Metal-to-Insulator Transitions in Strongly Correlated Regime
Abstract
:1. Introduction
2. Results
2.1. Metal Behaviors at Large and a Critical Behavior
2.2. Critical Density and the Influence of the Disorder
2.3. Nonlinear Responses and the Liquid-Solid Phase Transition
3. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | linear dichroism |
References
- Anderson, P.W. Absence of Diffusion in Certain Random Lattices. Phys. Rev. 1958, 109, 1492–1505. [Google Scholar] [CrossRef]
- Abrahams, E.; Anderson, P.W.; Licciardello, D.C.; Ramakrishnan, T.V. Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions. Phys. Rev. Lett. 1979, 42, 673–676. [Google Scholar] [CrossRef]
- Kravchenko, S.V.; Kravchenko, G.V.; Furneaux, J.E.; Pudalov, V.M.; D’Iorio, M. Possible metal-insulator transition at B = 0 in two dimensions. Phys. Rev. B 1994, 50, 8039–8042. [Google Scholar] [CrossRef]
- Kravchenko, S.V.; Mason, W.E.; Bowker, G.E.; Furneaux, J.E.; Pudalov, V.M.; D’Iorio, M. Scaling of an anomalous metal-insulator transition in a two-dimensional system in silicon at B = 0. Phys. Rev. B 1995, 51, 7038–7045. [Google Scholar] [CrossRef]
- Bergmann, G. Weak localization in thin films: a time-of-flight experiment with conduction electrons. Phys. Rep. 1984, 107, 1–58. [Google Scholar] [CrossRef]
- Altshuler, B.L.; Aronov, A.G.; Lee, P.A. Interaction Effects in Disordered Fermi Systems in Two Dimensions. Phys. Rev. Lett. 1980, 44, 1288–1291. [Google Scholar] [CrossRef]
- Efros, A.L.; Shklovskii, B.I. Coulomb gap and low temperature conductivity of disordered systems. J. Phys. C Solid State Phys. 1975, 8, L49. [Google Scholar] [CrossRef]
- Mott, N.F. Conduction in non-crystalline materials. Philos. Mag. 1969, 19, 835–852. [Google Scholar] [CrossRef] [Green Version]
- Wigner, E. On the Interaction of Electrons in Metals. Phys. Rev. 1934, 46, 1002–1011. [Google Scholar] [CrossRef]
- Varma, C.; Nussinov, Z.; Van Saarloos, W. Singular or non-Fermi liquids. Phys. Rep. 2002, 361, 267–417. [Google Scholar] [CrossRef] [Green Version]
- Abrahams, E.; Kravchenko, S.V.; Sarachik, M.P. Metallic behavior and related phenomena in two dimensions. Rev. Mod. Phys. 2001, 73, 251–266. [Google Scholar] [CrossRef] [Green Version]
- Tanatar, B.; Ceperley, D.M. Ground state of the two-dimensional electron gas. Phys. Rev. B 1989, 39, 5005–5016. [Google Scholar] [CrossRef]
- Wright, D.C.; Mermin, N.D. Crystalline liquids: The blue phases. Rev. Mod. Phys. 1989, 61, 385. [Google Scholar] [CrossRef]
- Yoon, J.; Li, C.C.; Shahar, D.; Tsui, D.C.; Shayegan, M. Wigner Crystallization and Metal-Insulator Transition of Two-Dimensional Holes in GaAs at B = 0. Phys. Rev. Lett. 1999, 82, 1744–1747. [Google Scholar] [CrossRef]
- Simmons, M.Y.; Hamilton, A.R.; Pepper, M.; Linfield, E.H.; Rose, P.D.; Ritchie, D.A.; Savchenko, A.K.; Griffiths, T.G. Metal-Insulator Transition at B = 0 in a Dilute Two Dimensional GaAs-AlGaAs Hole Gas. Phys. Rev. Lett. 1998, 80, 1292–1295. [Google Scholar] [CrossRef]
- Kane, B.E.; Pfeiffer, L.N.; West, K.W. High mobility GaAs heterostructure field effect transistor for nanofabrication in which dopant-induced disorder is eliminated. Appl. Phys. Lett. 1995, 67, 1262–1264. [Google Scholar] [CrossRef]
- Huang, J.; Novikov, D.S.; Tsui, D.C.; Pfeifer, L.N.; West, K.W. Two-Dimensional Holes in GaAs HIGFETs: Fabrication Methods and Transport Measurements. Int. J. Mod. Phys. B 2007, 21, 1219–1227. [Google Scholar] [CrossRef]
