exp λ i x d 1 h 1 + b 1 f 5 λ 5 2 exp λ 5 x + f 6 λ 6 2 exp λ 6 x + d 1 h 1 + b 1 f 7 + d 1 f 10 x 2 2 b 1 f 8 + d 1 f 12 x + f 16 ,
u 2 x = a 2 b 2 h 2 f 5 λ 5 2 exp λ 5 x + f 6 λ 6 2 exp λ 6 x b 2 i = 1 4 f i λ i 3 exp λ i x + + a 2 b 2 h 2 f 7 + b 2 f 11 x 2 2 + a 2 f 9 + b 2 f 13 x + f 17 , w 2 x = i = 1 4 d 2 λ i 2 c 2 f i λ i 2 exp λ i x d 2 h 2 b 2 f 5 λ 5 3 exp λ 5 x + f 6 λ 6 3 exp λ 6 x + + d 2 h 2 b 2 f 7 d 2 f 11 x 3 6 b 2 f 9 + d 2 f 13 x 2 2 f 19 c 2 f 11 x + f 18 , and φ 2 x = d 2 i = 1 4 f i λ i 3 exp λ i x d 2 h 2 b 2 f 5 λ 5 2 exp λ 5 x + f 6 λ 6 2 exp λ 6 x + d 2 h 2 b 2 f 7 d 2 f 11 x 2 2 + b 2 f 9 + d 2 f 13 x + f 19 ,
f 10 = α 3 B k x α 4 d 2 f 7 , f 11 = α 3 B k x α 4 d 1 f 7 , f 12 = a 1 + b 1 h 1 d 2 b 2 d 2 h 2 b 1 α 4 f 8 a 2 d 2 b 2 2 α 4 f 9 , f 13 = a 1 d 1 b 1 2 α 4 f 8 + a 2 b 2 h 2 d 1 b 1 + d 1 h 1 b 2 α 4 f 9 , f 14 = f 17 h 1 + h 2 f 19 1 k x 1 B + α 3 B α 4 c 1 d 2 c 2 d 1 h 1 f 7 , f 15 = f 18 , and f 16 = f 19 + α 3 B k x α 4 c 1 d 2 c 2 d 1 f 7 ,
g 10 = α 3 B k x α 4 d 2 + β 0 b 2 d 2 h 2 B α 4 g 7 , g 11 = α 3 B k x α 4 d 1 β 0 b 1 + d 1 h 1 B α 4 g 7 , g 12 = a 1 + b 1 h 1 d 2 b 2 d 2 h 2 b 1 α 4 g 8 a 2 d 2 b 2 2 α 4 g 9 , g 13 = a 1 d 1 b 1 2 α 4 g 8 + a 2 b 2 h 2 d 1 b 1 + d 1 h 1 b 2 α 4 g 9 , g 14 = g 17 h 1 + h 2 g 19 1 B k x + α 3 B k x α 4 c 1 d 2 c 2 d 1 h 1 + β 0 b 1 c 2 c 1 b 2 + c 1 d 2 h 2 + c 2 d 1 h 1 B α 4 h 1 g 7 , g 15 = g 18 , and g 16 = g 19 + α 3 B k x α 4 c 1 d 2 c 2 d 1 + β 0 b 1 c 2 c 1 b 2 + c 1 d 2 h 2 + c 2 d 1 h 1 B α 4 g 7 ,
Furthermore, we observe that the constant terms in the shear stress expressions (18) and (32) (corresponding to Jourawski’s solution for an unbroken beam) should not contribute to the Mode II energy release rate G II . Thus, the peak values of the shear interfacial stress entering Equation (44) should be computed as τ 0 = τ ( 0 ) f 7 / B and τ 0 = τ ( 0 ) g 7 / B in the balanced and unbalanced cases, respectively. As a consequence, Equations (45) and (46) should be replaced by the following ones:
G I = H ( σ 0 ) 2 k z B 2 i = 1 4 f i 2 and G II = 1 2 k x B 2 f 5 + f 6 2
and
G I = H ( σ 0 ) 2 k z B 2 i = 1 6 g i 2 and G II = 1 2 k x B 2 k x β 0 i = 1 6 g i μ i ( μ i 2 α 3 ) 2 .
The corrections do not affect the results and scientific conclusions of the paper. We apologize for any inconvenience caused.

Acknowledgments

We would like to thank Prof. Theodoros Loutas and Mr. Panayiotis Tsokanas of the University of Patras, Greece, for pointing out the typos.

References

  1. Bennati, S.; Fisicaro, P.; Taglialegne, L.; Valvo, P.S. An Elastic Interface Model for the Delamination of Bending-Extension Coupled Laminates. Appl. Sci. 2019, 9, 3560. [Google Scholar] [CrossRef] [Green Version]

Share and Cite

MDPI and ACS Style

Bennati, S.; Fisicaro, P.; Taglialegne, L.; Valvo, P.S. Correction: Bennati et al. An Elastic Interface Model for the Delamination of Bending-Extension Coupled Laminates. Appl. Sci. 2019, 9, 3560. Appl. Sci. 2020, 10, 1711. https://doi.org/10.3390/app10051711

AMA Style

Bennati S, Fisicaro P, Taglialegne L, Valvo PS. Correction: Bennati et al. An Elastic Interface Model for the Delamination of Bending-Extension Coupled Laminates. Appl. Sci. 2019, 9, 3560. Applied Sciences. 2020; 10(5):1711. https://doi.org/10.3390/app10051711

Chicago/Turabian Style

Bennati, Stefano, Paolo Fisicaro, Luca Taglialegne, and Paolo S. Valvo. 2020. "Correction: Bennati et al. An Elastic Interface Model for the Delamination of Bending-Extension Coupled Laminates. Appl. Sci. 2019, 9, 3560" Applied Sciences 10, no. 5: 1711. https://doi.org/10.3390/app10051711

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop