Structure and Sound Absorption Properties of Spiral Vane Electrospun PVA/PEO Nanofiber Membranes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Fourier Transform-Infrared Analysis
3.2. X-ray Diffraction Analysis
3.3. Morphological Analysis
3.4. Sound Absorption Properties of Nanofiber Membranes
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Singh, N.; Davar, S.C. Noise pollution—Sources effects and control. J. Hum. Ecol. 2004, 16, 181–187. [Google Scholar] [CrossRef]
- Campello-Vicente, H.; Peral-Orts, R.; Campillo-Davo, N.; Velasco-Sanchez, E. The effect of electric vehicles on urban noise maps. Appl. Acoust. 2017, 116, 59–64. [Google Scholar] [CrossRef]
- Berardi, U.; Iannace, G. Predicting the sound absorption of natural materials: Best-fit inverse laws for the acoustic impedance and the propagation constant. Appl. Acoust. 2017, 115, 131–138. [Google Scholar] [CrossRef]
- Fan, C.; Nie, J.K.; Xiao, W.M.; Chen, X.; Han, Y.; Geng, H.J. Research on sound-absorption materials for substation noise reduction. Electr. Power 2014, 47, 144–147. [Google Scholar]
- Berardi, U.; Iannace, G. Acoustic characterization of natural fibers for sound absorption applications. Build. Environ. 2015, 94, 840–852. [Google Scholar] [CrossRef]
- Peng, L.; Song, B.; Wang, J.; Wang, D. Mechanic and acoustic properties of the sound-absorbing material made from natural fiber and polyester. Adv. Mater. Sci. Eng. 2015, 4, 1–5. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, M.; Huang, J.; Peng, L.I.; Zhang, B.; Wen, R.; Liu, Y. Research progress of sound absorption properties of wood-plastic composites. J. For. Eng. 2017, 10–15. Available online: http://www.en.cnki.com.cn/Article_en/CJFiTotal-LKKF201703002.htm (accessed on 16 May 2017). [CrossRef]
- Luan, Q.; Qiu, H.; Cheng, G.; Liu, X. Sound absorption properties of nonwoven material based on wool and its hybrid fibers. J. Text. Res. 2017, 3, 72–76. Available online: http://www.en.cnki.com.cn /Article_ en/CJFDTotal-FZXB201703013.htm (accessed on 15 March 2017).
- Gwon, J.G.; Kim, S.K.; Kim, J.H. Development of cell morphologies in manufacturing flexible polyurethane urea foams as sound absorption materials. J. Porous Mater. 2016, 23, 1–9. [Google Scholar] [CrossRef]
- Wang, J.; Xi, Z.; Tang, H.; Huang, W.; Zhu, J.; Ao, Q.; Zhi, H. Research status of sound absorption property of porous materials made by metal fiber. Rare Met. Mater. Eng. 2012, 41, 405–408. Available online: http://en.cnki.com.cn/Article_en/CJFDTotal-COSE2012S2099.htm (accessed on 15 September 2012 ).
- Zhu, J.; Sun, J.; Tang, H.; Wang, J.; Ao, Q.; Bao, T.; Song, W. Gradient-structural optimization of metal fiber porous materials for sound absorption. Powder Technol. 2016, 301, 1235–1241. [Google Scholar] [CrossRef]
- Tang, B.; Tang, Y.; Zhou, R.; Lu, L.-S.; Liu, B.; Qu, X.-M. Low temperature solid-phase sintering of sintered metal fibrous media with high specific surface area. Trans. Nonferr. Met. Soc. China 2011, 21, 1755–1760. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, T. Calculation of sound absorption characteristics of porous sintered fiber metal. Appl. Acoust. 2009, 70, 337–346. [Google Scholar]
- Liu, J.; Bao, W.; Wang, S.; Zuo, B.; Chen, L.; Chen, Z.; Gao, W. The structure design and prediction of noise reduction coefficients of dual layered nonwoven absorbers. Noise Control Eng. J. 2013, 61, 500–508. [Google Scholar] [CrossRef]
- Peng, M.; Zhao, X. Application of nanomaterial in sound absorption material. J. Chengdu Text. Coll. 2017, 2, 235–240. Available online: http://www.en.cnki.com.cn/Article_en/CJFDTotal-CDFZ201702051.htm (accessed on 20 April 2017).
- Israel, T.A.; Schnitta, B.S. Structures Formed with Sheet Material Configured with at Least One Sound Absorbing Layer. Patent US9714508 B2, 14 January 2016. [Google Scholar]
- Fan, C.; Tian, Y.; Wang, Z.Q.; Nie, J.K.; Wang, G.K.; Liu, X.S. Structural parameter effect of porous material on sound absorption performance of double-resonance material. IOP Conf. Ser. Mater. Sci. Eng. 2017, 213, 012028. [Google Scholar] [CrossRef]
- Yuan, G.H.; Wang, X.C. Research status and prospect of sound absorbing materials. Mech. Eng. 2006, 6, 17–19. [Google Scholar]
- Zhu, R.; Li, J.; Bi, W.; Yang, X. Study on inorganic porous sound absorption materials. J. Univ. Sci. Technol. Liaoning. 2017, 3, 36–41. Available online: http://www.en.cnki.com.cn/Article_en/CJFDTotal-ASGT201703008.htm (accessed on 15 June 2017).
- Yang, M.; Sheng, P. Sound absorption structures: From porous media to acoustic metamaterials. Annu. Rev. Mater. Res. 2017, 47, 83–114. [Google Scholar] [CrossRef]
- Liu, J.; Bao, W.; Shi, L.; Zuo, B.; Gao, W. General regression neural network for prediction of sound absorption coefficients of sandwich structure nonwoven absorbers. Appl. Acoust. 2014, 76, 128–137. [Google Scholar] [CrossRef]
- Cao, X.; Wang, X.; Ding, B.; Yu, J.; Sun, G. Novel spider-web-like nanoporous networks based on jute cellulose nanowhiskers. Carbohydr. Polym. 2013, 92, 2041–2047. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, M.; Sakagami, K.; Okano, M.; Okuzono, T.; Toyoda, E. Improved sound absorption performance of three-dimensional MPP space sound absorbers by filling with porous materials. Appl. Acoust. 2017, 116, 311–316. [Google Scholar] [CrossRef]
- Yang, E.; Qin, X.; Wang, S. Electrospun crosslinked polyvinyl alcohol membrane. Mater. Lett. 2008, 62, 3555–3557. [Google Scholar] [CrossRef]
- Zhang, L.Z.; Wang, Y.Y.; Wang, C.L.; Xiang, H. Synthesis and characterization of a PVA/LiCl blend membrane for air dehumidification. J. Membr. Sci. 2008, 308, 198–206. [Google Scholar] [CrossRef]
- Abdelaziz, M.; Ghannam, M.M. Influence of titanium chloride addition on the optical and dielectric properties of PVA films. Phys. B Condens. Matter 2010, 405, 958–964. [Google Scholar] [CrossRef]
- Elashmawi, I.S.; Abdelrazek, E.M.; Hezma, A.M.; Rajeh, A. Modification and development of electrical and magnetic properties of PVA/PEO incorporated with MnCl2. Phys. B Condens. Matter. 2014, 434, 57–63. [Google Scholar] [CrossRef]
- Abdullah, O.G.; Saber, D.R.; Hamasalih, L.O. Complexion formation in PVA/PEO/CuCl2 solid polymer electrolyte. Univ. J. Mater. Sci. 2015, 3, 1–5. [Google Scholar]
- Aziz, S.B.; Abdullah, O.G.; Hussein, A.M.; Abdulwahid, R.T.; Rasheed, M.A.; Ahmed, H.M.; Abdalqadir, S.W.; Mohammed, A.R. Optical properties of pure and doped PVA:PEO based solid polymer blend electrolytes: Two methods for band gap study. J. Mater. Sci. Mater. Electron. 2017, 28, 7473–7479. [Google Scholar] [CrossRef]
- Wang, C.-H.; Liu, S.-K.; He, W.-T.; Wang, Y. Preparation and characterization of PVA/PEO blended nanofiber films prepared by electrospinning. J. Tianjin Polytech. Univ. 2015, 4, 36–39. Available online: http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-TJFZ201504007.htm (accessed on 25 August 2015).
- Abd El-kader, F.H.; Hakeem, N.A.; Elashmawi, I.S.; Ismail, A.M. Enhancement of structural and thermal properties of PEO/PVA blend embedded with TiO2, nanoparticles. Indian J. Phys. 2013, 87, 983–990. [Google Scholar] [CrossRef]
- Oraby, A.H.; Hezma, A.M.; Elashmawi, I.S.; Alluheebe, M.A. Verification of the changes in the structural and optical properties of PVA/PEO embedded by lithium chloride. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 724–734. [Google Scholar]
- Meikhail, M.S.; Oraby, A.H.; Farea, M.O.; Abdelghany, A.M. Spectroscopic studies of PVA/PEO hydrogel filled with cesium chloride. Res. J. Pharm. Biol. Chem. Sci. 2014, 5, 976–983. [Google Scholar]
- Ragab, H.M. Studies on the thermal and electrical properties of polyethylene oxide/polyvinyl alcohol blend by incorporating of cesium chloride. Results Phys. 2017, 7, 2057–2065. [Google Scholar] [CrossRef]
- Lian, Z.; Ye, L. Structure and properties of PVA/PEO hydrogel prepared by freezing/thawing method. J. Thermoplast. Compos. Mater. 2017, 26, 912–922. [Google Scholar] [CrossRef]
- Joge, P.; Kanchan, D.K.; Sharma, P.; Gondaliya, N. Conductivity studies on filler free and filler doped PVA-PEO based blend polymer electrolytes. Adv. Mater. Res. 2013, 665, 227–232. [Google Scholar] [CrossRef]
- Margaritis, E.; Kang, J. Relationship between green space-related morphology and noise pollution. Ecol. Indic. 2017, 72, 921–933. [Google Scholar] [CrossRef]
- Ru, J.; Kong, B.; Liu, Y.; Wang, X.; Fan, T.; Zhang, D. Microstructure and sound absorption of porous copper prepared by resin curing and foaming method. Mater. Lett. 2015, 139, 318–321. [Google Scholar] [CrossRef]
- Chen, C.; Du, Z.; Hu, G.; Yang, J. A low-frequency sound absorbing material with subwavelength thickness. Appl. Phys. Lett. 2017, 110, 10–17. [Google Scholar] [CrossRef]
- Mohrova, J.; Kalinova, K. Different structures of PVA nanofibrous membrane for sound absorption application. J. Nanomater. 2012, 2, 2449–2464. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Zuo, B. Structure and Sound Absorption Properties of Spiral Vane Electrospun PVA/PEO Nanofiber Membranes. Appl. Sci. 2018, 8, 296. https://doi.org/10.3390/app8020296
Liu H, Zuo B. Structure and Sound Absorption Properties of Spiral Vane Electrospun PVA/PEO Nanofiber Membranes. Applied Sciences. 2018; 8(2):296. https://doi.org/10.3390/app8020296
Chicago/Turabian StyleLiu, Huan, and Baoqi Zuo. 2018. "Structure and Sound Absorption Properties of Spiral Vane Electrospun PVA/PEO Nanofiber Membranes" Applied Sciences 8, no. 2: 296. https://doi.org/10.3390/app8020296