- Ando, T.; Fowler, A.B.; Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 1982, 54, 437–672. [Google Scholar] [CrossRef]
- Noh, H.; Lilly, M.P.; Tsui, D.C.; Simmons, J.A.; Pfeiffer, L.N.; West, K.W. Linear temperature dependence of conductivity in the apparent insulating regime of dilute two-dimensional holes in GaAs. Phys. Rev. B 2003, 68, 241308. [Google Scholar] [CrossRef]
- Huang, J.; Novikov, D.S.; Tsui, D.C.; Pfeiffer, L.N.; West, K.W. Nonactivated transport of strongly interacting two-dimensional holes in GaAs. Phys. Rev. B 2006, 74, 201302. [Google Scholar] [CrossRef]
- Huang, J.; Xia, J.S.; Tsui, D.C.; Pfeiffer, L.N.; West, K.W. Disappearance of Metal-Like Behavior in GaAs Two-Dimensional Holes below 30 mK. Phys. Rev. Lett. 2007, 98, 226801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spivak, B.; Kravchenko, S.V.; Kivelson, S.A.; Gao, X.P.A. Colloquium: Transport in strongly correlated two dimensional electron fluids. Rev. Mod. Phys. 2010, 82, 1743–1766. [Google Scholar] [CrossRef]
- Pudalov, V.; Brunthaler, G.; Prinz, A.; Bauer, G. Breakdown of the anomalous two-dimensional metallic phase in a parallel magnetic field. Physica B 1998, 249, 697–700. [Google Scholar] [CrossRef]
- Pillarisetty, R.; Noh, H.; Tutuc, E.; De Poortere, E.; Lai, K.; Tsui, D.; Shayegan, M. Coulomb drag near the metal-insulator transition in two dimensions. Phys. Rev. B 2005, 71, 115307. [Google Scholar] [CrossRef] [Green Version]
- Kravchenko, S.; Sarachik, M. Metal–insulator transition in two-dimensional electron systems. Rep. Prog. Phys. 2003, 67, 1. [Google Scholar] [CrossRef]
- Lu, T.M.; Li, Z.F.; Tsui, D.C.; Manfra, M.J.; Pfeiffer, L.N.; West, K.W. Cyclotron mass of two-dimensional holes in (100) oriented GaAs/AlGaAs heterostructures. Appl. Phys. Lett. 2008, 92. [Google Scholar] [CrossRef]
- Zhu, H.; Lai, K.; Tsui, D.; Bayrakci, S.; Ong, N.; Manfra, M.; Pfeiffer, L.; West, K. Density and well width dependences of the effective mass of two-dimensional holes in (100) GaAs quantum wells measured using cyclotron resonance at microwave frequencies. Solid State Commun. 2007, 141, 510–513. [Google Scholar] [CrossRef] [Green Version]
- Goldman, V.J.; Santos, M.; Shayegan, M.; Cunningham, J.E. Evidence for two-dimentional quantum Wigner crystal. Phys. Rev. Lett. 1990, 65, 2189–2192. [Google Scholar] [CrossRef]
- Levy, L.; Dolan, G.; Dunsmuir, J.; Bouchiat, H. Magnetization of mesoscopic copper rings: Evidence for persistent currents. Phys. Rev. Lett. 1990, 64, 2074. [Google Scholar] [CrossRef]
- Grüner, G. The dynamics of charge-density waves. Rev. Mod. Phys. 1988, 60, 1129–1181. [Google Scholar] [CrossRef]
- Noh, H.; Lilly, M.P.; Tsui, D.C.; Simmons, J.A.; Hwang, E.H.; Das Sarma, S.; Pfeiffer, L.N.; West, K.W. Interaction corrections to two-dimensional hole transport in the large-rs limit. Phys. Rev. B 2003, 68, 165308. [Google Scholar] [CrossRef]
- Lai, K.; Pan, W.; Tsui, D.C.; Lyon, S.; Mühlberger, M.; Schäffler, F. Linear temperature dependence of the conductivity in Si two-dimensional electrons near the apparent metal-to-insulator transition. Phys. Rev. B 2007, 75, 033314. [Google Scholar] [CrossRef]
- Jiang, H.W.; Stormer, H.L.; Tsui, D.C.; Pfeiffer, L.N.; West, K.W. Magnetotransport studies of the insulating phase around ν = 1/5 Landau-level filling. Phys. Rev. B 1991, 44, 8107–8114. [Google Scholar] [CrossRef]
