Dispersion Properties of an Elliptical Patch with Cross-Shaped Aperture for Synchronized Propagation of Transverse Magnetic and Electric Surface Waves
Abstract
:1. Introduction
2. Theoretical Principle
3. Practical Implementation
3.1. Unit Cell Geometry
3.2. Pixel Dispersion Properties
3.3. Metasurface Implementation Details
4. Simulation Results
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fong, B.H.; Colburn, J.S.; Ottusch, J.J.; Visher, J.L.; Sievenpiper, D.F. Scalar and tensor holographic artificial impedance surfaces. IEEE Trans. Antennas Propag. 2010, 58, 3212–3221. [Google Scholar] [CrossRef]
- Bilow, H.J. Guided waves on a planar tensor impedance surface. IEEE Trans. Antennas Propag. 2003, 51, 2788–2792. [Google Scholar] [CrossRef]
- Sievenpiper, D.; Colburn, J.; Fong, B.; Ottusch, J.; Visher, J. Holographic artificial impedance surfaces for conformal antennas. In Proceedings of the 2005 IEEE Antennas and Propagation Society International Symposium, Washington, DC, USA, 3–8 July 2005. [Google Scholar]
- Jiang, L.; Grbic, A.; Merlin, A. Near-field plates: Subdiffraction focusing with patterned surfaces. Science 2008, 320, 511–513. [Google Scholar]
- Pfeiffer, P.; Grbic, A. Planar lens antennas of subwavelength thickness: Collimating leaky-waves with metasurfaces. IEEE Trans. Antennas Propag. 2015, 63, 3248–3253. [Google Scholar] [CrossRef]
- Martini, E.; Mencagli, M.; Maci, S. Metasurface transformation for surface wave control. Philos. Trans. R. Soc. A 2015, 373. [Google Scholar] [CrossRef] [PubMed]
- González-Ovejero, D.; Martini, E.; Maci, S. Surface waves supported by metasurfaces with self-complementary geometries. IEEE Trans. Antennas Propag. 2015, 63, 250–260. [Google Scholar] [CrossRef]
- Patel, A.M.; Grbic, A. Modeling and analysis of printed-circuit tensor impedance surfaces. IEEE Trans. Antennas Propag. 2013, 61, 211–220. [Google Scholar] [CrossRef]
- Mencagli, M.; Martini, E.; Maci, S. Surface wave dispersion for anisotropic metasurfaces constituted by elliptical patches. IEEE Trans. Antennas Propag. 2015, 63, 2992–3003. [Google Scholar] [CrossRef]
- Granet, G.; Luukkonen, O.; Simovski, C.; Tretyakov, S.A. Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches. IEEE Trans. Antennas Propag. 2008, 56, 1624–1632. [Google Scholar]
- Mencagli, M.; Martini, E.; Maci, S. Transition function for closed-form representation of metasurface reactance. IEEE Trans. Antennas Propag. 2016, 64, 136–145. [Google Scholar] [CrossRef]
- Mencagli, M.; Giovampaola, C.D.; Maci, S. A closed-form representation of isofrequency dispersion curve and group velocity for surface waves supported by anisotropic and spatially dispersive metasurfaces. IEEE Trans. Antennas Propag. 2016, 64, 2319–2327. [Google Scholar] [CrossRef]
- Oliner, A.; Hessel, A. Guided waves on sinusoidally-modulated reactance surfaces. IRE Trans. Antennas Propag. 1959, 7, 201–208. [Google Scholar] [CrossRef]
- Minatti, G.; Maci, S.; De Vita, P.; Freni, A.; Sabbadini, M. A circularly-polarized isoflux antenna based on anisotropic metasurface. IEEE Trans. Antennas Propag. 2012, 60, 4998–5009. [Google Scholar] [CrossRef]
- Minatti, G.; Faenzi, M.; Martini, E.; Caminita, F.; De Vita, P.; González-Ovejero, D.; Sabbadini, M.; Maci, S. Modulated metasurface antennas for space: Synthesis, analysis and realizations. IEEE Trans. Antennas Propag. 2015, 63, 1288–1300. [Google Scholar] [CrossRef]
- Minatti, G.; Caminita, F.; Casaletti, M.; Maci, S. Spiral leaky-wave antennas based on modulated surface impedance. IEEE Trans. Antennas Propag. 2011, 59, 4436–4444. [Google Scholar] [CrossRef]
- Faenzi, M.; Caminita, F.; Martini, E.; de Vita, P.; Minatti, G.; Sabbadini, M.; Maci, S. Realization and measurement of broadside beam modulated metasurface antennas. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 610–613. [Google Scholar] [CrossRef]
- Gonzalez-Ovejero, D.; Minatti, G.; Chattopadhyay, G.; Maci, S. Multibeam by metasurface antennas. IEEE Trans. Antennas Propag. 2017, 65, 2923–2930. [Google Scholar] [CrossRef]
- Tellechea, A.; Caminita, F.; Martini, E.; Ederra, I.; Iriarte, J.C.; Gonzalo, R.; Maci, S. Dual circularly polarized broadside beam metasurface antenna. IEEE Trans. Antennas Propag. 2016, 64, 2944–2953. [Google Scholar] [CrossRef]
- Tellechea, A.; Iriarte, J.C.; Ederra, I.; Gonzalo, R.; Martini, E.; Maci, S. Experimental validation of a Ku-band dual circularly polarized metasurface antenna. IEEE Trans. Antennas Propag. 2018, 66, 1153–1159. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tellechea, A.; Ederra, I.; Gonzalo, R.; Iriarte, J.C. Dispersion Properties of an Elliptical Patch with Cross-Shaped Aperture for Synchronized Propagation of Transverse Magnetic and Electric Surface Waves. Appl. Sci. 2018, 8, 472. https://doi.org/10.3390/app8030472
Tellechea A, Ederra I, Gonzalo R, Iriarte JC. Dispersion Properties of an Elliptical Patch with Cross-Shaped Aperture for Synchronized Propagation of Transverse Magnetic and Electric Surface Waves. Applied Sciences. 2018; 8(3):472. https://doi.org/10.3390/app8030472
Chicago/Turabian StyleTellechea, Amagoia, Iñigo Ederra, Ramón Gonzalo, and Juan Carlos Iriarte. 2018. "Dispersion Properties of an Elliptical Patch with Cross-Shaped Aperture for Synchronized Propagation of Transverse Magnetic and Electric Surface Waves" Applied Sciences 8, no. 3: 472. https://doi.org/10.3390/app8030472
APA StyleTellechea, A., Ederra, I., Gonzalo, R., & Iriarte, J. C. (2018). Dispersion Properties of an Elliptical Patch with Cross-Shaped Aperture for Synchronized Propagation of Transverse Magnetic and Electric Surface Waves. Applied Sciences, 8(3), 472. https://doi.org/10.3390/app8030472