Revealing the Impact of Ga and Y Doping on Thermal and Electrical Behavior of LaMnO3 Ceramic Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Characterization of Materials
3. Results and Discussion
3.1. XRD Analysis
3.2. Thermal Analysis
3.3. FT−IR Spectroscopy
3.4. Scanning Electron Microscopy
3.5. Electrical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jonker, G. Van Santen, Ferromagnetic compounds of manganese with perovskite structure. J. Phys. 1950, 16, 337. [Google Scholar] [CrossRef]
- Koriba, I.; Lagoun, B.; Guibadj, A.; Belhadj, S.; Ameur, A. Cheriet, Comput. Structural, electronic, magnetic and mechanical properties of three LaMnO3 phases: Theoretical investigations. Condens. Matter 2021, 29, 592. [Google Scholar]
- Rao, S.P.; Babu, K.S. Structural change and insulator to metal transition of LaMnO3 by molybdenum substitution. Mater. Chem. Phys. 2021, 272, 125021. [Google Scholar] [CrossRef]
- Aezami, A.; Abolhassani, M.; Elahi, M. Effects of electron correlations application to Ti atoms on physical properties of (LaMnO3)m/(SrTiO3)n superlattices. J. Alloys Compd. 2014, 587, 778–782. [Google Scholar] [CrossRef]
- Sfirloaga, P.; Poienar, M.; Malaescu, I.; Lungu, A.; Vlazan, P. Perovskite type lanthanum manganite: Morpho-structural analysis and electrical investigations. Rare Earth 2018, 36, 499–504. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, A.M.; Xie, W.M.; Lin, J.G.; Wu, X.S. Effect of strain-modulated lattice distortion on the magnetic properties of LaMnO3 films. Phys. B Condens. Matter. 2015, 476, 114–117. [Google Scholar] [CrossRef]
- Tran, T.H.; Bach, T.C.; Pham, N.H.; Nguyen, Q.H.; Sai, C.D.; Nguyen, H.N.; Nguyen, V.T.; Nguyen, T.T.; Ho, K.H.; Doan, Q.K. Fabrication of Ba Doped LaMnO3 Nanomaterials by Microwave Combustion Method. Mat. Sci. Semicon. Proc. 2019, 5, 89121. [Google Scholar]
- Tajik, Z.; Sayyadi-Shahraki, A.; Taheri-Nassaj, E.; Meysami, A.; Song, K.X.; Bafrooei, H.B. Effect of synthesis and sintering technique on the long-range 1: 3 cation ordering and microwave dielectric loss of Li2ZnTi3O8 ceramics. Ceram. Int. 2020, 46, 20905. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, K.; Hu, S.; Luan, X.; He, S.; Wang, X.; Zhou, S.; Chen, X.; Zhou, H. Preparation, structure and microwave dielectric properties of novel La2MgGeO6 ceramics with hexagonal structure and adjustment of its τf value. Ceram. Int. 2021, 47, 7783. [Google Scholar] [CrossRef]
- Das, N.; Bhattacharya, D.; Sen, A.; Maiti, H.S. Sonochemical synthesis of LaMnO3 nano-powder. Ceram. Int. 2009, 35, 21–24. [Google Scholar] [CrossRef]
- Sfirloaga, P.; Sebarchievici, I.; Taranu, B.; Poienar, M.; Vlase, G.; Vlase, T.; Vlazan, P. Investigation of physico-chemical features of lanthanum manganite with nitrogen addition. J. Alloys Compd. 2020, 843, 155854. [Google Scholar] [CrossRef]
- Sfirloaga, P.; Marin, C.N.; Malaescu, I.; Vlazan, P. The electrical performance of ceramics materials with perovskite structure doped with metallic ions. Ceram. Internat. 2016, 42, 18960–18964. [Google Scholar] [CrossRef]
- Malavasi, L.; Baldini, M.; di Castro, D.; Nucara, A.; Crichton, W.; Mezouar, M.; Blasco, J.; Postorino, P. High pressure behavior of Ga-doped LaMnO3: a combined X-ray diffraction and optical spectroscopy study. J. Mater. Chem. 2010, 20, 1304. [Google Scholar] [CrossRef]
- Hui, S.; Petric, A. Electrical Properties of Yttrium-Doped Strontium Titanate under Reducing Conditions. Electrochem. Soc. 2002, 149, J1. [Google Scholar] [CrossRef]
- Lungu, A.; Malaescu, I.; Marin, C.N.; Vlazan, P.; Sfirloaga, P. The electrical properties of manganese ferrite powders prepared by two different methods. Phys. B Condens. Matter 2015, 462, 80. [Google Scholar] [CrossRef]
- ASTMD 150-98; Standard Test Methods for AC Loss Characteristics and Permittivity (Dielectric Constant) of Solid Electrical Insulation. ASTM International: West Conshohocken, PA, USA, 2004.
