Lapatinib-Based Radioagents for Application in Nuclear Medicine
Abstract
1. Introduction
2. Lapatinib Molecular Target
3. Radionuclide-Labelled Lapatinib Agent
3.1. Lapatinib Labelled with Non-Metallic Radionuclides
3.2. Lapatinib Labelled with Metallic Radionuclides
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATP | adenosine triphosphate |
BBB | blood–brain barrier |
BTB | blood–tumour barrier |
CISH | chromogenic in situ hybridization |
CNS | central nervous system |
DFG | Asp-Phe-Gly |
DLS | Duckworth–Lewis–Stern method |
EA | elemental analysis |
EGFR | epidermal growth factor receptor |
EMA | European Medicines Agency |
ErbB | erythroblastic leukemia viral oncogene homolog |
FDA | U.S. Food and Drug Administration |
FISH | fluorescence in situ hybridization |
GSK | GlaxoSmithKline |
H&E | hematoxylin and eosin staining histological technique |
HER2 | human epidermal growth factor receptor 2 |
HPLC | high-performance liquid chromatography |
ID/g | percentage of injected dose per gram of tissue |
IHC | immunohistochemistry |
Kiapp | apparent inhibition constant |
LPT | lapatinib |
MS | mass spectrometry |
n.c.a. | no carrier added |
NIR | near-infrared |
PI3-K | phosphatidylinositol 3-kinase pathway |
NMR | nuclear magnetic resonance |
NOTA | 1,4,7-Triazacyclononane-1,4,7-triacetic acid |
NS3 | tris(2-mercaptoethyl)-amine; 2,2′,2″-nitrilotriethanethiol |
PET | positron emission tomography |
PLGA | poly(lactic-co-glycolic acid) |
Ras | intracellular signalling cascade pathway |
RCP | radiochemical purity |
RCY | radiochemical yield |
SA | specific activity |
SEM | scanning electron microscopy |
SPECT | single-photon emission computed tomography |
TEM | transmission electron microscopy analytical method |
TKs | tyrosine kinases |
TLRC | thin-layer radiochromatography |
References
- Fragomeni, S.M.; Sciallis, A.; Jeruss, J.S. Molecular subtypes and local-regional control of breast cancer. Surg. Oncol. Clin. N. Am. 2018, 27, 95–120. [Google Scholar] [CrossRef] [PubMed]
- Loibl, S.; Poortmans, P.; Morrow, M.; Denkert, C.; Curigliano, G. Breast cancer. Lancet 2021, 397, 1750–1769. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.H.; Dolder, C.R. Lapatinib: A novel dual tyrosine kinase inhibitor with activity in solid tumors. Ann. Pharmacother. 2006, 40, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.R.; Leary, A. Lapatinib: A novel EGFR/HER2 tyrosine kinase inhibitor for cancer. Drugs Today (Barc.) 2006, 42, 441–453. [Google Scholar] [CrossRef]
- Kumar, R.; George, B.; Campbell, M.R.; Verma, N.; Paul, A.M.; Melo-Alvim, C.; Ribeiro, L.; Pillai, M.R.; da Costa, L.M.; Moasser, M.M. HER family in cancer progression: From discovery to 2020 and beyond. Adv. Cancer. Res. 2020, 147, 109–160. [Google Scholar] [CrossRef]
- Rusnak, D.W.; Alligood, K.J.; Mullin, R.J.; Spehar, G.M.; Arenas-Elliott, C.; Martin, A.M.; Degenhardt, Y.; Rudolph, S.K.; Haws, T.F., Jr.; Hudson-Curtis, B.L.; et al. Assessment of epidermal growth factor receptor (EGFR, ErbB1) and HER2 (ErbB2) protein expression levels and response to lapatinib (Tykerb, GW572016) in an expanded panel of human normal and tumour cell lines. Cell Prolif. 2007, 40, 580–594. [Google Scholar] [CrossRef]
- Spector, N.L.; Xia, W.; Burris, H., 3rd; Hurwitz, H.; Dees, E.C.; Dowlati, A.; O’Neil, B.; Overmoyer, B.; Marcom, P.K.; Blackwell, K.L.; et al. Study of the biologic effects of lapatinib, a reversible inhibitor of ErbB1 and ErbB2 tyrosine kinases, on tumor growth and survival pathways in patients with advanced malignancies. J. Clin. Oncol. 2005, 23, 2502–2512. [Google Scholar] [CrossRef]
- Wood, E.R.; Truesdale, A.T.; McDonald, O.B.; Yuan, D.; Hassell, A.; Dickerson, S.H.; Ellis, B.; Pennisi, C.; Horne, E.; Lackey, K.; et al. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): Relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res. 2004, 64, 6652–6659. [Google Scholar] [CrossRef]
- Castellino, S.; O’Mara, M.; Koch, K.; Borts, D.J.; Bowers, G.D.; MacLauchlin, C. Human metabolism of lapatinib, a dual kinase inhibitor: Implications for hepatotoxicity. Drug Metab. Dispos. 2012, 40, 139–150. [Google Scholar] [CrossRef]
- Geyer, C.E.; Forster, J.; Lindquist, D.; Chan, S.; Romieu, C.G.; Pienkowski, T.; Jagiello-Gruszfeld, A.; Crown, J.; Chan, A.; Kaufman, B.; et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl.J. Med. 2006, 355, 2733–2743. [Google Scholar] [CrossRef]
- Morikawa, A.; Peereboom, D.M.; Thorsheim, H.R.; Samala, R.; Balyan, R.; Murphy, C.G.; Lockman, P.R.; Simmons, A.; Weil, R.J.; Tabar, V.; et al. Capecitabine and lapatinib uptake in surgically resected brain metastases from metastatic breast cancer patients: A prospective study. Neuro. Oncol. 2015, 17, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Medina, P.J.; Goodin, S. Lapatinib: A dual inhibitor of human epidermal growth factor receptor tyrosine kinases. Clin. Ther. 2008, 30, 1426–1447. [Google Scholar] [CrossRef] [PubMed]
- Konecny, G.E.; Pegram, M.D.; Venkatesan, N.; Finn, R.; Yang, G.; Rahmeh, M.; Untch, M.; Rusnak, D.W.; Spehar, G.; Mullin, R.J.; et al. Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res. 2006, 66, 1630–1639. [Google Scholar] [CrossRef]
- Yu, T.; Cho, B.J.; Choi, E.J.; Park, J.M.; Kim, D.H.; Kim, I.A. Radiosensitizing effect of lapatinib in human epidermal growth factor receptor 2-positive breast cancer cells. Oncotarget 2016, 7, 79089–79100. [Google Scholar] [CrossRef]
- Scaltriti, M.; Rojo, F.; Ocaña, A.; Anido, J.; Guzman, M.; Cortes, J.; Di Cosimo, S.; Matias-Guiu, X.; Ramon y Cajal, S.; Arribas, J.; et al. Expression of p95HER2, a Truncated Form of the HER2 Receptor, and Response to Anti-HER2 Therapies in Breast Cancer. JNCI J. Natl. Cancer Inst. 2007, 99, 628–638. [Google Scholar] [CrossRef]
- Nahta, R.; Yuan, L.X.; Du, Y.; Esteva, F.J. Lapatinib induces apoptosis in trastuzumab-resistant breast cancer cells: Effects on insulin-like growth factor I signaling. Mol. Cancer Ther. 2007, 6, 667–674. [Google Scholar] [CrossRef]
- Van Poznak, C.; Somerfield, M.R.; Bast, R.C.; Cristofanilli, M.; Goetz, M.P.; Gonzalez-Angulo, A.M.; Hicks, D.G.; Hill, E.G.; Liu, M.C.; Lucas, W.; et al. Use of Biomarkers to Guide Decisions on Systemic Therapy for Women With Metastatic Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2015, 33, 2695–2704. [Google Scholar] [CrossRef]
- Ellis, C.M.; Dyson, M.J.; Stephenson, T.J.; Maltby, E.L. HER2 amplification status in breast cancer: A comparison between immunohistochemical staining and fluorescence in situ hybridisation using manual and automated quantitative image analysis scoring techniques. J. Clin. Pathol. 2005, 58, 710–714. [Google Scholar] [CrossRef]
- Sauter, G.; Lee, J.; Bartlett, J.M.; Slamon, D.J.; Press, M.F. Guidelines for human epidermal growth factor receptor 2 testing: Biologic and methodologic considerations. J. Clin. Oncol. 2009, 27, 1323–1333. [Google Scholar] [CrossRef]
- Tanner, M.; Gancberg, D.; Di Leo, A.; Larsimont, D.; Rouas, G.; Piccart, M.J.; Isola, J. Chromogenic in situ hybridization: A practical alternative for fluorescence in situ hybridization to detect HER-2/neu oncogene amplification in archival breast cancer samples. Am. J. Pathol. 2000, 157, 1467–1472. [Google Scholar] [CrossRef]
- Pedersen, M.; Rasmussen, B.B. The correlation between dual-color chromogenic in situ hybridization and fluorescence in situ hybridization in assessing HER2 gene amplification in breast cancer. Diagn. Mol. Pathol. 2009, 18, 96–102. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, X.; Gao, X.; Chen, X.; Li, L.; Li, G.; Liu, C.; Miao, Y.; Wang, R.; Hu, K. Radiopharmaceuticals and their applications in medicine. Signal Transduct. Target Ther. 2025, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Li, J.; Yu, Y.; Chen, Z.; Yang, Y.; Zhu, L.; Sang, S.; Deng, S. Review: Radionuclide Molecular Imaging Targeting HER2 in Breast Cancer with a Focus on Molecular Probes into Clinical Trials and Small Peptides. Molecules 2021, 26, 6482. [Google Scholar] [CrossRef] [PubMed]
- Molavipordanjani, S.; Hosseinimehr, S.J. The Radiolabeled HER3 Targeting Molecules for Tumor Imaging. Iran. J. Pharm. Res. 2021, 20, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Bernard-Gauthier, V.; Bailey, J.J.; Berke, S.; Schirrmacher, R. Recent Advances in the Development and Application of Radiolabeled Kinase Inhibitors for PET Imaging. Molecules 2015, 20, 22000–22027. [Google Scholar] [CrossRef]
- Oude Munnink, T.H.; de Vries, E.G.; Vedelaar, S.R.; Timmer-Bosscha, H.; Schröder, C.P.; Brouwers, A.H.; Lub-de Hooge, M.N. Lapatinib and 17AAG reduce 89Zr-trastuzumab-F(ab’)2 uptake in SKBR3 tumor xenografts. Mol. Pharm. 2012, 9, 2995–3002. [Google Scholar] [CrossRef]
- Rosestedt, M.; Andersson, K.G.; Mitran, B.; Tolmachev, V.; Löfblom, J.; Orlova, A.; Ståhl, S. Affibody-mediated PET imaging of HER3 expression in malignant tumours. Sci. Rep. 2015, 5, 15226. [Google Scholar] [CrossRef]
- Da Pieve, C.; Allott, L.; Martins, C.D.; Vardon, A.; Ciobota, D.M.; Kramer-Marek, G.; Smith, G. Efficient [18F]AlF Radiolabeling of ZHER3:8698 Affibody Molecule for Imaging of HER3 Positive Tumors. Bioconjug. Chem. 2016, 27, 1839–1849. [Google Scholar] [CrossRef]
- Pool, M.; Kol, A.; de Jong, S.; de Vries, E.G.E.; Lub-de Hooge, M.N.; Terwisscha van Scheltinga, A.G.T. 89Zr-mAb3481 PET for HER3 tumor status assessment during lapatinib treatment. MAbs 2017, 9, 1370–1378. [Google Scholar] [CrossRef]
- Burden, S.; Yarden, Y. Neuregulins and their receptors: A versatile signaling module in organogenesis and oncogenesis. Neuron. 1997, 18, 847–855. [Google Scholar] [CrossRef]
- Kolibaba, K.S.; Druker, B.J. Protein tyrosine kinases and cancer. Biochim. Biophys. Acta 1997, 1333, F217–F248. [Google Scholar] [CrossRef] [PubMed]
- Riese, D.J., 2nd; Stern, D.F. Specificity within the EGF family/ErbB receptor family signaling network. Bioessays 1998, 20, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Aertgeerts, K.; Skene, R.; Yano, J.; Sang, B.C.; Zou, H.; Snell, G.; Jennings, A.; Iwamoto, K.; Habuka, N.; Hirokawa, A.; et al. Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein. J. Biol. Chem. 2011, 286, 18756–18765. [Google Scholar] [CrossRef]
- Wu, P.; Nielson, T.E.; Clausen, M.H. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol. Sci. 2015, 36, 422–439. [Google Scholar] [CrossRef]
- Qiu, C.; Tarrant, M.K.; Choi, S.H.; Sathyamurthy, A.; Bose, R.; Banjade, S.; Pal, A.; Bornmann, W.G.; Lemmon, M.A.; Cole, P.A.; et al. Mechanism of activation and inhibition of the HER4/ErbB4 kinase. Structure 2008, 16, 460–467. [Google Scholar] [CrossRef]
- Slobbe, P.; Poot, A.J.; Windhorst, A.D.; van Dongen, G.A. PET imaging with small-molecule tyrosine kinase inhibitors: TKI-PET. Drug Discov. Today 2012, 17, 1175–1187. [Google Scholar] [CrossRef]
- Basuli, F.; Wu, H.; Li, C.; Shi, Z.-D.; Sulima, A.; Griffiths, G.L. A first synthesis of 18F-radiolabeled Lapatinib: A potential tracer for positron emission tomographic imaging of erbb1/erbb2 tyrosine kinase activity. J. Label. Compd. Radiopharm. 2011, 54, 633–636. [Google Scholar] [CrossRef]
- Nunes, P.; Zhang, Z.; Zhang, C.; Carvalho, I.; Benard, F.; Lin, K.-S. Facile synthesis of 18F-labeled Lapatinib for imaging with positron emission tomography. JNM 2018, 59 (Suppl. S1), 1055. [Google Scholar]
- Saleem, A.; Searle, G.E.; Kenny, L.M.; Huiban, M.; Kozlowski, K.; Waldman, A.D.; Woodley, L.; Palmieri, C.; Lowdell, C.; Kaneko, T.; et al. Lapatinib access into normal brain and brain metastases in patients with Her-2 overexpressing breast cancer. EJNMMI Res. 2015, 5, 30. [Google Scholar] [CrossRef]
- Taskar, K.S.; Rudraraju, V.; Mittapalli, R.K.; Samala, R.; Thorsheim, H.R.; Lockman, J.; Gril, B.; Hua, E.; Palmieri, D.; Polli, J.W.; et al. Lapatinib distribution in HER2 overexpressing experimental brain metastases of breast cancer. Pharm Res. 2012, 29, 770–781. [Google Scholar] [CrossRef]
- Gniazdowska, E.; Koźmiński, P.; Bańkowski, K.; Luniewski, W.; Królicki, L. Synthesis, physicochemical and biological evaluation of technetium- 99m labeled lapatinib as a novel potential tumor imaging agent of Her-2 positive breast cancer. Eur. J. Med. Chem. 2014, 87, 493–499. [Google Scholar] [CrossRef]
- Gokulu, S.G.; Karatay, K.B.; Bilgi, A.; Kayas, C.; Yildirim, N.; Kilcar, A.Y.; Muftuler, F.Z.B.; Terek, M.C.; Akman, L. Synthesis and in vitro evaluation of 99mTc radiolabeled lapatinib (LPT) and its PLGA formulation. J. Radioanal. Nucl. Chem. 2024, 333, 665–672. [Google Scholar] [CrossRef]
- Pham, T.M.; Cao, D.V.; Dang, H.H.Q.; Mai, P.M.T.; Nguyen, T.B.; Dinh, N.B.N.; Nguyen, T.K.G.; Le, T.M.H.; Doan, V.D.; Nguyen, D.T.; et al. 153Sm-labeled Fe3O4@lapatinib nanoparticles as a potential therapeutic agent for breast cancer: Synthesis, quality control, and In Vivo evaluation. J. Mater. Chem. B 2024, 12, 678–690. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Li, Y.; Di, H.; Li, J.; Dong, J.; He, C.; Cao, P.; Cai, H.; He, J.; Wang, Y. Combined PET and near-infrared fluorescence probe based on lapatinib targeting HER2 for in vivo tumor imaging. Bioorg. Chem. 2025, 161, 108550. [Google Scholar] [CrossRef] [PubMed]
- Gril, B.; Palmieri, D.; Bronder, J.L.; Herring, J.M.; Vega-Valle, E.; Feigenbaum, L.; Liewehr, D.J.; Steinberg, S.M.; Merino, M.J.; Rubin, S.D.; et al. Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. J. Natl. Cancer Inst. 2008, 100, 1092–1103. [Google Scholar] [CrossRef]
- Koźmiński, P.; Halik, P.K.; Chesori, R.; Gniazdowska, E. Common Shortcomings in Study on Radiopharmaceutical Design Research: A Case Study of 99mTc-Labelled Methotrexate. Molecules 2021, 26, 5862. [Google Scholar] [CrossRef]
- Korde, A.; Mikolajczak, R.; Kolenc, P.; Bouziotis, P.; Westin, H.; Lauritzen, M.; Koole, M.; Herth, M.M.; Bardiès, M.; Martins, A.F.; et al. Practical considerations for navigating the regulatory landscape of non-clinical studies for clinical translation of radiopharmaceuticals. EJNMMI Radiopharm Chem. 2022, 19, 18. [Google Scholar] [CrossRef]
- Navneet, S.; Harvinder, K.; Rakesh, K.S. Radiopharmaceuticals Regulations: Current Scenario and the Way Forward. Appl. Clin. Res. Clin. Trials Regul. Aff. 2017, 4, 183–194. [Google Scholar] [CrossRef]
- Korde, A.; Patt, M.; Selivanova, S.V.; Scott, A.M.; Hesselmann, R.; Kiss, O.; Ramamoorthy, N.; Todde, S.; Rubow, S.M.; Gwaza, L.; et al. Position paper to facilitate patient access to radiopharmaceuticals: Considerations for a suitable pharmaceutical regulatory framework. EJNMMI Radiopharm. Chem. 2024, 9, 2. [Google Scholar] [CrossRef]
Lapatinib-Based Radiotracers (Use in Nuclear Medicine) | Research Purpose and Conclusions | References |
---|---|---|
[18F]lapatinib (PET imaging of neoplastic lesions) | Manual, multi-step radiosynthesis of 18F-labelled lapatinib dedicated to PET imaging of ErbB1/ErbB2 tyrosine kinase activity (synthesis time 140 min, RCY 8–12%, RCP > 98% and SA in the range 35–430 Ci/mmol. | [37] |
Facile two-step procedure for the routine radiotracer preparation for clinical trials (nucleophilic copper-mediated 18F-fluorination reaction of Boc-protected lapatinib, microwave, K2CO3 as catalyst, temperature 110 °C, 10 min). This synthesis proved to be simpler, but the final radiochemical yield was not satisfactory. | [38] | |
[11C]lapatinib (PET imaging of neoplastic lesions) | Clinical trials registered in the European Union Clinical Trials Database (Eudra CT 2009-009884-76), the National Institute of Health database (NCT01290354) and the National Cancer Research Network study portfolio (NCRN262):
| [39] |
[14C]lapatinib (treatment of neoplastic lesions) | Studies on the possibility of achieving therapeutic concentrations of lapatinib in breast cancer brain metastases after oral or intravenous administration of the radiotracer [14C]lapatinib. Experimental results showed:
| [40] |
[99mTc]Tc(NS3)(CN-lapatinib) (SPECT imaging of neoplastic lesions) |
| [41] |
[99mTc]Tc-lapatinib [99mTc]Tc-lapatinib-PLGA (SPECT imaging of neoplastic lesions) | Syntheses and characterization of novel radiotracers containing lapatinib and its poly(lactic-co-glycolic acid)-encapsulated formulation labelled with technetium-99m.
| [42] |
[153Sm]Fe3O4@lapatinib-Sm (SPECT imaging and treatment of neoplastic lesions) | Synthesis and physicochemical and biological characterization of a new radiopharmaceutical [153Sm]Fe3O4@lapatinib-Sm for the diagnosis and targeted therapy of breast cancer.
| [43] |
[68Ga]Ga-NOTA-lapatinib (PET imaging of neoplastic lesions) | Synthesis and physicochemical and biological studies of the radiopreparation [68Ga]Ga-NOTA-lapatinib intended as a radiopharmaceutical probe for a synchronized real-time imaging strategy of HER2-overexpressing tumours using both PET and near-infrared fluorescence (NIR, using the LP-S fluorescent probe based on the same target molecule—lapatinib).
| [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koźmiński, P.; Gniazdowska, E. Lapatinib-Based Radioagents for Application in Nuclear Medicine. Appl. Sci. 2025, 15, 10964. https://doi.org/10.3390/app152010964
Koźmiński P, Gniazdowska E. Lapatinib-Based Radioagents for Application in Nuclear Medicine. Applied Sciences. 2025; 15(20):10964. https://doi.org/10.3390/app152010964
Chicago/Turabian StyleKoźmiński, Przemysław, and Ewa Gniazdowska. 2025. "Lapatinib-Based Radioagents for Application in Nuclear Medicine" Applied Sciences 15, no. 20: 10964. https://doi.org/10.3390/app152010964
APA StyleKoźmiński, P., & Gniazdowska, E. (2025). Lapatinib-Based Radioagents for Application in Nuclear Medicine. Applied Sciences, 15(20), 10964. https://doi.org/10.3390/app152010964