Organic Light-Emitting Diodes Based on Phthalimide Derivatives: Improvement of the Electroluminescence Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tang, C.W.; VanSlyke, S.A. Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51, 913–915. [Google Scholar] [CrossRef]
- Shirota, Y. Photo- and electroactive amorphous molecular materials—Molecular design, syntheses, reactions, properties, and applications. J. Mater. Chem. 2005, 75, 75–93. [Google Scholar] [CrossRef]
- D’Andrade, B.W.; Forrest, S.R. White Organic Light-Emitting Devices for Solid-State Lighting. Adv. Mater. 2004, 16, 1585–1595. [Google Scholar] [CrossRef]
- Chen, C.T. Evolution of red organic light-emitting diodes: Materials and devices. Chem. Mater. 2004, 16, 4389–4400. [Google Scholar] [CrossRef]
- Baranoff, E.; Curchod, B.F.E. FIrpic: Archetypal blue phosphorescent emitter for electroluminescence. Dalton Trans. 2015, 44, 8318–8329. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Chen, R.; Sun, Q.; Lai, W.; Su, Q.; Huang, W.; Liu, X. Recent progress in metal–organic complexes for optoelectronic applications. Chem. Soc. Rev. 2014, 43, 3259–3302. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-H.; Tai, C.-C.; Sun, I.-W. Synthesis of a high-efficiency red phosphorescent emitter for organic light-emitting diodes. J. Mater. Chem. 2004, 14, 947–950. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, T.; Chu, B.; Li, W.; Su, Z.; Wu, H.; Yan, X.; Jin, F.; Gao, Y.; Liu, C. Highly efficient red OLEDs using DCJTB as the dopant and delayed fluorescent exciplex as the host. Sci. Rep. 2015, 5, 10697. [Google Scholar] [CrossRef] [PubMed]
- Hameed, S.; Predeep, P.; Baiju, M.R. Polymer light emitting diodes—A review on materials and techniques. Rec. Adv. Mater. Sci. 2010, 26, 30–42. [Google Scholar]
- Braun, D.; Heeger, A.J. Visible light emission from semiconducting polymer diodes. Appl. Phys. Lett. 1991, 58, 1982–1984. [Google Scholar] [CrossRef]
- Kamtekar, K.T.; Monkman, A.P.; Bryce, M.R. Recent advances in white organic light-emitting materials and devices (WOLEDs). Adv. Mater. 2010, 22, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.-A.; Kim, Y.-H.; Kim, N.H.; Yoo, S.I.; Lee, S.Y.; Zhu, F.R.; Kim, W.Y. Highly efficient blue organic light-emitting diodes using quantum well-like multiple emissive layer structure. Nanoscale Res. Lett. 2014, 9, 191. [Google Scholar] [CrossRef] [PubMed]
- Cacialli, F.; Friend, R.H.; Bouche, C.M.; Le Barny, P.; Facoetti, H.; Soyer, F.; Robin, P. Naphthalimide side-chain polymers for organic light-emitting diodes: Band-offset engineering and role of polymer thickness. J. Appl. Phys. 1998, 83, 2343–2356. [Google Scholar] [CrossRef]
- Lee, S.-H.; Khim, D.; Xu, Y.; Kim, J.; Park, W.-T.; Kim, D.-Y.; Noh, Y.-Y. Simultaneous improvement of hole and electron injection in organic field-effect transistors by conjugated polymer-wrapped carbon nanotube interlayers. Sci. Rep. 2015, 5, 10407. [Google Scholar] [CrossRef] [PubMed]
- Bloking, J.T.; Han, X.; Higgs, A.T.; Kastrop, J.P.; Pandey, L.; Norton, J.E.; Risko, C.; Chen, C.E.; Bredas, J.; McGehee, M.D.; et al. Solution-processed organic solar cells with power conversion efficiencies of 2.5% using benzothiadiazole/imide-based acceptors. Chem. Mater. 2011, 23, 5484–5490. [Google Scholar] [CrossRef]
- Eftaiha, A.F.; Sun, J.-P.; Hill, I.G.; Welch, G.C. Recent advances of non-fullerene, small molecular acceptors for solution processed bulk heterojunction solar cells. J. Mater. Chem. A 2014, 2, 1201–1213. [Google Scholar] [CrossRef]
- Dautel, O.J.; Wantz, G.; Almairac, R.; Flot, D.; Hirsch, L.; Lere-Porte, J.-P.; Parneix, J.-P.; Serein-Spirau, F.; Vignau, L.; Moreau, J.J.E. Nanostructuration of phenylenevinylenediimide-bridged silsesquioxane: From electroluminescent molecular J-aggregates to photoresponsive polymeric H-aggregates. J. Am. Chem. Soc. 2006, 128, 4892–4901. [Google Scholar] [CrossRef] [PubMed]
- Mikroyannidis, J.A.; Tsai, L.-R.; Chen, Y. Synthesis, photophysics, electrochemical and electroluminescent properties of divinylene compounds with phthalimide moieties. Synth. Met. 2009, 159, 1195–1199. [Google Scholar] [CrossRef]
- Dumur, F.; Bui, T.-T.; Péralta, S.; Lepeltier, M.; Wantz, G.; Sini, G.; Goubard, F.; Gigmes, D. Bis(diphenylamino)naphthalene host materials: Careful selection of the substitution pattern for the design of fully solution-processed triple-layered electroluminescent devices. RSC Adv. 2016, 6, 60565–60577. [Google Scholar] [CrossRef]
- Dumur, F.; Beouch, L.; Peralta, S.; Wantz, G.; Goubard, F.; Gigmes, D. Solution-processed blue phosphorescent OLEDs with carbazole-based polymeric host materials. Org. Electron. 2015, 25, 21–30. [Google Scholar] [CrossRef]
- Lessard, B.H.; Beouch, L.; Goubard, F.; Wantz, G.; Maric, M.; Gigmes, D.; Dumur, F. Poly(2-(N-carbazolyl)ethyl acrylate) as a host for high efficiency polymer light-emitting devices. Org. Electron. 2015, 17, 377–385. [Google Scholar] [CrossRef]
- Campbell Scott, J.; Brock, P.J.; Salem, J.R.; Ramos, S.; Malliaras, G.G.; Carter, S.A.; Bozano, L. Charge transport processes in organic light-emitting devices. Synth. Met. 2000, 111–112, 289–293. [Google Scholar] [CrossRef]
- Jeong, H.; Shin, H.; Lee, J.; Kim, B.; Park, Y.-I.; Yook, K.S.; An, B.-K.; Park, J. Recent progress in the use of fluorescent and phosphorescent organic compounds for organic light-emitting diode lighting. J. Photon. Energy 2015, 5, 057608. [Google Scholar] [CrossRef]
- Hung, L.S.; Chen, C.H. Recent progress of molecular organic electroluminescent materials and devices. Mater. Sci. Engineer. R Rep. 2002, 39, 143–222. [Google Scholar] [CrossRef]
- Guo, K.; Wang, H.; Wang, Z.; Si, C.; Peng, C.; Chen, G.; Zhang, J.; Wang, G.; Wei, B. Stable green phosphorescence organic light-emitting diodes with low efficiency roll-off using a novel bipolar thermally activated delayed fluorescence material as host. Chem. Sci. 2017, 8, 1259–1268. [Google Scholar] [CrossRef] [PubMed]
Device Configuration | Vturn-on [a] | CIE (x,y) [b] | λEL (nm) | L (cd/m2) | Current eff. (cd/A) [c] | Power eff. (lm/W) [c] | EQE (%) [c] |
---|---|---|---|---|---|---|---|
A | 3.4 | 0.437, 0.530 | 571 | 23,800 (10.4 V) | 7.41 | 2.78 | 2.58 |
B | 2.8 | 0.378, 0.575 | 562 | 3050 (5.8 V) | 2.80 | 1.80 | 0.76 |
C | 3.4 | 0.396, 0.564 | 564 | 28,450 (11.0 V) | 10.00 | 4,50 | 3.11 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumur, F.; Ibrahim-Ouali, M.; Gigmes, D. Organic Light-Emitting Diodes Based on Phthalimide Derivatives: Improvement of the Electroluminescence Properties. Appl. Sci. 2018, 8, 539. https://doi.org/10.3390/app8040539
Dumur F, Ibrahim-Ouali M, Gigmes D. Organic Light-Emitting Diodes Based on Phthalimide Derivatives: Improvement of the Electroluminescence Properties. Applied Sciences. 2018; 8(4):539. https://doi.org/10.3390/app8040539
Chicago/Turabian StyleDumur, Frédéric, Malika Ibrahim-Ouali, and Didier Gigmes. 2018. "Organic Light-Emitting Diodes Based on Phthalimide Derivatives: Improvement of the Electroluminescence Properties" Applied Sciences 8, no. 4: 539. https://doi.org/10.3390/app8040539
APA StyleDumur, F., Ibrahim-Ouali, M., & Gigmes, D. (2018). Organic Light-Emitting Diodes Based on Phthalimide Derivatives: Improvement of the Electroluminescence Properties. Applied Sciences, 8(4), 539. https://doi.org/10.3390/app8040539