Mineral Characterization Using Scanning Electron Microscopy (SEM): A Review of the Fundamentals, Advancements, and Research Directions
Abstract
:Featured Application
Abstract
1. Introduction
1.1. Background Development of SEM
1.2. Basic SEM Operation
1.2.1. Specimen Preparation
1.2.2. Imaging Process in the SEM
1.3. Fundamental Theoretical Calculations
2. Scanning Electron Microscopy and Mineral Characterization
2.1. SEM Energy-Dispersive X-ray Spectroscopy (SEM–EDS)
2.2. SEM-Based Automated Mineralogy (SEM-AM)
2.3. Automated SEM Mineral Liberation Analysis (SEM-MLA)
2.4. Quantitative Evaluation of Minerals by Scanning Electron Microscopy (QEMSCAN)
3. Uncertainties, Limitations, and Sources of Error in SEM Measurements
3.1. Constraints in Phase Identification by EDS Spectra
3.2. Sample Preparation and Related Issues
4. Future Research and Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
BSE | Backscattered electron |
BSEI | Backscattered electron imaging |
CLI | Cathodoluminescence imaging |
CSEM | Conventional scanning electron microscopy |
EBIC | Electron beam-induced current |
EBD | Electron backscatter diffraction |
EDS | Energy-dispersive X-ray spectroscopy |
ESEM | Environmental scanning electron microscopy |
FEG SEM | Field emission gun scanning electron microscopy |
LVSEM | Low vacuum scanning electron microscopy |
LM | Light microscopy |
MLA | Mineral liberation analysis |
OM | Optical microscopy |
PXMAP | Particle X-ray mapping |
QEMSCAN | Quantitative evaluation of minerals by scanning electron microscopy |
RPS | Rare phase search |
SEI | Secondary electron imaging |
SEM | Scanning electron microscopy |
SPL | Sparse phase liberation analysis |
SXMAP | Selected particle X-ray mapping |
TEM | Transmission electron microscopy |
VCI | Voltage contrast imaging |
XBSE | Extended BSE liberation analysis |
XRD | X-ray diffraction |
XMOD | X-ray modal analysis |
References
- RRUFF. Minerals Database. Available online: https://rruff.info/ (accessed on 20 November 2023).
- Hazen, R.M.; Papineau, D.; Bleeker, W.; Downs, R.T.; Ferry, J.M.; McCoy, T.J.; Sverjensky, D.A.; Yang, H. Mineral evolution. Am. Miner. 2008, 93, 1693–1720. [Google Scholar] [CrossRef]
- Clarkson, C.; Freeman, M.; He, L.; Agamalian, M.; Melnichenko, Y.; Mastalerz, M.; Bustin, R.; Radliński, A.; Blach, T. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis. Fuel 2012, 95, 371–385. [Google Scholar] [CrossRef]
- Yu, X.; Li, S.; Yang, Z. Discussion on deposition-diagenesis genetic mechanism and hot issues of tight sandstone gas reservoir. Lithol. Reserv. 2015, 27, 1–13. [Google Scholar] [CrossRef]
- Cui, X.; Bustin, A.M.M.; Bustin, R.M. Measurements of gas permeability and diffusivity of tight reservoir rocks: Different approaches and their applications. Geofluids 2009, 9, 208–223. [Google Scholar] [CrossRef]
- Saif, T.; Lin, Q.; Butcher, A.R.; Bijeljic, B.; Blunt, M.J. Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using X-ray micro-tomography, automated ultra-high resolution SEM, MAPS Mineralogy and FIB-SEM. Appl. Energy 2017, 202, 628–647. [Google Scholar] [CrossRef]
- Pascoe, R.; Power, M.; Simpson, B. QEMSCAN analysis as a tool for improved understanding of gravity separator performance. Miner. Eng. 2007, 20, 487–495. [Google Scholar] [CrossRef]
- Antoniassi, J.L.; Uliana, D.; Contessotto, R.; Kahn, H.; Ulsen, C. Process mineralogy of rare earths from deeply weathered alkali-carbonatite deposits in Brazil. J. Mater. Res. Technol. 2020, 9, 8842–8853. [Google Scholar] [CrossRef]
- Ji, L.; Qiu, J.; Xia, Y.Q.; Zhang, T. Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning. Acta Pet. Sin. 2012, 33, 249–256. [Google Scholar] [CrossRef]
- Allard, B.; Sotin, C. Determination of mineral phase percentages in granular rocks by image analysis on a microcomputer. Comput. Geosci. 1988, 14, 261–269. [Google Scholar] [CrossRef]
- Vernon-Parry, K. Scanning electron microscopy: An introduction. III-Vs Rev. 2000, 13, 40–44. [Google Scholar] [CrossRef]
- Winey, M.; Meehl, J.B.; O’Toole, E.T.; Giddings, T.H., Jr. Conventional transmission electron microscopy. Mol. Biol. Cell 2017, 25, 319–426. [Google Scholar] [CrossRef]
- Smith, K.C.; Oatley, C.W. The scanning electron microscope and its fields of application. Br. J. Appl. Phys. 1955, 6, 391–399. [Google Scholar] [CrossRef]
- Teng, C.; Yuan, Y.; Gauvin, R. The f-ratio quantification method applied to standard minerals with a cold field emission SEM/EDS. Talanta 2019, 204, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Ellingham, S.T.D.; Thompson, T.J.U.; Islam, M. Scanning Electron Microscopy–Energy-Dispersive X-Ray (SEM/EDX): A Rapid Diagnostic Tool to Aid the Identification of Burnt Bone and Contested Cremains. J. Forensic Sci. 2017, 63, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Lu, H.; Zhang, H.; Shen, Y.; Lu, Y. Recent Advances on In Situ SEM Mechanical and Electrical Characterization of Low-Dimensional Nanomaterials. Scanning 2017, 2017, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Picazo, S.; Malvoisin, B.; Baumgartner, L.; Bouvier, A.-S. Low Temperature Serpentinite Replacement by Carbonates during Seawater Influx in the Newfoundland Margin. Minerals 2020, 10, 184. [Google Scholar] [CrossRef]
- Machel, H.G.; Mason, R.A.; Mariano, A.N.; Mucci, A. Causes and emission of luminescence in calcite and dolomite. In Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications; SEPM (Society for Sedimentary Geology): Tulsa, OK, USA, 1991. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, J.; Huang, W.; Wang, H.; Zhou, W.; Li, Y.; Li, Y.; Xu, J.; Huang, W.; Chiu, W.; et al. Cathode-Electrolyte Interphase in Lithium Batteries Revealed by Cryogenic Electron Microscopy. Matter 2021, 4, 302–312. [Google Scholar] [CrossRef]
- Li, Y.; Huang, W.; Li, Y.; Chiu, W.; Cui, Y. Opportunities for Cryogenic Electron Microscopy in Materials Science and Nanoscience. ACS Nano 2020, 14, 9263–9276. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Mecklenburg, M.; Yuan, X.; Wang, C.; Liu, B.; Li, Y. Expanding the cryogenic electron microscopy toolbox to reveal diverse classes of battery solid electrolyte interphase. iScience 2022, 25, 105689. [Google Scholar] [CrossRef]
- Erol, A. High-magnification SEM micrograph of siloxanes. In Atomic Force Microscopy and Its Applications; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Sato, H.; O-Hori, M.; Nakayama, K. Surface Roughness Measurement by Scanning Electron Microscope. CIRP Ann. 1982, 31, 457–462. [Google Scholar] [CrossRef]
- Viswanathan, P.; Ondeck, M.G.; Chirasatitsin, S.; Ngamkham, K.; Reilly, G.C.; Engler, A.J.; Battaglia, G. 3D surface topology guides stem cell adhesion and differentiation. Biomaterials 2015, 52, 140–147. [Google Scholar] [CrossRef]
- Wu, J.; Wang, L.; Meng, L. Analysis of mineral composition and microstructure of gravel aggregate based on XRD and SEM. Road Mater. Pavement Des. 2017, 18, 139–148. [Google Scholar] [CrossRef]
- Zhou, W.; Greer, H.F. What Can Electron Microscopy Tell Us Beyond Crystal Structures? Eur. J. Inorg. Chem. 2016, 2016, 941–950. [Google Scholar] [CrossRef]
- Tyburczy, J.A. Properties of rock and minerals—The electrical conductivity of rocks, minerals, and the earth. Treatise Geophys. 2007, 2, 631–642. [Google Scholar] [CrossRef]
- Bonilla-Jaimes, J.D.; Henao-Martínez, J.A.; Mendoza-Luna, C.; Castellanos-Alarcón, O.M.; Ríos-Reyes, C.A. Non-destructive in situ analysis of garnet by combining scanning electron microscopy and X-ray diffraction techniques. DYNA 2016, 83, 84–92. [Google Scholar] [CrossRef]
- Sarney, W.L. Sample Preparation Procedure for TEM Imaging of Semiconductor Materials. Army Research Laboratory 2004, ARL-TR-3223. Available online: https://apps.dtic.mil/sti/pdfs/AD1111666.pdf (accessed on 20 November 2023).
- Habold, C.; Dunel-Erb, S.; Chevalier, C.; Laurent, P.; Le Maho, Y.; Lignot, J.-H. Observations of the intestinal mucosa using environmental scanning electron microscopy (ESEM); comparison with conventional scanning electron microscopy (CSEM). Micron 2003, 34, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Danilatos, G.; Rattenberger, J.; Dracopoulos, V. Beam transfer characteristics of a commercial environmental SEM and a low vacuum SEM. J. Microsc. 2010, 242, 166–180. [Google Scholar] [CrossRef] [PubMed]
- Van Dam, T.J.; Sutter, L.L.; Smith, K.D.; Wade, M.J.; Peterson, K.R. Guidelines for Detection, Analysis, and Treatment of Materials-Related Distress in Concrete Pavements. Federal Highway Administration, Research Technology and Development, Virginia. 2002, Volume 2, p. 246. Available online: https://rosap.ntl.bts.gov/view/dot/808 (accessed on 20 November 2023).
- Haha, M.B.; Gallucci, E.; Guidoum, A.; Scrivener, K.L. Relation of expansion due to alkali silica reaction to the degree of reaction measured by SEM image analysis. Cem. Concr. Res. 2007, 37, 1206–1214. [Google Scholar] [CrossRef]
- Zebbar, S.; Zebbar, D.; Kadoun, A. Gaseous Cascade Amplification in He-H2O Gas Mixture in an Environmental Scanning Electron Microscope. Energy Procedia 2015, 74, 205–210. [Google Scholar] [CrossRef]
- Knoll, M.; Ruska, E. Das Elektronenmikroskop. Z. Für Phys. 1932, 78, 318–339. [Google Scholar] [CrossRef]
- Ruska, E. The development of the electron microscope and of electron microscopy. Biosci. Rep. 1987, 7, 607–629. [Google Scholar] [CrossRef]
- von Ardenne, M. Das Elektronen-Rastermikroskop. Z. Für Phys. 1938, 109, 553–572. [Google Scholar] [CrossRef]
- von Ardenne, M.; Hawkes, P.; Mulvey, T. On the history of scanning electron microscopy, of the electron microprobe, and of early contributions to transmission electron microscopy. Adv. Imaging Electron Phys. 2021, 220, 25–50. [Google Scholar] [CrossRef]
- Goldstein, J.I.; Newbury, D.E.; Michael, J.R.; Ritchie, N.W.M.; Scott, J.H.J.; Joy, D.C. Scanning Electron Microscopy and X-ray Microanalysis; Kluwer Academic: New York, NY, USA, 2003; ISBN 978-1-4613-4969-3. [Google Scholar]
- Breton, P.J. From microns to nanometers: Early landmarks in the science of scanning electron microscope imaging. Scanning Microsc. 1999, 13, 1–6. [Google Scholar]
- Danilatos, G.D. Review and outline of environmental SEM at present. J. Microsc. 1991, 162, 391–402. [Google Scholar] [CrossRef]
- Danilatos, G.D. Introduction to the ESEM instrument. Microsc. Res. Tech. 1993, 25, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, J.; Gu, C. Local field emission from individual vertical carbon nanofibers grown on tungsten filament. Carbon 2005, 43, 849–853. [Google Scholar] [CrossRef]
- Oatley, C.W. The tungsten filament gun in the scanning electron microscope. J. Phys. E Sci. Instruments 1975, 8, 1037–1041. [Google Scholar] [CrossRef]
- Ahmed, H.; Broers, A.N. Lanthanum Hexaboride Electron Emitter. J. Appl. Phys. 1972, 43, 2185–2192. [Google Scholar] [CrossRef]
- Kowalczyk, J.M.D.; Hadmack, M.R.; Szarmes, E.B.; Madey, J.M.J. Emissivity of Lanthanum Hexaboride Thermionic Electron Gun Cathode. Int. J. Thermophys. 2014, 35, 1538–1544. [Google Scholar] [CrossRef]
- Isabell, T.C.; Dravid, V.P. Resolution and sensitivity of electron backscattered diffraction in a cold field emission gun SEM. Ultramicroscopy 1997, 67, 59–68. [Google Scholar] [CrossRef]
- Hartmann, M.A.; Blouin, S.; Misof, B.M.; Fratzl-Zelman, N.; Roschger, P.; Berzlanovich, A.; Gruber, G.M.; Brugger, P.C.; Zwerina, J.; Fratzl, P. Quantitative Backscattered Electron Imaging of Bone Using a Thermionic or a Field Emission Electron Source. Calcif. Tissue Int. 2021, 109, 190–202. [Google Scholar] [CrossRef] [PubMed]
- de Haan, K.; Ballard, Z.S.; Rivenson, Y.; Wu, Y.; Ozcan, A. Resolution enhancement in scanning electron microscopy using deep learning. Sci. Rep. 2019, 9, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ramakokovhu, M.M.; Olubambi, P.A.; Mbaya, R.K.K.; Mojisola, T.; Teffo, M.L. Mineralogical and Leaching Characteristics of Altered Ilmenite Beach Placer Sands. Minerals 2020, 10, 1022. [Google Scholar] [CrossRef]
- Belz, G.T.; Auchterlonie, G.J. An investigation of the use of chromium, platinum and gold coating for scanning electron microscopy of casts of lymphoid tissues. Micron 1995, 26, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Volynskii, A.L.; Panchuk, D.A.; Bol’shakova, A.V.; Yarysheva, L.M.; Bakeev, N.F. Structure and properties of nanosized coatings deposited onto polymers. Colloid J. 2011, 73, 587–604. [Google Scholar] [CrossRef]
- Stokroos, I.; Kalicharan, D.; Der Want, V.; Jongebloed, W.L. A comparative study of thin coatings of Au/Pd, Pt and Cr produced by magnetron sputtering for FE-SEM. J. Microsc. 1998, 189, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Simonaitis, J.; Goyal, V.K.; Berggren, K.K. Secondary electron count imaging in SEM. Ultramicroscopy 2023, 245, 113662. [Google Scholar] [CrossRef]
- Kejzlar, P.; Švec, M.; Macajová, E. The Usage of Backscattered Electrons in Scanning Electron Microscopy. Manuf. Technol. 2014, 14, 333–336. [Google Scholar] [CrossRef]
- Sánchez, E.; Deluigi, M.T.; Castellano, G. Mean Atomic Number Quantitative Assessment in Backscattered Electron Imaging. Microsc. Microanal. 2012, 18, 1355–1361. [Google Scholar] [CrossRef]
- Müller, E.; Gerthsen, D. Composition quantification of electron-transparent samples by backscattered electron imaging in scanning electron microscopy. Ultramicroscopy 2017, 173, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Čalkovský, M.; Müller, E.; Gerthsen, D. Quantitative analysis of backscattered-electron contrast in scanning electron microscopy. J. Microsc. 2022, 289, 32–47. [Google Scholar] [CrossRef] [PubMed]
- Reimer, L. Scanning Electron Microscopy: Physics of Image Formation and Microanalysis; Springer series in Optical Sciences; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar] [CrossRef]
- Palamara, E.; Das, P.; Nicolopoulos, S.; Cifuentes, L.T.; Oikonomou, A.; Kouloumpi, E.; Terlixi, A.; Zacharias, N. Applying SEM-Cathodoluminescence imaging and spectroscopy as an advanced research tool for the characterization of archaeological material. Microchem. J. 2020, 158, 105230. [Google Scholar] [CrossRef]
- Parish, C.M.; Batchelor, D.; Progl, C. Electron Beam Induced Current in SEM. Materials Characterization Department: Sandia National Laboratories 2007. Available online: https://www.osti.gov/servlets/purl/1426956 (accessed on 20 November 2023).
