A Review of Ghost Imaging via Sparsity Constraints
Abstract
:1. Introduction
2. Theoretical Framework of GISC
3. Applications of GISC
3.1. GISC LiDAR
3.2. GISC Spectral Camera
3.3. X-ray Fourier-Transform GISC
3.4. Lensless Wiener-Khinchin Telescope
4. Discussion and Future Work
Author Contributions
Funding
Conflicts of Interest
Abbreviations
GI | ghost imaging |
FGI | Fourier-transform ghost imaging |
GISC | Ghost imaging via sparsity constraints |
CCD | charge-coupled device |
FOV | field of view |
References
- Wolf, E. Optics in terms of observable quantities. Il Nuovo Cim. 1954, 12, 884–888. [Google Scholar] [CrossRef]
- Bhatia, A.B.; Wolf, E.; Born, M. On the circle polynomials of Zernike and related orthogonal sets. Math. Proc. Camb. Philos. Soc. 1954, 50, 40. [Google Scholar] [CrossRef]
- Wolf, E. Coherence properties of partially polarized electromagnetic radiation. Il Nuovo Cim. 1959, 13, 1165–1181. [Google Scholar] [CrossRef]
- Mandel, L.; Wolf, E. Coherence Properties of Optical Fields. Rev. Mod. Phys. 1965, 37, 231–287. [Google Scholar] [CrossRef]
- Glauber, R.J. Photon Correlations. Phys. Rev. Lett. 1963, 10, 84–86. [Google Scholar] [CrossRef]
- Glauber, R.J. The Quantum Theory of Optical Coherence. Phys. Rev. 1963, 130, 2529–2539. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.H.; Twiss, R.Q. Correlation between photons in two coherent beams of light. Nature 1956, 177, 27–29. [Google Scholar] [CrossRef]
- Brown, R.H.; Twiss, R. The Question of Correlation between Photons in Coherent Light Rays. Nature 1956, 178, 1447–1448. [Google Scholar] [CrossRef]
- Strekalov, D.V.; Sergienko, A.V.; Klyshko, D.N.; Shih, Y.H. Observation of Two-Photon “Ghost” Interference and Diffraction. Phys. Rev. Lett. 1995, 74, 3600–3603. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Han, S. Incoherent coincidence imaging and its applicability in X-ray diffraction. Phys. Rev. Lett. 2004, 92, 093903. [Google Scholar] [CrossRef] [PubMed]
- Gatti, A.; Brambilla, E.; Bache, M.; Lugiato, L.A. Ghost imaging with thermal light: Comparing entanglement and classicalcorrelation. Phys. Rev. Lett. 2004, 93, 093602. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y. The physics of ghost imaging. In Advances in Lasers and Electro Optics; Costa, N., Cartaxo, A., Eds.; InTech: Rijeka, Croatia, 2010; p. 549594. ISBN 978-953-307-088-9. [Google Scholar]
- Kolobov, M.I. Quantum Imaging; Springer: New York, NY, USA, 2007; Volume 5, pp. 79–110. [Google Scholar]
- Shapiro, J.H.; Boyd, R.W. The physics of ghost imaging. Quant. Inf. Process. 2012, 11, 949–993. [Google Scholar] [CrossRef] [Green Version]
- Erkmen, B.I.; Shapiro, J.H. Ghost imaging: From quantum to classical to computational. Adv. Opt. Photonics 2010, 2, 405. [Google Scholar] [CrossRef]
- Gong, W.; Han, S. Phase-retrieval ghost imaging of complex-valued objects. Phys. Rev. A 2010, 82. [Google Scholar] [CrossRef]
- Song, X.B.; Xu, D.Q.; Wang, H.B.; Xiong, J.; Zhang, X.; Cao, D.Z.; Wang, K. Experimental observation of one-dimensional quantum holographic imaging. Appl. Phys. Lett. 2013, 103, 131111. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Gong, W.; Chen, M.; Li, E.; Wang, H.; Xu, W.; Han, S. Ghost imaging lidar via sparsity constraints. Appl. Phys. Lett. 2012, 101, 141123. [Google Scholar] [CrossRef] [Green Version]
- Gong, W.; Zhao, C.; Yu, H.; Chen, M.; Xu, W.; Han, S. Three-dimensional ghost imaging lidar via sparsity constraint. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Tan, S.; Wu, J.; Li, E.; Shen, X.; Han, S. Spectral camera based on ghost imaging via sparsity constraints. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Lu, R.; Han, S.; Xie, H.; Du, G.; Xiao, T.; Zhu, D. Fourier-transform ghost imaging with hard X rays. Phys. Rev. Lett. 2016, 117, 113901. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Shen, X.; Liu, H.; Yu, H.; Han, S. Lensless Wiener-Khinchin telescope based on high-order spatial autocorrelation of thermal light. arXiv, 2018; arXiv:1804.01270v4. [Google Scholar]
- Valencia, A.; Scarcelli, G.; D’Angelo, M.; Shih, Y. Two-Photon Imaging with Thermal Light. Phys. Rev. Lett. 2005, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, W.; Han, S. A method to improve the visibility of ghost images obtained by thermal light. Phys. Lett. A 2010, 374, 1005–1008. [Google Scholar] [CrossRef]
- Ferri, F.; Magatti, D.; Lugiato, L.; Gatti, A. Differential ghost imaging. Phys. Rev. Lett. 2010, 104, 253603. [Google Scholar] [CrossRef] [PubMed]
- Katz, O.; Bromberg, Y.; Silberberg, Y. Compressive ghost imaging. Appl. Phys. Lett. 2009, 95, 131110. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Han, S.; Kolobov, M.I. Quantum limits of super-resolution of optical sparse objects via sparsity constraint. Opt. Express 2012, 20, 23235. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Han, S. Coherent Ghost Imaging based on sparsity constraint without phase-sensitive detection. Europhys. Lett. 2012, 98, 24003. [Google Scholar] [CrossRef]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candès, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef]
- Eldar, Y.C.; Kutyniok, G. Compressed Sensing: Theory and Applications; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Li, J.; Luo, B.; Yang, D.; Yin, L.; Wu, G.; Guo, H. Negative exponential behavior of image mutual information for pseudo-thermal light ghost imaging: observation, modeling, and verification. Sci. Bull. 2017, 62, 717–723. [Google Scholar] [CrossRef] [Green Version]
- Akçakaya, M.; Tarokh, V. Shannon-theoretic limits on noisy compressive sampling. IEEE Trans. Inf. Theory 2010, 56, 492–504. [Google Scholar] [CrossRef]
- Li, E.; Chen, M.; Gong, W.; Yu, H.; Han, S. Mutual information of ghost imaging systems. Acta Opt. Sin. 2013, 33, 1211003. [Google Scholar]
- Olshausen, B.A.; Field, D.J. Natural image statistics and efficient coding. Netw. Comput. Neural Syst. 1996, 7, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Aharon, M.; Elad, M.; Bruckstein, A. $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. IEEE Trans. Signal Process. 2006, 54, 4311–4322. [Google Scholar] [CrossRef]
- Hu, C.; Wang, J.; Huang, Z.; Tong, Z.; Liu, S.; Ma, S.; Liu, Z.; Han, S. Optimization of light field fluctuation patterns in ghost imaging by mutual coherence minimization based on dictionary learning. In Proceedings of the OSA Computational Optical Sensing and Imaging Conference, Orlando, FL, USA, 25–28 June 2018. [Google Scholar]
- Yun, J.Y.J.; Gao, C.G.C.; Zhu, S.Z.S.; Sun, C.S.C.; He, H.H.H.; Feng, L.F.L.; Dong, L.D.L.; Niu, L.N.L. High-peak-power, single-mode, nanosecond pulsed, all-fiber laser for high resolution 3D imaging LIDAR system. Chin. Opt. Lett. 2012, 10, 121402–121404. [Google Scholar] [CrossRef] [Green Version]
- Albota, M.A.; Aull, B.F.; Fouche, D.G.; Heinrichs, R.M.; Kocher, D.G.; Marino, R.M.; Mooney, J.G.; Newbury, N.R.; Player, B.E.; Willard, B.C. Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays. Lincoln Lab. J. 2002, 13, 351–370. [Google Scholar]
- Elachi, C. Spaceborne Radar Remote Sensing: Applications and Techniques; IEEE Press: New York, NY, USA, 1988; 285p. [Google Scholar]
- Ahola, R.; Heikkinen, T.; Manninen, M. 3D image acquisition by scanning time of flight measurements. In Proceedings of the International Conference on Advances in Image Processing and Pattern Recognition, Pisa, Italy, 10–12 December 1985. [Google Scholar]
- Anthes, J.P.; Garcia, P.; Pierce, J.T.; Dressendorfer, P.V. Nonscanned ladar imaging and applications. In Applied Laser Radar Technology; Kamerman, G.W., Keicher, W.E., Eds.; SPIE: Orlando, FL, USA, 1993. [Google Scholar] [CrossRef]
- Liu, H.; Han, S. Spatial longitudinal coherence length of a thermal source and its influence on lensless ghost imaging. Opt. Lett. 2008, 33, 824. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Han, S. The influence of axial correlation depth of light field on lensless ghost imaging. JOSA B 2010, 27, 675–678. [Google Scholar] [CrossRef]
- Gong, W.; Zhang, P.; Shen, X.; Han, S. Ghost “pinhole” imaging in Fraunhofer region. Appl. Phys. Lett. 2009, 95, 071110. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Gong, W.; Chen, M.; Li, E.; Bo, Z.; Li, W.; Zhang, H.; Gao, X.; Deng, C.; Mei, X.; et al. Research progress of GISC lidar. Infrared Laser Eng. 2015, 44, 2547–2555. [Google Scholar]
- Li, H.; Xiong, J.; Zeng, G. Lensless ghost imaging for moving objects. Opt. Eng. 2011, 50, 127005. [Google Scholar] [CrossRef]
- Cong, Z.; Wenlin, G.; Han, S. Ghost imaging for moving targets and its application in remote sensing. Chin. J. Lasers 2012, 12, 039. [Google Scholar]
- Li, E.; Bo, Z.; Chen, M.; Gong, W.; Han, S. Ghost imaging of a moving target with an unknown constant speed. Appl. Phys. Lett. 2014, 104, 251120. [Google Scholar] [CrossRef]
- Li, X.; Deng, C.; Chen, M.; Gong, W.; Han, S. Ghost imaging for an axially moving target with an unknown constant speed. Photonics Res. 2015, 3, 153–157. [Google Scholar] [CrossRef]
- Jia, J.; Chengqiang, Z.; Lijun, C. Research on the repeatable pseudo-thermal light based on random phase plate scanning. Acta Opt. Sin. 2013, 33, 0911002. [Google Scholar] [CrossRef]
- Nan, W.; Wenlin, G.; Shensheng, H. Experimental research on pseudo-thermal light ghost imaging with random phase plate based on variable motion trail. Acta Opt. Sin. 2015, 35, 0711005. [Google Scholar] [CrossRef]
- Mei, X.; Gong, W.; Yan, Y.; Han, S.; Cao, Q. Experimental research on prebuilt three-dimensional imaging lidar. Chin. J. Lasers 2016, 43, 0710003. [Google Scholar]
- Yu, H.; Li, E.; Gong, W.; Han, S. Structured image reconstruction for three-dimensional ghost imaging lidar. Opt. Express 2015, 23, 14541. [Google Scholar] [CrossRef] [PubMed]
- Farrell, J.; Barth, M. The Global Positioning System and Inertial Navigation; McGraw-Hill: New York, NY, USA, 1999; Volume 61, pp. 1–20. [Google Scholar]
- Masten, M.K. Inertially stabilized platforms for optical imaging systems. IEEE Control Syst. 2008, 28, 47–64. [Google Scholar]
- Wang, C.; Mei, X.; Pan, L.; Wang, P.; Li, W.; Gao, X.; Bo, Z.; Chen, M.; Gong, W.; Han, S. Airborne Near Infrared Three-Dimensional Ghost Imaging LiDAR via Sparsity Constraint. Remote Sens. 2018, 10, 732. [Google Scholar] [CrossRef]
- Boufounos, P.T.; Baraniuk, R.G. 1-bit compressive sensing. In Proceedings of the 42nd Annual Conference on IEEE Information Sciences and Systems, Princeton, NJ, USA, 19–21 March 2008; pp. 16–21. [Google Scholar]
- Herrala, E.; Okkonen, J.T.; Hyvarinen, T.S.; Aikio, M.; Lammasniemi, J. Imaging spectrometer for process industry applications. In Optical Measurements and Sensors for the Process Industries; Gorecki, C., Preater, R.W.T., Eds.; SPIE: Kailua, Kona, HI, USA, 1994. [Google Scholar] [CrossRef]
- Gao, L.; Liang, J.; Li, C.; Wang, L.V. Single-shot compressed ultrafast photography at one hundred billion frames per second. Nature 2014, 516, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, K.; Iwasaki, A.; Oishi, Y.; Horisaki, R.; Tsukamoto, A.; Nakamura, A.; Hirosawa, K.; Liao, H.; Ushida, T.; Goda, K.; et al. Sequentially timed all-optical mapping photography (STAMP). Nat. Photonics 2014, 8, 695–700. [Google Scholar] [CrossRef]
- Hagen, N.; Kudenov, M.W. Review of snapshot spectral imaging technologies. Opt. Eng. 2013, 52, 090901. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Wang, L.V. A review of snapshot multidimensional optical imaging: measuring photon tags in parallel. Phys. Rep. 2016, 616, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.K.; Tang, D.; Dang, C. Single-shot multispectral imaging with a monochromatic camera. Optica 2017, 4, 1209. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Kester, R.T.; Tkaczyk, T.S. Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy. Opt. Express 2009, 17, 12293. [Google Scholar] [CrossRef] [PubMed]
- Kudenov, M.W. Faceted grating prism for a computed tomographic imaging spectrometer. Opt. Eng. 2012, 51, 044002. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: New York, NY, USA, 2012; pp. 657–687. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Wagadarikar, A.A.; Pitsianis, N.P.; Sun, X.; Brady, D.J. Spectral image estimation for coded aperture snapshot spectral imagers. Proc. SPIE 2008, 7076, 707602. [Google Scholar] [Green Version]
- Wagadarikar, A.; John, R.; Willett, R.; Brady, D. Single disperser design for coded aperture snapshot spectral imaging. Appl. Opt. 2008, 47, B44–B51. [Google Scholar] [CrossRef] [PubMed]
- Arce, G.R.; Brady, D.J.; Carin, L.; Arguello, H.; Kittle, D.S. Compressive Coded Aperture Spectral Imaging: An Introduction. IEEE Signal Process. Mag. 2014, 31, 105–115. [Google Scholar] [CrossRef]
- Asif, M.S.; Ayremlou, A.; Sankaranarayanan, A.; Veeraraghavan, A.; Baraniuk, R.G. FlatCam: Thin, Lensless Cameras Using Coded Aperture and Computation. IEEE Trans. Comput. Imaging 2017, 3, 384–397. [Google Scholar] [CrossRef]
- Zhang, D.; Zhai, Y.H.; Wu, L.A.; Chen, X.H. Correlated two-photon imaging with true thermal light. Opt. Lett. 2005, 30, 2354–2356. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.F.; Chen, X.H.; Yao, X.R.; Yu, W.K.; Zhai, G.J.; Wu, L.A. Lensless ghost imaging with sunlight. Opt. Lett. 2014, 39, 2314–2317. [Google Scholar] [CrossRef] [PubMed]
- Giglio, M.; Carpineti, M.; Vailati, A. Space intensity correlations in the near field of the scattered light: A direct measurement of the density correlation function g (r). Phys. Rev. Lett. 2000, 85, 1416. [Google Scholar] [CrossRef] [PubMed]
- Cerbino, R.; Peverini, L.; Potenza, M.A.C.; Robert, A.; Bösecke, P.; Giglio, M. X-ray-scattering information obtained from near-field speckle. Nat. Phys. 2008, 4, 238–243. [Google Scholar] [CrossRef]
- Liu, Z.; Tan, S.; Wu, J.; Li, E.; Han, S. The Study of Spectral Camera based on Ghost Imaging via Sparsity Constraints with Sunlight Illumination. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 5–10 June 2016. [Google Scholar]
- Tong, Z.; Wang, J.; Huang, Z.; Liu, Z.; Hu, C.; Wu, J.; Li, E.; Shen, X.; Han, S. Super-Resolution Imaging Based on Spectral Dimensional Information. In Proceedings of the OSA Computational Optical Sensing and Imaging Conference, Orlando, FL, USA, 25–28 June 2018. [Google Scholar]
- Shi, Y. A Glimpse of Structural Biology through X-Ray Crystallography. Cell 2014, 159, 995–1014. [Google Scholar] [CrossRef] [PubMed]
- Fleury, B.; Cortes-Huerto, R.; Taché, O.; Testard, F.; Menguy, N.; Spalla, O. Gold Nanoparticle Internal Structure and Symmetry Probed by Unified Small-Angle X-ray Scattering and X-ray Diffraction Coupled with Molecular Dynamics Analysis. Nano Lett. 2015, 15, 6088–6094. [Google Scholar] [CrossRef] [PubMed]
- Kosynkin, D.V.; Higginbotham, A.L.; Sinitskii, A.; Lomeda, J.R.; Dimiev, A.; Price, B.K.; Tour, J.M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458, 872–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, J.; Charalambous, P.; Kirz, J.; Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 1999, 400, 342–344. [Google Scholar] [CrossRef]
- Chapman, H.N.; Barty, A.; Bogan, M.J.; Boutet, S.; Frank, M.; Hau-Riege, S.P.; Marchesini, S.; Woods, B.W.; Bajt, S.; Benner, W.H.; et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat. Phys. 2006, 2, 839–843. [Google Scholar] [CrossRef] [Green Version]
- Pfeifer, M.A.; Williams, G.J.; Vartanyants, I.A.; Harder, R.; Robinson, I.K. Three-dimensional mapping of a deformation field inside a nanocrystal. Nature 2006, 442, 63–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, G.J.; Quiney, H.M.; Dhal, B.B.; Tran, C.Q.; Nugent, K.A.; Peele, A.G.; Paterson, D.; de Jonge, M.D. Fresnel Coherent Diffractive Imaging. Phys. Rev. Lett. 2006, 97. [Google Scholar] [CrossRef] [PubMed]
- Abbey, B.; Nugent, K.A.; Williams, G.J.; Clark, J.N.; Peele, A.G.; Pfeifer, M.A.; de Jonge, M.; McNulty, I. Keyhole coherent diffractive imaging. Nat. Phys. 2008, 4, 394–398. [Google Scholar] [CrossRef] [Green Version]
- Rodenburg, J.; Hurst, A.; Cullis, A.; Dobson, B.; Pfeiffer, F.; Bunk, O.; David, C.; Jefimovs, K.; Johnson, I. Hard-x-ray lensless imaging of extended objects. Phys. Rev. Lett. 2007, 98, 034801. [Google Scholar] [CrossRef] [PubMed]
- Thibault, P.; Dierolf, M.; Menzel, A.; Bunk, O.; David, C.; Pfeiffer, F. High-Resolution Scanning X-ray Diffraction Microscopy. Science 2008, 321, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Lu, R.; Tan, Z.; Zhu, R.; Han, S. X-ray Fourier-transform Ghost Imaging via Sparsity Constraints. In Proceedings of the IEEE NSS-MIC Conference, Atlanta, GA, USA, 21–28 October 2017. [Google Scholar]
- Zhang, M. Experimental Investigation on Non-Local Lensless Fourier-Transform Imaging With Classical Incoherent Light. Ph.D. Thesis, Shanghai Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Shanghai, China, 2007. [Google Scholar]
- Zhu, R.; Yu, H.; Lu, R.; Tan, Z.; Han, S. Spatial multiplexing reconstruction for Fourier-transform ghost imaging via sparsity constraints. Opt. Express 2018, 26, 2181. [Google Scholar] [CrossRef] [PubMed]
- Fienup, J.R. Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett. 1978, 3, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Fienup, J.R. Phase retrieval algorithms: a comparison. Appl. Opt. 1982, 21, 2758–2769. [Google Scholar] [CrossRef] [PubMed]
- Candès, E.J.; Strohmer, T.; Voroninski, V. PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming. Commun. Pure Appl. Math. 2012, 66, 1241–1274. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wu, J.; He, W.; Liao, M.; Zhang, C.; Peng, X. Vulnerability to ciphertext-only attack of optical encryption scheme based on double random phase encoding. Opt. Express 2015, 23, 18955. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Candes, E. Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems. In Advances in Neural Information Processing Systems 28; Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R., Eds.; Curran Associates, Inc.: Montréal, QC, Canada, 2015; pp. 739–747. [Google Scholar]
- Shechtman, Y.; Eldar, Y.C.; Cohen, O.; Chapman, H.N.; Miao, J.; Segev, M. Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process. Mag. 2015, 32, 87–109. [Google Scholar] [CrossRef]
- Candès, E.J.; Eldar, Y.C.; Strohmer, T.; Voroninski, V. Phase Retrieval via Matrix Completion. SIAM Rev. 2015, 57, 225–251. [Google Scholar] [CrossRef] [Green Version]
- Candes, E.J.; Li, X.; Soltanolkotabi, M. Phase retrieval via Wirtinger flow: Theory and algorithms. IEEE Trans. Inf. Theory 2015, 61, 1985–2007. [Google Scholar] [CrossRef]
- Candes, E.J.; Li, X.; Soltanolkotabi, M. Phase retrieval from coded diffraction patterns. Appl. Comput. Harmonic Anal. 2015, 39, 277–299. [Google Scholar] [CrossRef] [Green Version]
- Jaganathan, K.; Oymak, S.; Hassibi, B. Sparse Phase Retrieval: Uniqueness Guarantees and Recovery Algorithms. IEEE Trans. Signal Process. 2017, 65, 2402–2410. [Google Scholar] [CrossRef]
- Chen, K.; Han, S. Microscopy for Atomic and Magnetic Structures Based on Thermal Neutron Fourier-transform Ghost Imaging. arXiv, 2018; arXiv:1801.10046. [Google Scholar]
- Sheppard, C.J. Resolution and super-resolution. Microsc. Res. Tech. 2017, 80, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.; Kanade, T. Limits on super-resolution and how to break them. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 1167–1183. [Google Scholar] [CrossRef] [Green Version]
- Antipa, N.; Kuo, G.; Heckel, R.; Mildenhall, B.; Bostan, E.; Ng, R.; Waller, L. DiffuserCam: lensless single-exposure 3D imaging. Optica 2017, 5, 1. [Google Scholar] [CrossRef]
- Adams, J.K.; Boominathan, V.; Avants, B.W.; Vercosa, D.G.; Ye, F.; Baraniuk, R.G.; Robinson, J.T.; Veeraraghavan, A. Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope. Sci. Adv. 2017, 3, e1701548. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Vijayakumar, A.; Kumar, M.; Rosen, J. 3D Imaging through Scatterers with Interferenceless Optical System. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Menon, R. Ultra-high-sensitivity color imaging via a transparent diffractive-filter array and computational optics. Optica 2015, 2, 933. [Google Scholar] [CrossRef]
- Ying, G.; Wei, Q.; Shen, X.; Han, S. A two-step phase-retrieval method in Fourier-transform ghost imaging. Opt. Commun. 2008, 281, 5130–5132. [Google Scholar] [CrossRef]
- Huang, G.; Jiang, H.; Matthews, K.; Wilford, P. Lensless imaging by compressive sensing. In Proceedings of the 2013 IEEE International Conference on Image Processing, Melbourne, VIC, Australia, 15–18 September 2013. [Google Scholar]
- Chen, X.H.; Liu, Q.; Luo, K.H.; Wu, L.A. Lensless ghost imaging with true thermal light. Opt. Lett. 2009, 34, 695. [Google Scholar] [CrossRef] [PubMed]
- Léger, D.; Mathieu, E.; Perrin, J.C. Optical Surface Roughness Determination Using Speckle Correlation Technique. Appl. Opt. 1975, 14, 872. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Kane, C.; Lee, P.A.; Stone, A.D. Correlations and Fluctuations of Coherent Wave Transmission through Disordered Media. Phys. Rev. Lett. 1988, 61, 834–837. [Google Scholar] [CrossRef] [PubMed]
- Judkewitz, B.; Horstmeyer, R.; Vellekoop, I.M.; Papadopoulos, I.N.; Yang, C. Translation correlations in anisotropically scattering media. Nat. Phys. 2015, 11, 684–689. [Google Scholar] [CrossRef] [Green Version]
- Osnabrugge, G.; Horstmeyer, R.; Papadopoulos, I.N.; Judkewitz, B.; Vellekoop, I.M. Generalized optical memory effect. Optica 2017, 4, 886. [Google Scholar] [CrossRef] [Green Version]
- Bertolotti, J.; van Putten, E.G.; Blum, C.; Lagendijk, A.; Vos, W.L.; Mosk, A.P. Non-invasive imaging through opaque scattering layers. Nature 2012, 491, 232–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, O.; Small, E.; Silberberg, Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light. Nat. Photonics 2012, 6, 549–553. [Google Scholar] [CrossRef]
- Katz, O.; Heidmann, P.; Fink, M.; Gigan, S. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics 2014, 8, 784–790. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Pu, Y.; Psaltis, D. Imaging blood cells through scattering biological tissue using speckle scanning microscopy. Opt. Express 2014, 22, 3405. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, H.; He, H.; Xie, X.; Zhou, J. High speed color imaging through scattering media with a large field of view. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Goodman, J.W. Statistical Optics; John Wiley & Sons: New York, NY, USA, 2015; p. 2. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.; Yu, H.; Shen, X.; Liu, H.; Gong, W.; Liu, Z. A Review of Ghost Imaging via Sparsity Constraints. Appl. Sci. 2018, 8, 1379. https://doi.org/10.3390/app8081379
Han S, Yu H, Shen X, Liu H, Gong W, Liu Z. A Review of Ghost Imaging via Sparsity Constraints. Applied Sciences. 2018; 8(8):1379. https://doi.org/10.3390/app8081379
Chicago/Turabian StyleHan, Shensheng, Hong Yu, Xia Shen, Honglin Liu, Wenlin Gong, and Zhentao Liu. 2018. "A Review of Ghost Imaging via Sparsity Constraints" Applied Sciences 8, no. 8: 1379. https://doi.org/10.3390/app8081379
APA StyleHan, S., Yu, H., Shen, X., Liu, H., Gong, W., & Liu, Z. (2018). A Review of Ghost Imaging via Sparsity Constraints. Applied Sciences, 8(8), 1379. https://doi.org/10.3390/app8081379