Analysis of a Novel Fluidic Oscillator under Several Dimensional Modifications
Abstract
:1. Introduction
2. Governing Equations and Turbulence Model
3. Mesh Assessment
4. Geometrical Modifications Considered
5. Concept of Momentum, Pressure, and Mass Flow Terms Acting on the Jet Entering the Mixing Chamber
6. Results
6.1. Reynolds Number Modification
6.2. Outlet Width Modification
6.3. Mixing Chamber Internal Angle Modification
7. Discussion of the Results, Origin of the Self-Sustained Oscillations
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ostermann, F.; Woszidlo, R.; Nayeri, C.N.; Paschereit, C.O. Properties of a sweeping jet emitted from a fluidic oscillator. J. Fluid Mech. 2018, 857, 216–238. [Google Scholar] [CrossRef]
- Zeleke, D.S.; Huang, R.F.; Hsu, C.M. Effects of Reynolds number on flow and mixing characteristics of a self-sustained swinging jet. J. Turbul. 2020, 21, 434–462. [Google Scholar] [CrossRef]
- Kim, M.; Kim, D.; Yeom, E.; Kim, K.C. Experimental study on heat transfer and flow structures of feedback-free sweeping jet impinging on a flat surface. Int. J. Heat Mass Transf. 2020, 159, 120085. [Google Scholar] [CrossRef]
- Mohammadshahi, S.; Samsam-Khayani, H.; Cai, T.; Nili-Ahmadabadi, M.; Kim, K.C. Experimental study on flow characteristics and heat transfer of an oscillating jet in a cross flow. Int. J. Heat Mass Transf. 2021, 173, 121208. [Google Scholar] [CrossRef]
- Handa, T.; Fujimura, I. Fluidic oscillator actuated by a cavity at high frequencies. Sens. Actuators A Phys. 2019, 300, 111676. [Google Scholar] [CrossRef]
- Suh, J.; Han, K.; Peterson, C.W.; Bahl, G. Invited Article: Real-time sensing of flowing nanoparticles with electro-opto-mechanics. APL Photonics 2017, 2, 010801. [Google Scholar] [CrossRef]
- Guha, S.; Schmalz, K.; Wenger, C.; Herzel, F. Self-calibrating highly sensitive dynamic capacitance sensor: Towards rapid sensing and counting of particles in laminar flow systems. Analyst 2015, 140, 3262–3272. [Google Scholar] [CrossRef]
- Kim, S.; Kihm, K.D.; Thundat, T. Fluidic applications for atomic force microscopy (AFM) with microcantilever sensors. Exp. Fluids 2010, 48, 721–736. [Google Scholar] [CrossRef]
- Länge, K.; Blaess, G.; Voigt, A.; Götzen, R.; Rapp, M. Integration of a surface acoustic wave biosensor in a microfluidic polymer chip. Biosens. Bioelectron. 2006, 22, 227–232. [Google Scholar] [CrossRef]
- Sakong, J.; Roh, H.; Roh, Y. Surface acoustic wave DNA sensor with micro-fluidic channels. Jpn. J. Appl. Phys. 2007, 46, 4729. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, K.Y. Effects of installation location of fluidic oscillators on aerodynamic performance of an airfoil. Aerosp. Sci. Technol. 2020, 99, 105735. [Google Scholar] [CrossRef]
- Cerretelli, C.; Wuerz, W.; Gharaibah, E. Unsteady separation control on wind turbine blades using fluidic oscillators. AIAA J. 2010, 48, 1302–1311. [Google Scholar] [CrossRef]
- Tousi, N.; Coma, M.; Bergadà, J.; Pons-Prats, J.; Mellibovsky, F.; Bugeda, G. Active flow control optimisation on SD7003 airfoil at pre and post-stall angles of attack using synthetic jets. Appl. Math. Model. 2021, 98, 435–464. [Google Scholar] [CrossRef]