- Williams, F.I.B.; Wright, P.A.; Clark, R.G.; Andrei, E.Y.; Deville, G.; Glattli, D.C.; Probst, O.; Etienne, B.; Dorin, C.; Foxon, C.T.; et al. Conduction threshold and pinning frequency of magnetically induced Wigner solid. Phys. Rev. Lett. 1991, 66, 3285–3288. [Google Scholar] [CrossRef] [PubMed]
- Qiu, R.L.J.; Gao, X.P.A.; Pfeiffer, L.N.; West, K.W. Connecting the Reentrant Insulating Phase and the Zero-Field Metal-Insulator Transition in a 2D Hole System. Phys. Rev. Lett. 2012, 108, 106404. [Google Scholar] [CrossRef] [PubMed]
- Andrei, E.Y.; Deville, G.; Glattli, D.C.; Williams, F.I.B.; Paris, E.; Etienne, B. Observation of a Magnetically Induced Wigner Solid. Phys. Rev. Lett. 1988, 60, 2765–2768. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Sambandamurthy, G.; Wang, Z.H.; Lewis, R.M.; Engel, L.W.; Tsui, D.C.; Ye, P.D.; Pfeiffer, L.N.; West, K.W. Melting of a 2D quantum electron solid in high magnetic field. Nat. Phys. 2006, 2, 452–455. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Chen, Y.P.; Jiang, P.; Engel, L.W.; Tsui, D.C.; Pfeiffer, L.N.; West, K.W. Observation of a Pinning Mode in a Wigner Solid with ν = 1/3 Fractional Quantum Hall Excitations. Phys. Rev. Lett. 2010, 105, 126803. [Google Scholar] [CrossRef] [PubMed]
- Paalanen, M.A.; Willett, R.L.; Littlewood, P.B.; Ruel, R.R.; West, K.W.; Pfeiffer, L.N.; Bishop, D.J. rf conductivity of a two-dimensional electron system at small Landau-level filling factors. Phys. Rev. B 1992, 45, 11342–11345. [Google Scholar] [CrossRef]
- Jang, J.; Hunt, B.M.; Pfeiffer, L.N.; West, K.W.; Ashoori, R.C. Sharp tunnelling resonance from the vibrations of an electronic Wigner crystal. Nat. Phys. 2017, 13, 340. [Google Scholar] [CrossRef]
- Kravchenko, S.V.; Perenboom, J.A.A.J.; Pudalov, V.M. Two-dimensional electron solid formation in Si inversion layers. Phys. Rev. B 1991, 44, 13513–13518. [Google Scholar] [CrossRef] [Green Version]
- Pudalov, V.M.; D’Iorio, M.; Kravchenko, S.V.; Campbell, J.W. Zero-magnetic-field collective insulator phase in a dilute 2D electron system. Phys. Rev. Lett. 1993, 70, 1866–1869. [Google Scholar] [CrossRef] [PubMed]
- Brussarski, P.; Li, S.; Kravchenko, S.; Shashkin, A.; Sarachik, M. Transport evidence for a sliding two-dimensional quantum electron solid. Nat. Commun. 2018, 9, 3803. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.A.; Rice, T.M. Electric field depinning of charge density waves. Phys. Rev. B 1979, 19, 3970–3980. [Google Scholar] [CrossRef]
- Yoshioka, D.; Fukuyama, H. Charge Density Wave State of Two-Dimensional Electrons in Strong Magnetic Fields. J. Phys. Soc. Jpn. 1979, 47, 394–402. [Google Scholar] [CrossRef]
- Anderson, P. Basic Notions of Condensed Matter Physics; Benjamin/Cummings: Menlo Park, CA, USA, 1984. [Google Scholar]
- Aoki, H. Effect of coexistence of random potential and electron-electron interaction in two-dimensional systems: Wigner glass. J. Phys. C 1979, 12, 633. [Google Scholar] [CrossRef]
- Chakravarty, S.; Kivelson, S.; Nayak, C.; Voelker, K. Wigner glass, spin liquids and the metal-insulator transition. Philos. Mag. Part B 1999, 79, 859–868. [Google Scholar] [CrossRef] [Green Version]
- Chitra, R.; Giamarchi, T. Zero field Wigner glass. J. Phys. IV France 2005, 131, 163–166. [Google Scholar] [CrossRef]
- Imada, M.; Takahashi, M. Quantum Monte Carlo Simulation of a Two-Dimensional Electron System–Melting of Wigner Crystal–. J. Phys. Soc. Jpn. 1984, 53, 3770–3781. [Google Scholar] [CrossRef]
- Clark, B.K.; