Synchronization of Chemical Synaptic Coupling of the Chay Neuron System under Time Delay
Abstract
:1. Introduction
2. Chay Neuron Model
3. Synchronization of the Chemical Synaptic-Coupled Chay Neuron System
4. Time-Delay Inhibition of Synchronization of the Chemical Synaptic-Coupled Chay Neuron System
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Pikovsky, A.; Rosenblum, M.; Kurths, J. Synchronization: A Universal Concept in Nonlinear Sciences Cambridge University Press. Am. J. Phys. 2002, 70, 655. [Google Scholar] [CrossRef]
- Liu, S.; Lu, M.; Liu, G.; Pan, Z. A Novel Distance Matric: Generalized Relative Entropy. Entropy 2017, 19, 269. [Google Scholar] [CrossRef]
- Silva, F.A.D.S.; Lopes, S.R.; Viana, R.L. Synchronization of biological clock cells with a coupling mediated by the local concentration of a diffusing substance. Commun. Nonlinear Sci. Numer. Simul. 2016, 35, 37–52. [Google Scholar] [CrossRef]
- Mahmoud, E.E.; Al-Adwani, M.A. Dynamical behaviors, control and synchronization of a new chaotic model with complex variables and cubic nonlinear terms. Results Phys. 2017, 7, 1346–1356. [Google Scholar] [CrossRef]
- Bader, R. Cochlear spike synchronization and neuron coincidence detection model. Chaos 2018, 28, 023105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Pan, Z.; Fu, W.; Cheng, X. Fractal generation method based on asymptote family of generalized Mandelbrot set and its application. J. Nonlinear Sci. Appl. 2017, 10, 1148–1161. [Google Scholar] [CrossRef] [Green Version]
- Lofredi, R.; Neumann, W.J.; Bock, A.; Horn, A.; Huebl, J.; Siegert, S.; Schneider, G.; Krauss, J.K.; Kühn, A.A. Dopamine-dependent scaling of subthalamic gamma bursts with movement velocity in patients with Parkinson’s disease. eLife 2018, 7, e31895. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Pan, Z.; Cheng, X. A Novel Fast Fractal Image Compression Method based on Distance Clustering in High Dimensional Sphere Surface. Fractals 2017, 25, 1740004. [Google Scholar] [CrossRef]
- Ibrahim, S.; Majzoub, S. Adaptive Epileptic Seizure Prediction Based on EEG Synchronization. J. Biomim. Biomater. Biomed. Eng. 2017, 33, 52–58. [Google Scholar] [CrossRef]
- Cornejo-Pérez, O.; Femat, R. Unidirectional synchronization of Hodgkin–Huxley neurons. Chaos 2005, 25, 43–53. [Google Scholar] [CrossRef]
- Jiang, W.; Deng, B.; Tsang, K.M. Chaotic synchronization of neurons coupled with gap junction under external electrical stimulation. Chaos 2004, 22, 469–476. [Google Scholar] [CrossRef]
- Lin, F.F.; Zeng, Z.Z. Synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive neural network control. Acta Phys. Sin. 2017, 66, 40–49. [Google Scholar]
- Deng, B.; Wang, X.J.; Wang, J.; Li, H.Y. Iterative learning control of synchronization of Hodgkin-Huxley neurons. Appl. Res. Comput. 2014, 31, 2656–2660. [Google Scholar]
- Xiu, C.B.; Liu, C.; Guo, F.H.; Cheng, Y.; Luo, J. Control strategy and application of hysteretic chaotic neuron and neural network. Acta Phys. Sin. 2015, 64, 84–91. [Google Scholar]
- Hettiarachchi, I.T.; Lakshmanan, S.; Bhatti, A.; Lim, C.P.; Prakash, M.; Balasubramaniam, P.; Nahavandi, S. Chaotic synchronization of time-delay coupled Hindmarsh–Rose neurons via nonlinear control. Nonlinear Dyn. 2016, 86, 1249–1262. [Google Scholar] [CrossRef]
- Pinto, R.D.; Varona, P.; Volkovskii, A.R.; Szücs, A.; Abarbanel, H.D.; Rabinovich, M.I. Synchronous behavior of two coupled electronic neurons. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 2000, 62, 2644–2656. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, K.; Muthukumar, P.; Lakshmanan, S. State feedback synchronization control of impulsive neural networks with mixed delays and linear fractional uncertainties. Appl. Math. Comput. 2018, 321, 267–281. [Google Scholar] [CrossRef]
- Lu, M.Y.; Liu, S.; Kumarsangaiah, A.; Zhou, Y.P.; Pan, Z.; Zuo, Y.C. Nucleosome Positioning with Fractal Entropy Increment of Diversity in Telemedicine. IEEE Access 2018. [Google Scholar] [CrossRef]
- Far, S. Hybrid Synchronization of Uncertain Generalized Lorenz System by Adaptive Control. J. Control Sci. Eng. 2018, 2018, 1–5. [Google Scholar] [Green Version]
- Liu, S.; Pan, Z.; Song, H. Digital image watermarking method based on DCT and fractal encoding. IET Image Process. 2017, 11, 815–821. [Google Scholar] [CrossRef]
- Mobayen, S.; Tchier, F. Composite nonlinear feedback control technique for master/slave synchronization of nonlinear systems. Nonlinear Dyn. 2017, 87, 1731–1747. [Google Scholar] [CrossRef]
- Sipahi, R.; Niculescu, S.I.; Abdallah, C.T.; Michiels, W. Stability and Stabilization of Systems with Time Delay. Control Syst. IEEE 2011, 31, 38–65. [Google Scholar] [CrossRef]
- Delice, I.I.; Sipahi, R. Delay-Independent Stability Test for Systems with Multiple Time-Delays. IEEE Trans. Autom. Control 2012, 57, 963–972. [Google Scholar] [CrossRef]
- Min, H.K.; Sipahi, R. Effects of Edge Elimination on the Delay Margin of a Class of LTI Consensus Dynamics. IEEE Trans. Autom. Control 2018, 1, 99. [Google Scholar]
- Gao, Q.; Olgac, N. Stability analysis for LTI systems with multiple time delays using the bounds of its imaginary spectra. Syst. Control Lett. 2017, 102, 112–118. [Google Scholar] [CrossRef]
- Cepeda-Gomez, R.; Olgac, N. Stability of formation control using a consensus protocol under directed communications with two time delays and delay scheduling. Int. J. Syst. Sci. 2016, 47, 433–449. [Google Scholar] [CrossRef]
- Turkoglu, K.; Olgac, N. Robust Control for Multiple Time Delay MIMO Systems with Delay—Decouplability Concept. In Topics in Time Delay Systems; Springer: Berlin/Heidelberg, Germany, 2009; pp. 37–47. [Google Scholar]
- Sun, F.; Turkoglu, K. Nonlinear Consensus Strategies for Multi-Agent Networks in Presence of Communication Delays and Switching Topologies: Real-Time Receding Horizon Approach; Elsevier; San José State University: San José, CA, USA, 2016. [Google Scholar]
- Hongming, L.I.; Zhang, S. The Hopf Bifurcation Analysis of the Neuronal Chay Model under Constant Current Stimulation. J. Taiyuan Univ. Technol. 2013, 44, 123–126. [Google Scholar]
- Chintala, V.; Subramanian, K.A. A numerical investigation of the dynamics of a system of two time-delay coupled relaxation oscillators. Commun. Pure Appl. Anal. 2017, 2, 567–577. [Google Scholar]
- Zheng, Y.; Lu, Q. Synchronization in ring coupled chaotic neurons with time delay. J. Dyn. Control 2008, 3, 208–212. [Google Scholar]
- Kumar, R.; Srivastava, S.; Gupta, J.R.P.; Mohindru, A. Diagonal recurrent neural network based identification of nonlinear dynamical systems with Lyapunov stability based adaptive learning rates. Neurocomputing 2018, 287, 102–117. [Google Scholar] [CrossRef]
- Cao, Y.; Wen, S.; Chen, M.Z.Q.; Huang, T.; Zeng, Z. New results on anti-synchronization of switched neural networks with time-varying delays and lag signals. Neural Netw. 2016, 81, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Rekabdar, B.; Nicolescu, M.; Kelley, R. An Unsupervised Approach to Learning and Early Detection of Spatio-Temporal Patterns Using Spiking Neural Networks. J. Intell. Robot. Syst. 2015, 80, 83–97. [Google Scholar] [CrossRef]
- Rekabdar, B.; Nicolescu, M.; Saffar, M.T.; Kelley, R. A Scale and Translation Invariant Approach for Early Classification of Spatio-Temporal Patterns Using Spiking Neural Networks. Neural Process. Lett. 2016, 43, 327–343. [Google Scholar] [CrossRef]
- Xiao, S.P.; Lian, H.H.; Zeng, H.B.; Chen, G.; Zheng, W.H. Analysis on robust passivity of uncertain neural networks with time-varying delays via free-matrix-based integral inequality. Int. J. Control Autom. Syst. 2017, 15, 1–10. [Google Scholar] [CrossRef]
- Chay, T.R. Eyring rate theory in excitable membranes: Application to neuronal oscillations. J. Phys. Chem. 1983, 87, 2935–2940. [Google Scholar] [CrossRef]
- Chay, T.R. Chaos in a three-variable model of an excitable cell. Physica D 1985, 16, 233–242. [Google Scholar] [CrossRef]
- Chay, T.R.; Fan, Y.S.; Lee, Y.S. Bursting, Spiking, Chaos, Fractals, And Universality In Biological Rhythms. Int. J. Bifurc. Chaos 1995, 5, 595–635. [Google Scholar] [CrossRef]
- Han, F.; Wang, Z.; Du, Y.; Sun, X.; Zhang, B. Robust synchronization of bursting Hodgkin–Huxley neuronal systems coupled by delayed chemical synapses. Int. J. Non Linear Mech. 2014, 70, 105–111. [Google Scholar] [CrossRef]
- Batista, C.A.S.; Viana, R.L.; Lopes, S.R.; Batista, A.M. Dynamic range in small-world networks of Hodgkin–Huxley neurons with chemical synapses. Physica A 2014, 410, 628–640. [Google Scholar] [CrossRef]
- Hu, D.; Cao, H. Stability and synchronization of coupled Rulkov map-based neurons with chemical synapses. Commun. Nonlinear Sci. Numer. Simul. 2016, 35, 105–122. [Google Scholar] [CrossRef]
- Dieterich, D.C.; Kreutz, M.R. Proteomics of the Synapse—A Quantitative Approach to Neuronal Plasticity. Mol. Cell. Proteom. 2016, 15, 368–381. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Chen, B.; Mailler, R.; Wang, Z.W. Antidromic-rectifying gap junctions amplify chemical transmission at functionally mixed electrical-chemical synapses. Nat. Commun. 2017, 8, 14818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, K.J.; Wang, C.L.; Shan, Y.Z.; Du, S.S.; Lu, H.W. Chemical synapse coupling synchronization of Hindmarsh-Rose neurons under Gauss white noise. Jilin Daxue Xuebao 2017, 47, 1554–1560. [Google Scholar]
- Kuo, S.P.; Schwartz, G.W.; Rieke, F. Nonlinear Spatiotemporal Integration by Electrical and Chemical Synapses in the Retina. Neuron 2016, 90, 320–332. [Google Scholar] [CrossRef] [PubMed]
- Minneci, F.; Kanichay, R.T.; Silver, R.A. Estimation of the time course of neurotransmitter release at central synapses from the first latency of postsynaptic currents. J. Neurosci. Methods 2012, 205, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, H.; Tobiishi, S. Synchronization and Spindle Oscillation in Noisy Integrate-and-Fire-or-Burst Neurons with Inhibitory Coupling. Prog. Theor. Phys. 2012, 114, 539–554. [Google Scholar] [CrossRef]
- Wu, K.J.; Shan, Y.Z.; Wang, C.L.; Lu, H.W. Study on Synchronization of Chemical Synapse Coupled Hindmarsh-Rose Neurons under Time Delay. Chin. Q. Mech. 2017, 1, 123–134. [Google Scholar]
gI = 1800 s−1 | gK,V = 1700 s−1 | gL = 12 s−1 | gK,C = 17 s−1 |
VK = −68 mV | VL = −40 mV | VC = 200 mV | KC = 3.3/18 |
λn = 223.8 | = 0.27 mV−1s−1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, K.; Wang, D.; Yu, C.; Machado, J.T. Synchronization of Chemical Synaptic Coupling of the Chay Neuron System under Time Delay. Appl. Sci. 2018, 8, 927. https://doi.org/10.3390/app8060927
Wu K, Wang D, Yu C, Machado JT. Synchronization of Chemical Synaptic Coupling of the Chay Neuron System under Time Delay. Applied Sciences. 2018; 8(6):927. https://doi.org/10.3390/app8060927
Chicago/Turabian StyleWu, Kaijun, Dicong Wang, Chao Yu, and Jose Tenreiro Machado. 2018. "Synchronization of Chemical Synaptic Coupling of the Chay Neuron System under Time Delay" Applied Sciences 8, no. 6: 927. https://doi.org/10.3390/app8060927
APA StyleWu, K., Wang, D., Yu, C., & Machado, J. T. (2018). Synchronization of Chemical Synaptic Coupling of the Chay Neuron System under Time Delay. Applied Sciences, 8(6), 927. https://doi.org/10.3390/app8060927