- Suemori, K.; Watanabe, Y.; Fukuda, N.; Uemura, S. Voltage Contrast in Scanning Electron Microscopy to Distinguish Conducting Ag Nanowire Networks from Nonconducting Ag Nanowire Networks. ACS Omega 2020, 5, 12692–12697. [Google Scholar] [CrossRef] [PubMed]
- Crewe, A.V.; Isaacson, M.; Johnson, D. A Simple Scanning Electron Microscope. Rev. Sci. Instruments 1969, 40, 241–246. [Google Scholar] [CrossRef]
- Li, C.; Wang, D.; Kong, L. Application of Machine Learning Techniques in Mineral Classification for Scanning Electron Microscopy—Energy Dispersive X-Ray Spectroscopy (SEM-EDS) Images. J. Pet. Sci. Eng. 2020, 200, 108178. [Google Scholar] [CrossRef]
- Wen, Y.; Cheng, Y.; Liu, Z.; Liu, C.; Nie, Q. Application of SEM and EDS for mineral composition of shale gas reservoir. IOP Conf. Ser. Mater. Sci. Eng. 2020, 780, 042055. [Google Scholar] [CrossRef]
- Nikonow, W.; Rammlmair, D. Automated mineralogy based on micro-energy-dispersive X-ray fluorescence microscopy (µ-EDXRF) applied to plutonic rock thin sections in comparison to a mineral liberation analyzer. Geosci. Instrum. Methods Data Syst. 2017, 6, 429–437. [Google Scholar] [CrossRef]
- Chalouati, S.; Yoosefdoost, A.; Chiang, Y.W.; Santos, R.M. Intensified mineral carbonation of natural Canadian silicates using simultaneous ball milling. Int. J. Coal Geol. 2023, 277, 104332. [Google Scholar] [CrossRef]
- Santos, R.M.; Knops, P.C.M.; Rijnsburger, K.L.; Chiang, Y.W. CO2 Energy Reactor—Integrated Mineral Carbonation: Perspectives on Lab-Scale Investigation and Products Valorization. Front. Energy Res. 2016, 4. [Google Scholar] [CrossRef]
- Lammers, K.; Murphy, R.; Riendeau, A.; Smirnov, A.; Schoonen, M.A.A.; Strongin, D.R. CO2 Sequestration through Mineral Carbonation of Iron Oxyhydroxides. Environ. Sci. Technol. 2011, 45, 10422–10428. [Google Scholar] [CrossRef] [PubMed]
- Haque, F.; Santos, R.M.; Chiang, Y.W. Using nondestructive techniques in mineral carbonation for understanding reaction fundamentals. Powder Technol. 2019, 357, 134–138. [Google Scholar] [CrossRef]
- Zarandi, A.E.; Larachi, F.; Beaudoin, G.; Plante, B.; Sciortino, M. Nesquehonite as a carbon sink in ambient mineral carbonation of ultramafic mining wastes. Chem. Eng. J. 2017, 314, 160–168. [Google Scholar] [CrossRef]
- Fantucci, H.; Sidhu, J.S.; Santos, R.M. Mineral Carbonation as an Educational Investigation of Green Chemical Engineering Design. Sustainability 2019, 11, 4156. [Google Scholar] [CrossRef]
- Ali, A.; Chiang, Y.W.; Santos, R.M. X-ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions. Minerals 2022, 12, 205. [Google Scholar] [CrossRef]
- Klug, H.P.; Alexander, L.E. X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed.; Wiley: Hoboken, NJ, USA, 1974; ISBN 978-0-471-49369-3. [Google Scholar]
- Ali, A.; Mendes, C.E.; de Melo, L.G.T.C.; Wang, J.; Santos, R.M. Production of Sodium Bicarbonate with Saline Brine and CO2 Co-Utilization: Comparing Modified Solvay Approaches. Crystals 2023, 13, 470. [Google Scholar] [CrossRef]
- Chi, G.C.; Xiao, G.; Chen, Y.L.; Wu, Y.; Hu, J.-F.; Wang, H.-J.; Yue, M.-X.; Wang, X. Application of X-ray powder diffractometer in the identification and classification of phyllite. Geol. Resour. 2013, 22, 409–414. [Google Scholar] [CrossRef]
- Zhang, X.-h. Controlling factors of order degree of dolomite in carbonate rocks: A case study from lower palezoic in Tahe oilfield and Triassic in northeastern Sichuan basin. Lithol. Reserv. 2009, 21, 50–55. [Google Scholar]
- Trindade, M.; Dias, M.; Coroado, J.; Rocha, F. Mineralogical transformations of calcareous rich clays with firing: A comparative study between calcite and dolomite rich clays from Algarve, Portugal. Appl. Clay Sci. 2009, 42, 345–355. [Google Scholar] [CrossRef]
- Dri, M.; Sanna, A.; Maroto-Valer, M.M. Mineral carbonation from metal wastes: Effect of solid to liquid ratio on the efficiency and characterization of carbonated products. Appl. Energy 2014, 113, 515–523. [Google Scholar] [CrossRef]
- Reynolds, B.; Reddy, K.J.; Argyle, M.D. Field Application of Accelerated Mineral Carbonation. Minerals 2014, 4, 191–207. [Google Scholar] [CrossRef]
- Newbury, D.E.; Ritchie, N.W.M. Is Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry (SEM/EDS) Quantitative? Scanning 2013, 35, 141–168. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Kumar, C.J.D.; Kumar, D.; Syed, K.; Van Ende, M.; Jung, I.; Finkeldei, S.C.; Bowman, W.J. Designing environment-friendly chromium-free Spinel-Periclase-Zirconia refractories for Ruhrstahl Heraeus degasser. J. Am. Ceram. Soc. 2020, 103, 7095–7114. [Google Scholar] [CrossRef]
- Warlo, M.; Wanhainen, C.; Bark, G.; Butcher, A.R.; McElroy, I.; Brising, D.; Rollinson, G.K. Automated Quantitative Mineralogy Optimized for Simultaneous Detection of (Precious/Critical) Rare Metals and Base Metals in A Production-Focused Environment. Minerals 2019, 9, 440. [Google Scholar] [CrossRef]
- Schulz, B.; Sandmann, D.; Gilbricht, S. SEM-Based Automated Mineralogy and its Application in Geo- and Material Sciences. Minerals 2020, 10, 1004. [Google Scholar] [CrossRef]
- Schulz, B.; Merker, G.; Gutzmer, J. Automated SEM Mineral Liberation Analysis (MLA) with Generically Labelled EDX Spectra in the Mineral Processing of Rare Earth Element Ores. Minerals 2019, 9, 527. [Google Scholar] [CrossRef]
- Smythe, D.M.; Lombard, A.; Coetzee, L.L. Rare Earth Element deportment studies utilising QEMSCAN technology. Miner. Eng. 2013, 52, 52–61. [Google Scholar] [CrossRef]
- Rollinson, G.K.; Andersen, J.C.Ø.; Stickland, R.J.; Boni, M.; Fairhurst, R. Characterisation of non-sulphide zinc deposits using QEMSCAN®. Miner. Eng. 2011, 24, 778–787. [Google Scholar] [CrossRef]
- Knappett, C.; Pirrie, D.; Power, M.; Nikolakopoulou, I.; Hilditch, J.; Rollinson, G. Mineralogical analysis and provenancing of ancient ceramics using automated SEM-EDS analysis (QEMSCAN®): A pilot study on LB I pottery from Akrotiri, Thera. J. Archaeol. Sci. 2011, 38, 219–232. [Google Scholar] [CrossRef]
- Saghiri, M.A.; Asgar, K.; Lotfi, M.; Karamifar, K.; Saghiri, A.M.; Neelakantan, P.; Gutmann, J.L.; Sheibaninia, A. Back-scattered and secondary electron images of scanning electron microscopy in dentistry: A new method for surface analysis. Acta Odontol. Scand. 2012, 70, 603–609. [Google Scholar] [CrossRef]
- Kjellsen, K.; Monsøy, A.; Isachsen, K.; Detwiler, R. Preparation of flat-polished specimens for SEM-backscattered electron imaging and X-ray microanalysis—Importance of epoxy impregnation. Cem. Concr. Res. 2003, 33, 611–616. [Google Scholar] [CrossRef]
- Santos, R.M.; Ling, D.; Sarvaramini, A.; Guo, M.; Elsen, J.; Larachi, F.; Beaudoin, G.; Blanpain, B.; Van Gerven, T. Stabilization of basic oxygen furnace slag by hot-stage carbonation treatment. Chem. Eng. J. 2012, 203, 239–250. [Google Scholar] [CrossRef]
- Heinrich, K.F.J.; Yakowitz, H. Quantitative electron probe microanalysis: Fluorescence correction uncertainty. Microchim. Acta 1968, 56, 905–916. [Google Scholar] [CrossRef]
- Duma, Z.-S.; Sihvonen, T.; Havukainen, J.; Reinikainen, V.; Reinikainen, S.-P. Optimizing energy dispersive X-Ray Spectroscopy (EDS) image fusion to Scanning Electron Microscopy (SEM) images. Micron 2022, 163, 103361. [Google Scholar] [CrossRef] [PubMed]
- Scimeca, M.; Bischetti, S.; Lamsira, H.K.; Bonfiglio, R.; Bonanno, E. Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. Eur. J. Histochem. 2018, 62, 2841. [Google Scholar] [CrossRef] [PubMed]
- Kutchko, B.G.; Kim, A.G. Fly ash characterization by SEM–EDS. Fuel 2006, 85, 2537–2544. [Google Scholar] [CrossRef]
- Georget, F.; Wilson, W.; Scrivener, K.L. edxia: Microstructure characterisation from quantified SEM-EDS hypermaps. Cem. Concr. Res. 2020, 141, 106327. [Google Scholar] [CrossRef]
- Vermeij, E.; Zoon, P.; Chang, S.; Keereweer, I.; Pieterman, R.; Gerretsen, R. Analysis of microtraces in invasive traumas using SEM/EDS. Forensic Sci. Int. 2012, 214, 96–104. [Google Scholar] [CrossRef]
- Girao, A.V.; Caputo, G.; Ferro, M.C. Application of scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS). Compr. Anal. Chem. 2017, 75, 153–168. [Google Scholar] [CrossRef]
- Avula, A.; Galor, A.; Blackwelder, P.; Carballosa-Gautam, M.; Hackam, A.S.; Jeng, B.; Kumar, N. Application of Scanning Electron Microscopy With Energy-Dispersive X-Ray Spectroscopy for Analyzing Ocular Surface Particles on Schirmer Strips. Cornea 2017, 36, 752–756. [Google Scholar] [CrossRef]
- Han, S.; Löhr, S.C.; Abbott, A.N.; Baldermann, A.; Farkaš, J.; McMahon, W.; Milliken, K.L.; Rafiei, M.; Wheeler, C.; Owen, M. Earth system science applications of next-generation SEM-EDS automated mineral mapping. Front. Earth Sci. 2022, 10, 956912. [Google Scholar] [CrossRef]
- Haque, F.; Santos, R.M.; Chiang, Y.W. Optimizing inorganic carbon sequestration and crop yield with wollastonite soil amendment in a microplot study. Front. Plant Sci. 2020, 11, 1012. [Google Scholar] [CrossRef]
- Butera, A.; Pascadopoli, M.; Gallo, S.; Lelli, M.; Tarterini, F.; Giglia, F.; Scribante, A. SEM/EDS Evaluation of the Mineral Deposition on a Polymeric Composite Resin of a Toothpaste Containing Biomimetic Zn-Carbonate Hydroxyapatite (microRepair®) in Oral Environment: A Randomized Clinical Trial. Polymers 2021, 13, 2740. [Google Scholar] [CrossRef]
- Santos, R.M.; Van Bouwel, J.; Vandevelde, E.; Mertens, G.; Elsen, J.; Van Gerven, T. Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: Effect of process parameters on geochemical properties. Int. J. Greenh. Gas Control 2013, 17, 32–45. [Google Scholar] [CrossRef]
- Sukmara, S.; Suyanti; Adi, W.A.; Manaf, A.; Gunanto, Y.; Sitompul, H.; Izaak, M.; Jobiliong, E.; Sarwanto, Y. Mineral analysis and its extraction process of ilmenite rocks in titanium-rich cumulates from Pandeglang Banten Indonesia. J. Mater. Res. Technol. 2022, 17, 3384–3393. [Google Scholar] [CrossRef]
- Weerakoon, A.T.; Cooper, C.; Meyers, I.A.; Condon, N.; Sexton, C.; Thomson, D.; Ford, P.J.; Symons, A.L. Does dentine mineral change with anatomical location, microscopic site and patient age? J. Struct. Biol. X 2022, 6, 100060. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Li, Y.; Liao, S.; Yin, Z.; Hsu, W. Mineral chemistry and 3D tomography of a Chang’E 5 high-Ti basalt: Implication for the lunar thermal evolution history. Sci. Bull. 2021, 67, 755–761. [Google Scholar] [CrossRef]
- Lastra, R. Seven practical application cases of liberation analysis. Int. J. Miner. Process. 2007, 84, 337–347. [Google Scholar] [CrossRef]
- Hoal, K.; Stammer, J.; Appleby, S.; Botha, J.; Ross, J.; Botha, P. Research in quantitative mineralogy: Examples from diverse applications. Miner. Eng. 2009, 22, 402–408. [Google Scholar] [CrossRef]
- Ford, F.D.; Wercholaz, C.R.; Lee, A. Predicting process outcomes for Sudbury platinum-group minerals using grade-recovery modeling from mineral liberation analyzer (MLA) data. Can. Mineral. 2012, 49, 1627. [Google Scholar] [CrossRef]
- Macdonald, M.; Adair, B.; Bradshaw, D.; Dunn, M.; Latti, D. Learnings From Five Years of On-Site Mla at Kennecott Utah Copper Corporation: (Myth Busters Through Quantitative Evidence…). In Proceedings of the 10th International Congress for Applied Mineralogy (ICAM); Springer: Berlin/Heidelberg, Germany, 2012; pp. 419–426. [Google Scholar] [CrossRef]
- Anderson, K.F.; Wall, F.; Rollinson, G.K.; Moon, C.J. Quantitative mineralogical and chemical assessment of the Nkout iron ore deposit, Southern Cameroon. Ore Geol. Rev. 2014, 62, 25–39. [Google Scholar] [CrossRef]
- Gäbler, H.-E.; Melcher, F.; Graupner, T.; Bahr, A.; Sitnikova, M.A.; Henjes-Kunst, F.; Oberthür, T.; Brätz, H.; Gerdes, A. Speeding Up the Analytical Workflow for Coltan Fingerprinting by an Integrated Mineral Liberation Analysis/LA-ICP-MS Approach. Geostand. Geoanalytical Res. 2011, 35, 431–448. [Google Scholar] [CrossRef]
- Lund, C.; Lamberg, P.; Lindberg, T. Practical way to quantify minerals from chemical assays at Malmberget iron ore operations—An important tool for the geometallurgical program. Miner. Eng. 2013, 49, 7–16. [Google Scholar] [CrossRef]
- Schulz, B. Polymetamorphism in garnet micaschists of the Saualpe Eclogite Unit (Eastern Alps, Austria), resolved by automated SEM methods and EMP–Th–U–Pb monazite dating. J. Metamorph. Geol. 2016, 35, 141–163. [Google Scholar] [CrossRef]
- Pszonka, J.; Schulz, B. SEM Automated Mineralogy applied for the quantification of mineral and textural sorting in submarine sediment gravity flows. Gospod. Surowcami Miner. Miner. Resour. Manag. 2023, 38, 105–131. [Google Scholar] [CrossRef]
- Wessels, R.; Kok, T.; van Melick, H.; Drury, M. Constraining P-T conditions using a SEM automated mineralogy based work-flow—An example from Cap de Creus, NE Spain. In Proceedings of the EGU General Assembly Conference 2022, Vienna, Austria, 23–27 May 2022. [Google Scholar] [CrossRef]
- Ranta, J.-P.; Cook, N.; Gilbricht, S. SEM-based automated mineralogy (SEM-AM) and unsupervised machine learning studying the textural setting and elemental association of gold in the Rajapalot Au-Co area, northern Finland. Bull. Geol. Soc. Finl. 2021, 93, 129–154. [Google Scholar] [CrossRef]
- Gu, Y. Automated scanning electron microscope based mineral liberation analysis. J. Miner. Mater. Charact. Eng. 2003, 2, 33–41. [Google Scholar]
- King, R.; Schneider, C. Stereological correction of linear grade distributions for mineral liberation. Powder Technol. 1998, 98, 21–37. [Google Scholar] [CrossRef]
- Chiaruttini, C.; Piga, L.; Schena, G. An assessment of the efficiency of a stereological correction for recovering the volumetric grade of particles from measures on polished sections. Int. J. Miner. Process. 1999, 57, 303–322. [Google Scholar] [CrossRef]
- Fandrichi, R.; Schneider, C.; Gay, S. Two stereological correction methods: Allocation method and kernel transformation method. Miner. Eng. 1998, 11, 707–715. [Google Scholar] [CrossRef]
- Leigh, G.; Lyman, G.; Gottlieb, P. Stereological estimates of liberation from mineral section measurements: A rederivation of Barbery’s formulae with extensions. Powder Technol. 1996, 87, 141–152. [Google Scholar] [CrossRef]
- Goodall, W.R.; Scales, P.J. An overview of the advantages and disadvantages of the determination of gold mineralogy by automated mineralogy. Miner. Eng. 2007, 20, 506–517. [Google Scholar] [CrossRef]
- Pirrie, D.; Rollinson, G.K. Unlocking the applications of automated mineral analysis. Geol. Today 2011, 27, 226–235. [Google Scholar] [CrossRef]
- Li, B.; Nie, X.; Cai, J.; Zhou, X.; Wang, C.; Han, D. U-Net model for multi-component digital rock modeling of shales based on CT and QEMSCAN images. J. Pet. Sci. Eng. 2022, 216, 110734. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, D.; Cai, Y.; Qiu, Y. Permeability, mineral and pore characteristics of coals response to acid treatment by NMR and QEMSCAN: Insights into acid sensitivity mechanism. J. Pet. Sci. Eng. 2020, 198, 108205. [Google Scholar] [CrossRef]
- Lin, S.; Hou, L.; Luo, X. Shale Mineralogy Analysis Method: Quantitative Correction of Minerals Using QEMSCAN Based on MAPS Technology. Appl. Sci. 2022, 12, 5013. [Google Scholar] [CrossRef]
- Mason, J.; Lin, E.; Grono, E.; Denham, T. QEMSCAN® analysis of clay-rich stratigraphy associated with early agricultural contexts at Kuk Swamp, Papua New Guinea. J. Archaeol. Sci. Rep. 2022, 42, 103356. [Google Scholar] [CrossRef]
- Vickery, K.; Eckardt, F. A closer look at mineral aerosol emissions from the Makgadikgadi Pans, Botswana, using automated SEM-EDS (QEMSCAN®). South Afr. Geogr. J. 2020, 103, 7–21. [Google Scholar] [CrossRef]
- Andersen, J.C.; Rollinson, G.K.; Snook, B.; Herrington, R.; Fairhurst, R.J. Use of QEMSCAN® for the characterization of Ni-rich and Ni-poor goethite in laterite ores. Miner. Eng. 2009, 22, 1119–1129. [Google Scholar] [CrossRef]
- Ariza-Rodríguez, N.; Rodríguez-Navarro, A.B.; de Hoces, M.C.; Martin, J.M.; Muñoz-Batista, M.J. Chemical and Mineralogical Characterization of Montevive Celestine Mineral. Minerals 2022, 12, 1261. [Google Scholar] [CrossRef]
- Makvandi, S.; Pagé, P.; Tremblay, J.; Girard, R. Exploration for Platinum-Group Minerals in Till: A New Approach to the Recovery, Counting, Mineral Identification and Chemical Characterization. Minerals 2021, 11, 264. [Google Scholar] [CrossRef]
- He, W.; Chen, K.; Hayatdavoudi, A.; Sawant, K.; Lomas, M. Effects of clay content, cement and mineral composition characteristics on sandstone rock strength and deformability behaviors. J. Pet. Sci. Eng. 2019, 176, 962–969. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Liu, Q.; Liu, X. Quantifying common major and minor elements in minerals/rocks by economical desktop scanning electron microscopy/silicon drift detector energy-dispersive spectrometer (SEM/SDD-EDS). Solid Earth Sci. 2023, 8, 49–67. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, A.; Liu, S.; Kang, Y. Nano-scale mechanical properties of constituent minerals in shales investigated by combined nanoindentation statistical analyses and SEM-EDS-XRD techniques. Int. J. Rock Mech. Min. Sci. 2022, 159, 105187. [Google Scholar] [CrossRef]
- McCutcheon, J.; Southam, G. Advanced biofilm staining techniques for TEM and SEM in geomicrobiology: Implications for visualizing EPS architecture, mineral nucleation, and microfossil generation. Chem. Geol. 2018, 498, 115–127. [Google Scholar] [CrossRef]
- Fowler, C.; Lynch, R.; Shingler, D.; Walsh, D.; Carson, C.; Neale, A.; Willson, R.; Brown, A. A novel electron-microscopic method for measurement of mineral content in enamel lesions. Arch. Oral Biol. 2018, 94, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, B.; Castanedo, C.I.; Maldague, X.P.; Beaudoin, G. Assessing the reliability of an automated system for mineral identification using LWIR Hyperspectral Infrared imagery. Miner. Eng. 2020, 155, 106409. [Google Scholar] [CrossRef]
- Wille, G.; Lahondere, D.; Schmidt, U.; Duron, J.; Bourrat, X. Coupling SEM-EDS and confocal Raman-in-SEM imaging: A new method for identification and 3D morphology of asbestos-like fibers in a mineral matrix. J. Hazard. Mater. 2019, 374, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Ihekweme, G.O.; Shondo, J.N.; Orisekeh, K.I.; Kalu-Uka, G.M.; Nwuzor, I.C.; Onwualu, A.P. Characterization of certain Nigerian clay minerals for water purification and other industrial applications. Heliyon 2020, 6, e03783. [Google Scholar] [CrossRef]
- Deshpande, G.; Tonannavar, J.; Patil, S.B.; Kundargi, V.S.; Patil, S.; Mulimani, B.; Kalkura, S.N.; Ramya, J.R.; Arul, K.T. Detection of the mineral constituents in human renal calculi by vibrational spectroscopic analysis combined with allied techniques Powder XRD, TGA, SEM, IR imaging and TXRF. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 270, 120867. [Google Scholar] [CrossRef]
- Raguin, E.; Rechav, K.; Shahar, R.; Weiner, S. Focused ion beam-SEM 3D analysis of mineralized osteonal bone: Lamellae and cement sheath structures. Acta Biomater. 2021, 121, 497–513. [Google Scholar] [CrossRef] [PubMed]
- Smith-Schmitz, S.E.; Appold, M.S. Determination of fluorine concentrations in mineralizing fluids of the Hansonburg, New Mexico Ba-F-Pb district via SEM-EDS analysis of fluid inclusion decrepitates. J. Geochem. Explor. 2021, 230, 106861. [Google Scholar] [CrossRef]
- Buss, D.J.; Reznikov, N.; McKee, M.D. Crossfibrillar mineral tessellation in normal and Hyp mouse bone as revealed by 3D FIB-SEM microscopy. J. Struct. Biol. 2020, 212, 107603. [Google Scholar] [CrossRef] [PubMed]
- Asadi, P.; Beckingham, L.E. Intelligent framework for mineral segmentation and fluid-accessible surface area analysis in scanning electron microscopy. Appl. Geochem. 2022, 143, 105387. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S.; Zhang, L.; Gan, M.; Miao, X.; Wei, N.; Cheng, X.; Liu, H.; Li, X.; Li, J. Evidence of self-sealing in wellbore cement under geologic CO2 storage conditions by micro-computed tomography (CT), scanning electron microscopy (SEM) and Raman observations. Appl. Geochem. 2021, 128, 104937. [Google Scholar] [CrossRef]
- Berrezueta, E.; Moita, P.; Pedro, J.; Abdoulghafour, H.; Mirão, J.; Beltrame, M.; Barrulas, P.; Araújo, A.; Caeiro, M.H.; Luís, L.; et al. Laboratory experiments and modelling of the geochemical interaction of a gabbro-anorthosite with seawater and supercritical CO2: A mineral carbonation study. Geoenergy Sci. Eng. 2023, 228, 212010. [Google Scholar] [CrossRef]
- Fu, C.; Du, Y.; Song, W.; Sang, S.; Pan, Z.; Wang, N. Application of automated mineralogy in petroleum geology and development and CO2 sequestration: A review. Mar. Pet. Geol. 2023, 151, 106206. [Google Scholar] [CrossRef]
- Hörning, M.; Schertel, A.; Schneider, R.; Lemloh, M.-L.; Schweikert, M.R.; Weiss, I.M. Mineralized scale patterns on the cell periphery of the chrysophyte Mallomonas determined by comparative 3D Cryo-FIB SEM data processing. J. Struct. Biol. 2020, 209, 107403. [Google Scholar] [CrossRef]
- Pe-Piper, G.; Imperial, A.; Piper, D.J.; Zouros, N.C.; Anastasakis, G. Mineral data (SEM, electron microprobe, Raman spectroscopy) from epithermal hydrothermal alteration of the Miocene Sigri Petrified Forest and host pyroclastic rocks, Western Lesbos, Greece. Data Brief 2019, 24, 103987. [Google Scholar] [CrossRef]
- Moro, D.; Ulian, G.; Valdrè, G. SEM-EDS nanoanalysis of mineral composite materials: A Monte Carlo approach. Compos. Struct. 2020, 259, 113227. [Google Scholar] [CrossRef]
- Kamble, A.D.; Mendhe, V.A.; Chavan, P.D.; Saxena, V.K. Insights of mineral catalytic effects of high ash coal on carbon conversion in fluidized bed Co-gasification through FTIR, XRD, XRF and FE-SEM. Renew. Energy 2022, 183, 729–751. [Google Scholar] [CrossRef]
- Farhat, T.M.; Al Disi, Z.A.; Ashfaq, M.Y.; Zouari, N. Study of diversity of mineral-forming bacteria in sabkha mats and sediments of mangrove forest in Qatar. Biotechnol. Rep. 2023, 39, e00811. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Zhan, Q.; Zhang, X.; Zhou, J.; Wu, Y.; Li, X.; Zhou, P.; Xu, G. Self-healing properties of cement-based materials in different matrix based on microbial mineralization coupled with bimetallic hydroxide. Constr. Build. Mater. 2023, 400, 132686. [Google Scholar] [CrossRef]
- Diao, Y.; Yang, C.; Huang, J.; Liu, S.; Guo, X.; Pan, W. Preparation and solidification mechanism of biomimetic mineralized cement using L-Asp as crystal modifier. J. Mater. Res. Technol. 2023, 24, 7756–7770. [Google Scholar] [CrossRef]
- Sanchez, M.S.; McGrath-Koerner, M.; McNamee, B.D. Characterization of elongate mineral particles including talc, amphiboles, and biopyriboles observed in mineral derived powders: Comparisons of analysis of the same talcum powder samples by two laboratories. Environ. Res. 2023, 230, 114791. [Google Scholar] [CrossRef] [PubMed]
- Blannin, R.; Frenzel, M.; Tuşa, L.; Birtel, S.; Ivăşcanu, P.; Baker, T.; Gutzmer, J. Uncertainties in quantitative mineralogical studies using scanning electron microscope-based image analysis. Miner. Eng. 2021, 167, 106836. [Google Scholar] [CrossRef]
- Benvie, B.; Chapman, N.M.; Robinson, D.J.; Kuhar, L.L. A robust statistical method for mineralogical analysis in geometallurgical diagnostic leaching. Miner. Eng. 2013, 52, 178–183. [Google Scholar] [CrossRef]
- Lastra, R.; Paktunc, D. An estimation of the variability in automated quantitative mineralogy measurements through inter-laboratory testing. Miner. Eng. 2016, 95, 138–145. [Google Scholar] [CrossRef]
- Guseva, O.; Opitz, A.K.; Broadhurst, J.L.; Harrison, S.T.; Becker, M. Characterisation and prediction of acid rock drainage potential in waste rock: Value of integrating quantitative mineralogical and textural measurements. Miner. Eng. 2021, 163, 106750. [Google Scholar] [CrossRef]
- Leigh, G.; Sutherland, D.; Gottlieb, P. Confidence limits for liberation measurements. Miner. Eng. 1993, 6, 155–161. [Google Scholar] [CrossRef]
- Evans, C.L.; Napier-Munn, T.J. Estimating error in measurements of mineral grain size distribution. Miner. Eng. 2013, 52, 198–203. [Google Scholar] [CrossRef]
- Mariano, R.A.; Evans, C.L. Error analysis in ore particle composition distribution measurements. Miner. Eng. 2015, 82, 36–44. [Google Scholar] [CrossRef]
- Leißnar, T.; Bachmann, K.; Gutzmer, J.; Peuker, U.A. MLA-based partition curves for magnetic separation. Miner. Eng. 2016, 94, 94–103. [Google Scholar] [CrossRef]
- Buchmann, M.; Schach, E.; Tolosana-Delgado, R.; Leißner, T.; Astoveza, J.; Kern, M.; Möckel, R.; Ebert, D.; Rudolph, M.; van den Boogaart, K.G.; et al. Evaluation of Magnetic Separation Efficiency on a Cassiterite-Bearing Skarn Ore by Means of Integrative SEM-Based Image and XRF–XRD Data Analysis. Minerals 2018, 8, 390. [Google Scholar] [CrossRef]
- Schach, E.; Buchmann, M.; Tolosana-Delgado, R.; Leißner, T.; Kern, M.; van den Boogaart, K.G.; Rudolph, M.; Peuker, U.A. Multidimensional characterization of separation processes—Part 1: Introducing kernel methods and entropy in the context of mineral processing using SEM-based image analysis. Miner. Eng. 2019, 137, 78–86. [Google Scholar] [CrossRef]
- Hannula, J.; Kern, M.; Luukkanen, S.; Roine, A.; Boogaart, K.v.D.; Reuter, M. Property-based modelling and simulation of mechanical separation processes using dynamic binning and neural networks. Miner. Eng. 2018, 126, 52–63. [Google Scholar] [CrossRef]
- Efron, B. Bootstrap Methods: Another Look at the Jackknife. Ann. Stat. 1979, 7, 1–26. [Google Scholar] [CrossRef]
- Chernick, M.R. Bootstrap Methods: A Guide for Practitioners and Researchers; Applied Probability and Statistics; Wiley: Hoboken, NJ, USA, 1999. [Google Scholar]
- Chayes, F.A. Petrographic analysis by fragment counting; Part 1, The counting error. Econ. Geol. 1944, 39, 484–505. [Google Scholar] [CrossRef]
- Chayes, F. Petrographic analysis by fragment counting; Part II, Precision of microsampling and the combined error of sampling and counting. Econ. Geol. 1945, 40, 517–525. [Google Scholar] [CrossRef]
- Plas, L.V.D.; Tobi, A.C. A chart for judging the reliability of point counting results. Am. J. Sci. 1965, 263, 87–90. [Google Scholar] [CrossRef]
- Parian, M.; Lamberg, P.; Mockel, R.; Rosenkranz, J. Analysis of mineral grades for geometallurgy: Combined element-to-mineral conversion and quantitative X-ray diffraction. Miner. Eng. 2015, 82, 25–35. [Google Scholar] [CrossRef]
- Jackson, B.R.; Reid, A.F.; Wittenberg, J.C. Rapid production of high quality polished sections for automated image analysis of minerals. Proc. Aust. Inst. Min. Metall. 1984, 289, 93–97. [Google Scholar]
- Rahfeld, A.; Gutzmer, J. MLA-Based Detection of Organic Matter with Iodized Epoxy Resin—An Alternative to Carnauba. J. Miner. Mater. Charact. Eng. 2017, 5, 198–208. [Google Scholar] [CrossRef]
- O’brien, G.; Gu, Y.; Adair, B.; Firth, B. The use of optical reflected light and SEM imaging systems to provide quantitative coal characterisation. Miner. Eng. 2011, 24, 1299–1304. [Google Scholar] [CrossRef]
- Gomez, C.O.; Strickler, D.W.; Austin, L.G. An iodized mounting medium for coal particles. J. Electron Microsc. Tech. 1984, 1, 285–287. [Google Scholar] [CrossRef]
- Alim, A.; Abdullah, M.Z.; Aziz, M.S.A.; Kamarudin, R.; Gunnasegaran, P. Recent Advances on Thermally Conductive Adhesive in Electronic Packaging: A Review. Polymers 2021, 13, 3337. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Xiao, Q.; Li, L.; Xu, T. Thermal conductivity of epoxy adhesive enhanced by hybrid graphene oxide/AlN particles. Appl. Therm. Eng. 2016, 106, 1067–1074. [Google Scholar] [CrossRef]
- Grundmann, G.; Scholz, H. Preparation Methods in Mineralogy and Geology: The Preparation of Thin Sections, Polished Sections, Acetate Foil Prints, Preparation for Elutriation Analysis and Staining Tests for the Optical and Electron Microscopy; Technical University of Munich: Munich, Germany, 2015. [Google Scholar]
- Rodríguez, J.-R.; Turégano-López, M.; DeFelipe, J.; Merchán-Pérez, A. Neuroanatomy from Mesoscopic to Nanoscopic Scales: An Improved Method for the Observation of Semithin Sections by High-Resolution Scanning Electron Microscopy. Front. Neuroanat. 2018, 12, 14. [Google Scholar] [CrossRef]
- Ren, H.; Zhang, X.; Li, Y.; Zhang, D.; Huang, F.; Zhang, Z. Preparation of Cross-Sectional Membrane Samples for Scanning Electron Microscopy Characterizations Using a New Frozen Section Technique. Membranes 2023, 13, 634. [Google Scholar] [CrossRef]
- Huang, Z.; Yilmaz, E.; Cao, S. Analysis of Strength and Microstructural Characteristics of Mine Backfills Containing Fly Ash and Desulfurized Gypsum. Minerals 2021, 11, 409. [Google Scholar] [CrossRef]
- Simonsen, A.M.T.; Solismaa, S.; Hansen, H.K.; Jensen, P.E. Evaluation of mine tailings’ potential as supplementary cementitious materials based on chemical, mineralogical and physical characteristics. Waste Manag. 2020, 102, 710–721. [Google Scholar] [CrossRef]
- Chen, Q.; Tao, Y.; Feng, Y.; Zhang, Q.; Liu, Y. Utilization of modified copper slag activated by Na2SO4 and CaO for unclassified lead/zinc mine tailings based cemented paste backfill. J. Environ. Manag. 2021, 290, 112608. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, X.; Yang, J.; Little, E.; Zhou, Y. Deep learning-based method for SEM image segmentation in mineral characterization, an example from Duvernay Shale samples in Western Canada Sedimentary Basin. Comput. Geosci. 2020, 138, 104450. [Google Scholar] [CrossRef]
- Liu, X.; Meng, S.-W.; Liang, Z.-Z.; Tang, C.; Tao, J.-P.; Tang, J.-Z. Microscale crack propagation in shale samples using focused ion beam scanning electron microscopy and three-dimensional numerical modeling. Pet. Sci. 2023, 20, 1488–1512. [Google Scholar] [CrossRef]
- Golsanami, N.; Jayasuriya, M.N.; Yan, W.; Fernando, S.G.; Liu, X.; Cui, L.; Zhang, X.; Yasin, Q.; Dong, H.; Dong, X. Characterizing clay textures and their impact on the reservoir using deep learning and Lattice-Boltzmann simulation applied to SEM images. Energy 2022, 240, 122599. [Google Scholar] [CrossRef]
- Pirrie, D.; Pidduck, A.J.; Crean, D.E.; Nicholls, T.M.; Awbery, R.P. Identification and analysis of man-made geological product particles to aid forensic investigation of provenance in the built environment. Forensic Sci. Int. 2019, 305, 109974. [Google Scholar] [CrossRef] [PubMed]
- Kikkawa, H.S.; Naganuma, K.; Kumisaka, K.; Sugita, R. Semi-automated scanning electron microscopy energy dispersive X-ray spectrometry forensic analysis of soil samples. Forensic Sci. Int. 2019, 305, 109947. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.C.; Marolf, A.; Estoppey, N.; Massonnet, G. A probabilistic approach towards source level inquiries for forensic soil examination based on mineral counts. Forensic Sci. Int. 2021, 328, 111035. [Google Scholar] [CrossRef]
- Babilotte, J.; Guduric, V.; Le Nihouannen, D.; Naveau, A.; Fricain, J.-C.; Catros, S. 3D printed polymer–mineral composite biomaterials for bone tissue engineering: Fabrication and characterization. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019, 107, 2579–2595. [Google Scholar] [CrossRef]
- Pradeep, N.; Hegde, M.R.; Patel, G.M.; Giasin, K.; Pimenov, D.Y.; Wojciechowski, S. Synthesis and characterization of mechanically alloyed nanostructured ternary titanium based alloy for bio-medical applications. J. Mater. Res. Technol. 2022, 16, 88–101. [Google Scholar] [CrossRef]
- Dessai, S.; Ayyanar, M.; Amalraj, S.; Khanal, P.; Vijayakumar, S.; Gurav, N.; Rarokar, N.; Kalaskar, M.; Nadaf, S.; Gurav, S. Bioflavonoid mediated synthesis of TiO2 nanoparticles: Characterization and their biomedical applications. Mater. Lett. 2022, 311, 131639. [Google Scholar] [CrossRef]
- Lou, W.; Zhang, D.; Bayless, R.C. Review of mineral recognition and its future. Appl. Geochem. 2020, 122, 104727. [Google Scholar] [CrossRef]
- Maitre, J.; Bouchard, K.; Bédard, L.P. Mineral grains recognition using computer vision and machine learning. Comput. Geosci. 2019, 130, 84–93. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Elsworth, D.; Pan, Z.; Ma, X. Nanoscale mechanical property variations concerning mineral composition and contact of marine shale. Geosci. Front. 2022, 13, 101405. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, Y.; Tan, J.; Yu, Q.; Yang, F.; Zhang, Z.; Yang, L.; Cheng, H.-M.; Liu, B. High-throughput production of cheap mineral-based two-dimensional electrocatalysts for high-current-density hydrogen evolution. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, S.; Ren, W.; Fang, J.; Zhu, Q.; Dun, Z. Multiscale Laboratory Study and Numerical Analysis of Water-Weakening Effect on Shale. Adv. Mater. Sci. Eng. 2020, 2020, 5263431. [Google Scholar] [CrossRef]