- Bobusch, B.C.; Woszidlo, R.; Bergada, J.M.; Nayeri, C.N.; Paschereit, C.O. Experimental study of the internal flow structures inside a fluidic oscillator. Exp. Fluids 2013, 54, 1559. [Google Scholar] [CrossRef]
- Vatsa, V.; Koklu, M.; Wygnanski, I. Numerical simulation of fluidic actuators for flow control applications. In Proceedings of the 6th AIAA Flow Control Conference, New Orleans, LO, USA, 25–28 June 2012; p. 3239. [Google Scholar]
- Ostermann, F.; Woszidlo, R.; Nayeri, C.; Paschereit, C.O. Experimental comparison between the flow field of two common fluidic oscillator designs. In Proceedings of the 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 5–9 January 2015; p. 0781. [Google Scholar]
- Aram, S.; Lee, Y.T.; Shan, H.; Vargas, A. Computational Fluid Dynamic Analysis of Fluidic Actuator for Active Flow Control Applications. AIAA J. 2018, 56, 111–120. [Google Scholar] [CrossRef]
- Woszidlo, R.; Ostermann, F.; Nayeri, C.; Paschereit, C. The time-resolved natural flow field of a fluidic oscillator. Exp. Fluids 2015, 56, 125. [Google Scholar] [CrossRef]
- Gaertlein, S.; Woszidlo, R.; Ostermann, F.; Nayeri, C.; Paschereit, C.O. The time-resolved internal and external flow field properties of a fluidic oscillator. In Proceedings of the 52nd Aerospace Sciences Meeting, National Harbor, MD, USA, 13–17 January 2014; p. 1143. [Google Scholar]
- Slupski, B.Z.; Kara, K. Effects of Geometric Parameters on Performance of Sweeping Jet Actuator. In Proceedings of the 34th AIAA Applied Aerodynamics Conference, Washington, DC, USA, 13–17 June 2016; p. 3263. [Google Scholar]
- Wang, S.; Baldas, L.; Colin, S.; Orieux, S.; Kourta, A.; Mazellier, N. Experimental and numerical study of the frequency response of a fluidic oscillator for active flow control. In Proceedings of the 8th AIAA Flow Control Conference, Washington, DC, USA, 13–17 June 2016; p. 4234. [Google Scholar]
- Pandey, R.J.; Kim, K.Y. Numerical modeling of internal flow in a fluidic oscillator. J. Mech. Sci. Technol. 2018, 32, 1041–1048. [Google Scholar] [CrossRef]
- Seo, J.; Zhu, C.; Mittal, R. Flow Physics and Frequency Scaling of Sweeping Jet Fluidic Oscillators. AIAA J. 2018, 56, 2208–2219. [Google Scholar] [CrossRef]
- Bobusch, B.C.; Woszidlo, R.; Krüger, O.; Paschereit, C.O. Numerical Investigations on Geometric Parameters Affecting the Oscillation Properties of a Fluidic Oscillator. In Proceedings of the 21st AIAA Computational Fluid Dynamics Conference, San Diego, CA, USA, 24–27 June 2013; p. 2709. [Google Scholar]
- Baghaei, M.; Bergada, J.M. Analysis of the Forces Driving the Oscillations in 3D Fluidic Oscillators. Energies 2019, 12, 4720. [Google Scholar] [CrossRef]
- Baghaei, M.; Bergada, J.M. Fluidic Oscillators, the Effect of Some Design Modifications. Appl. Sci. 2020, 10, 2105. [Google Scholar] [CrossRef]
- Bergadà, J.M.; Baghaei, M.; Prakash, B.; Mellibovsky, F. Fluidic oscillators, feedback channel effect under compressible flow conditions. Sensors 2021, 21, 5768. [Google Scholar] [CrossRef]
- Sarwar, W.; Bergadà, J.M.; Mellibovsky, F. Onset of temporal dynamics within a low reynolds-number laminar fluidic oscillator. Appl. Math. Model. 2021, 95, 219–235. [Google Scholar] [CrossRef]
- Lee, S.; Roh, T.S.; Lee, H.J. Influence of jet parameters of fluidic oscillator-type fuel injector on the mixing performance in a supersonic flow field. Aerosp. Sci. Technol. 2023, 134, 108154. [Google Scholar] [CrossRef]
- Tavakoli, M.; Nili-Ahmadabadi, M.; Joulaei, A.; Ha, M.Y. Enhancing subsonic ejector performance by incorporating a fluidic oscillator as the primary nozzle: A numerical investigation. Int. J. Thermofluids 2023, 20, 100429. [Google Scholar] [CrossRef]
- Laín, S.; Lozano-Parada, J.H.; Guzmán, J. Computational Characterization of Turbulent Flow in a Microfluidic Actuator. Appl. Sci. 2022, 12, 3589. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Zhou, W.; Wen, X.; Liu, Y. Thermal pollution level reduction by sweeping jet-based enhanced heat dissipation: A numerical study with calibrated Generalized k-ω (GEKO) model. Appl. Therm. Eng. 2022, 204, 117990. [Google Scholar] [CrossRef]
- Madane, K.; Ranade, V. Jet Oscillations and Mixing in Fluidic Oscillators: Influence of Geometric Configuration and Scale. Ind. Eng. Chem. Res. 2023, 62, 19274–19293. [Google Scholar] [CrossRef]
- Xu, S.; Peirone, C.; Ryzer, E.; Rankin, G.W. An investigation of a supersonic fluidic oscillator generating pulsations in chambers during pressurization. Eur. J. Mech. B/Fluids 2024, 103, 100–115. [Google Scholar] [CrossRef]
- Menter, F. Zonal two equation kw turbulence models for aerodynamic flows. In Proceedings of the 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, Orlando, FL, USA, 6–9 July 1993; p. 2906. [Google Scholar]
Mesh Assessment | |||||
---|---|---|---|---|---|
2D Mesh Cells | Min y+ | Average y+ | Max y+ | Frequency (Hz) | Error % |
62,143 cells | 0.007893928 | 5.255150 | 63.09918 | 24.525 Hz | 15.37% |
180,065 cells | 0.5630300 | 1.616285 | 16.79723 | 29.181 Hz | 0.69% |
367,720 cells | 0.2748158 | 0.9271403 | 8.044681 | 29.091 Hz | 0.38% |
718,920 cells | 0.2741867 | 0.7549317 | 8.368831 | 28.98 Hz | - |
Boundary Conditions 2D-CFD | |||||
---|---|---|---|---|---|
k (m2/s2) | Omega (s−1) | Nut (m2/s) | P (Pa) | U (m/s) | |
inlet | zeroGradient | 10 | |||
outlet | zeroGradient | zeroGradient | zeroGradient | zeroGradient | |
Top & Bottom | empty | empty | empty | empty | empty |
walls | omegaWallFunction value | nutWallFunction value | zeroGradient | 0 |
Outlet Widths Evaluated | ||||||
---|---|---|---|---|---|---|
Outlet width in % | ||||||
Outlet width in (m) | ||||||
Outlet section name | 1 | 2 | 4 | 5 | 6 |
Mixing Chamber Inlet Angles | |||
---|---|---|---|
Inlet angle in % | |||
Inlet angle in (degrees) |
Reynolds Number | Re = 27,483 | Re = 41,224 | Re = 54,595 | Re = 68,707 |
---|---|---|---|---|
Parameter | Main Frequency [Hz] | |||
MC wall pressure | 11 | |||
FC Pressure momentum | ||||
FC Mass flow momentum | ||||
Net momentum |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karimzadegan, K.; Mirzaei, M.; Bergada, J.M. Analysis of a Novel Fluidic Oscillator under Several Dimensional Modifications. Appl. Sci. 2024, 14, 1690. https://doi.org/10.3390/app14051690
Karimzadegan K, Mirzaei M, Bergada JM. Analysis of a Novel Fluidic Oscillator under Several Dimensional Modifications. Applied Sciences. 2024; 14(5):1690. https://doi.org/10.3390/app14051690
Chicago/Turabian StyleKarimzadegan, Kavoos, Masoud Mirzaei, and Josep M. Bergada. 2024. "Analysis of a Novel Fluidic Oscillator under Several Dimensional Modifications" Applied Sciences 14, no. 5: 1690. https://doi.org/10.3390/app14051690