- Hernandez, E.; Sagredo, V.; Delgado, G.E. Synthesis and magnetic characterization of LaMnO3 nanoparticles. Rev. Mex. 2015, 61, 166. [Google Scholar]
- Ansari, A.A.; Ahmad, N.; Alam, M.; Adil, S.F.; Ramay, S.M.; Albadri, A.; Ahmad, A.; Al-Enizi, A.M.; Alrayes, B.F.; Assal, M.E.; et al. Physico-chemical properties and catalytic activity of the sol-gel prepared Ce-ion doped LaMnO3 perovskites. Sci. Rep. 2019, 9, 7747. [Google Scholar] [CrossRef]
- Daengsakul, S.; Mongkolkachit, C.; Thomas, C.; Thomas, I.; Siri, S.; Amornkitbamrung, V.; Maensiri, S. Synthesis and characterization of LaMnO3+δ nanoparticles prepared by a simple thermal hydro-decomposition method. Optoelectron. Adv. Mat. Rapid Commun. 2009, 3, 106. [Google Scholar]
- Aal, A.A.; Hammad, T.R.; Zawrah, M.; Battisha, I.K.; Hammad, A.B.A. FTIR Study of Nanostructure Perovskite BaTiO3 Doped with Both Fe3+ and Ni2+ Ions Prepared by Sol-Gel Technique. Acta Phys. Pol. A 2014, 126, 1318. [Google Scholar]
- Jonscher, A.K. Universal Relaxation Law, 1st ed.; Chelsea Dielectrics Press: London, UK, 1996; pp. 198–200. [Google Scholar]
- Lafuerza, S.G.; Subias, S.G.; Garcıa, J.; Di Matteo, S.; Blasco, J.; Cuartero, V.; Natoli, C.R. Origin of the pre-peak features in the oxygen K-edge x-ray absorption spectra of LaFeO3 and LaMnO3 studied by Ga substitution of the transition metal ion. J. Phys. Condens. Matter 2011, 23, 325601. [Google Scholar] [CrossRef]
- Sánchez, M.C.; García, J.; Subías, G.; Blasco, J. Lack of Jahn-Teller distortion in highly diluted LaMn1−xGaxO3(x>0.6). J. Phys. Rev. B 2006, 73, 094416. [Google Scholar] [CrossRef]
- Zhou, J.S.; Goodenough, J.B. Exchange interactions in the perovskites Ca1−xSrxMnO3 and RMnO3 (R=La, Pr, Sm). Phys. Rev. B 2003, 68, 144406. [Google Scholar] [CrossRef]
- Fondado, J.A.; Mira, J.; Rivas, J.; Rey, C.; Breijo, M.P.; Señarı, M.A. Role of the Rare-Earth on the Electrical and Magnetic Properties of Cobalt Perovskites. J. Appl. Phys. 2000, 87, 5612. [Google Scholar] [CrossRef]
- Taran, S.; Sun, C.P.; Huang, C.L.; Yang, H.D.; Nigam, A.K.; Chaudhuri, B.K.; Chatterjee, S. Electrical and magnetic properties of Y-doped La0.5Sr0.5MnO3 manganite system: Observation of step-like magnetization. J. Alloys Compd. 2015, 644, 363–370. [Google Scholar]
- Sangeetha, M.; Babu, V.H. Effect of yttrium substitution on the electrical and magnetic properties of La0.7Ba0.3MnO3 compound Magn. Magn. Mater. 2015, 389, 5–9. [Google Scholar] [CrossRef]
- Mott, N.F.; Davis, E.A. Electronic Process in Non-Crystalline Materials, 2nd ed.; Clarendon Press: Oxford, UK, 1979; pp. 32–37. [Google Scholar]