- Xie, J.; Ping, H.; Tan, T.; Lei, L.; Xie, H.; Yang, X.-Y.; Fu, Z. Bioprocess-inspired fabrication of materials with new structures and functions. Prog. Mater. Sci. 2019, 105, 100571. [Google Scholar] [CrossRef]
- Lu, A.; Li, Y.; Ding, H.; Xu, X.; Li, Y.; Ren, G.; Liang, J.; Liu, Y.; Hong, H.; Chen, N.; et al. Photoelectric conversion on Earth’s surface via widespread Fe- and Mn-mineral coatings. Earth Atmos. Planet. Sci. 2019, 116, 9741–9746. [Google Scholar] [CrossRef]
- Maged, A.; Kharbish, S.; Ismael, I.S.; Bhatnagar, A. Characterization of activated bentonite clay mineral and the mechanisms underlying its sorption for ciprofloxacin from aqueous solution. Environ. Sci. Pollut. Res. 2020, 27, 32980–32997. [Google Scholar] [CrossRef]
- Rao, U.; Iddya, A.; Jung, B.; Khor, C.M.; Hendren, Z.; Turchi, C.S.; Cath, T.Y.; Hoek, E.M.V.; Ramon, G.Z.; Jassby, D. Mineral Scale Prevention on Electrically Conducting Membrane Distillation Membranes Using Induced Electrophoretic Mixing. Environ. Sci. Technol. 2020, 54, 3678–3690. [Google Scholar] [CrossRef]
- Jooshaki, M.; Nad, A.; Michaux, S. A Systematic Review on the Application of Machine Learning in Exploiting Mineralogical Data in Mining and Mineral Industry. Minerals 2021, 11, 816. [Google Scholar] [CrossRef]
- Latif, G.; Bouchard, K.; Maitre, J.; Back, A.; Bédard, L.P. Deep-Learning-Based Automatic Mineral Grain Segmentation and Recognition. Minerals 2022, 12, 455. [Google Scholar] [CrossRef]
- Ge, M.; Su, F.; Zhao, Z.; Su, D. Deep learning analysis on microscopic imaging in materials science. Mater. Today Nano 2020, 11, 100087. [Google Scholar] [CrossRef]
- de la Rosa, F.L.; Sánchez-Reolid, R.; Gómez-Sirvent, J.L.; Morales, R.; Fernández-Caballero, A. A Review on Machine and Deep Learning for Semiconductor Defect Classification in Scanning Electron Microscope Images. Appl. Sci. 2021, 11, 9508. [Google Scholar] [CrossRef]
- Long, T.; Zhou, Z.; Hancke, G.; Bai, Y.; Gao, Q. A Review of Artificial Intelligence Technologies in Mineral Identification: Classification and Visualization. J. Sens. Actuator Networks 2022, 11, 50. [Google Scholar] [CrossRef]
- Gomez-Flores, A.; Ilyas, S.; Heyes, G.W.; Kim, H. A critical review of artificial intelligence in mineral concentration. Miner. Eng. 2022, 189, 107884. [Google Scholar] [CrossRef]
- Bac, B.H.; Nguyen, H.; Thao, N.T.T.; Duyen, L.T.; Hanh, V.T.; Dung, N.T.; Khang, L.Q.; An, D.M. Performance evaluation of nanotubular halloysites from weathered pegmatites in removing heavy metals from water through novel artificial intelligence-based models and human-based optimization algorithm. Chemosphere 2021, 282, 131012. [Google Scholar] [CrossRef]
- Cai, Y.; Xu, D.; Shi, H. Rapid identification of ore minerals using multi-scale dilated convolutional attention network associated with portable Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 267, 120607. [Google Scholar] [CrossRef]
- Hao, H.; Guo, R.; Gu, Q.; Hu, X. Machine learning application to automatically classify heavy minerals in river sand by using SEM/EDS data. Miner. Eng. 2019, 143, 105899. [Google Scholar] [CrossRef]
- Zeng, X.; Xiao, Y.; Ji, X.; Wang, G. Mineral Identification Based on Deep Learning That Combines Image and Mohs Hardness. Minerals 2021, 11, 506. [Google Scholar] [CrossRef]
- Izadi, H.; Sadri, J.; Bayati, M. An intelligent system for mineral identification in thin sections based on a cascade approach. Comput. Geosci. 2017, 99, 37–49. [Google Scholar] [CrossRef]
Investigation | Electron Microprobe | XRD | QEMSCAN |
---|---|---|---|
Mineral texture | ▲ | ● | ✔✔✔ |
Mineral distribution and associations | ▲ | ● | ✔✔ |
Mineral-specific particle size information | ▲ | ● | ✔✔ |
Mineral abundance | ● | ✔✔✔ | ✔✔✔ |
Amorphous minerals (geothite, silica) | ✔✔✔ | ● | ✔✔✔ |
Distribution of minor metals within minerals | ✔✔✔ | ● | ✔ |
Crystallinity (clay, silica, geothite, and limonite) | ● | ✔✔✔ | ● |
Analytical Methods/Techniques | Year | Minerals/Materials | References |
---|---|---|---|
SEM/SDD-EDS, EPMA-WDS, | 2023 | Major and minor elements in minerals and rocks | [134] |
SEM–EDS, XRD | 2022 | Constituent minerals in shales | [135] |
SEM, TEM | 2018 | Microbial biofilms, mineral precipitation | [136] |
SEM-BSE, TMR, SMH | 2018 | Mineral content in enamel lesions | [137] |
SEM, µXRF, LWIR, SAM | 2020 | Quartz, olivine, kyanite, and diopside | [138] |
SEM–EDS, Raman Spectroscopy | 2019 | Asbestos | [139] |
SEM-EDX, XPS, XRD, FT-IR, UV | 2020 | Kaolin, illite, gibbsite, and quartz | [140] |
SEM, XRD, TGA, IR, TXRF | 2022 | Mineral constituents in human renal calculi | [141] |
SEM-FIB | 2021 | Mineralized bone | [142] |
SEM–EDS | 2021 | Mineralizing fluids, sedimentary brines | [143] |
SEM-FIB, µCT, XLH | 2020 | Crossfibrillar mineral tessellation | [144] |
SEM, BSE, EDS, | 2022 | Sandstone | [145] |
SEM, CT, Raman Spectroscopy | 2021 | Saturated brine, wellbore cement | [146] |
SEM–EDS, XRD, IRS, XRF | 2023 | Gabbro-anorthosite, seawater, and mafic rock | [147] |
SEM–EDS, AM-SEM, FE-SEM, CT | 2023 | Mineralogical analysis of petroleum geology | [148] |
SEM-FIB | 2020 | Mineralized scale patterns on the cell periphery | [149] |
SEM, EMP, Raman Spectroscopy, BSE | 2019 | Petrified wood, Mn-oxide minerals | [150] |
SEM–EDS, Monte Carlo Simulations | 2021 | Glass fiber-reinforced cement | [151] |
SEM, XRD, XRF, FTIR | 2022 | High ash coal, fluidized bed gasifier | [152] |
SEM–EDS, XRD | 2023 | Mineral-forming bacteria | [153] |
SEM–EDS, XRD, TGA | 2023 | Self-healing cement-based minerals | [154] |
SEM, XRD, XPS, FTIR | 2023 | Biomimetic mineralized cement | [155] |
SEM, TEM, PLM, EBSD, SAED | 2023 | Talc, amphiboles, and biopyriboles | [156] |
Sample | Layer | Sputter Coating |
---|---|---|
A | Multiple | Applied |
B | Single | Applied |
C | Single | Not Applied |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Zhang, N.; Santos, R.M. Mineral Characterization Using Scanning Electron Microscopy (SEM): A Review of the Fundamentals, Advancements, and Research Directions. Appl. Sci. 2023, 13, 12600. https://doi.org/10.3390/app132312600
Ali A, Zhang N, Santos RM. Mineral Characterization Using Scanning Electron Microscopy (SEM): A Review of the Fundamentals, Advancements, and Research Directions. Applied Sciences. 2023; 13(23):12600. https://doi.org/10.3390/app132312600
Chicago/Turabian StyleAli, Asif, Ning Zhang, and Rafael M. Santos. 2023. "Mineral Characterization Using Scanning Electron Microscopy (SEM): A Review of the Fundamentals, Advancements, and Research Directions" Applied Sciences 13, no. 23: 12600. https://doi.org/10.3390/app132312600