- Malaescu, D.; Grozescu, I.; Sfirloaga, P.; Vlazan, P.; Marin, C.N. The electrical properties of some composite materials based on sodium and tantalum oxides. Acta Phys. Pol. A 2016, 29, 129133. [Google Scholar] [CrossRef]
- Sfirloaga, P.; Miron, I.; Malaescu, I.; Marin, C.N.; Ianasi, C.; Vlazan, P. Structural and physical properties of undoped and Ag-doped NaTaO3 synthesized at low temperature. Mat. Sci. Semicon. Proc. 2015, 39, 721. [Google Scholar] [CrossRef]
- Sfirloaga, P.; Malaescu, I.; Poienar, M.; Nicolae, M.C.; Malaescu, D.; Vlazan, P. Synthesis, structural and electrical properties of NaTaO3:Cu. Mater. Sci. Mater. Electron. 2016, 27, 11640. [Google Scholar] [CrossRef]
- Hill, R.M. Conduction in non-crystalline systems. Philos. Mag. 1971, 241307. [Google Scholar]
- Davis, E.A.; Mott, N.F. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 1970, 220903. [Google Scholar] [CrossRef]
- Brindusoiu, S.; Poienar, M.; Marin, C.N.; Sfirloaga, P.; Vlazan, P.; Malaescu, I. The electrical conductivity of Fe3(PO4)2·8H2O materials. Mater. Sci. Mater. Electron. 2019, 30, 15693. [Google Scholar] [CrossRef]
- Malaescu, I.; Lungu, A.; Marin, C.N.; Sfirloaga, P.; Vlazan, P.; Brindusoiu, S.P. Temperature dependence of the dynamic electrical properties of Cu1+xMn1-xO2 (x = 0 and 0.06) crednerite materials. Ceram. Int. 2018, 411610. [Google Scholar] [CrossRef]
Sample | Space Group | Lattice Parameter | Unit Cell Volume | Crystallite Size |
---|---|---|---|---|
[Å] | [Å3] | [nm] | ||
LaMnO3 | R-3c | a = b = 5.4749(5) c = 13.327 | 345.9341 | 25.8 |
LaMnO3:Ga | Pm-3m | a = b = c = 3.8677(7) | 57.8584 | 17.3 |
LaMnO3:Y | Pm-3m | a = b = c = 3.8687(4) | 57.9007 | 26.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlazan, P.; Marin, C.N.; Malaescu, I.; Vlase, G.; Vlase, T.; Poienar, M.; Sfirloaga, P. Revealing the Impact of Ga and Y Doping on Thermal and Electrical Behavior of LaMnO3 Ceramic Materials. Appl. Sci. 2024, 14, 1546. https://doi.org/10.3390/app14041546
Vlazan P, Marin CN, Malaescu I, Vlase G, Vlase T, Poienar M, Sfirloaga P. Revealing the Impact of Ga and Y Doping on Thermal and Electrical Behavior of LaMnO3 Ceramic Materials. Applied Sciences. 2024; 14(4):1546. https://doi.org/10.3390/app14041546
Chicago/Turabian StyleVlazan, Paulina, Catalin Nicolae Marin, Iosif Malaescu, Gabriela Vlase, Titus Vlase, Maria Poienar, and Paula Sfirloaga. 2024. "Revealing the Impact of Ga and Y Doping on Thermal and Electrical Behavior of LaMnO3 Ceramic Materials" Applied Sciences 14, no. 4: 1546. https://doi.org/10.3390/app14041546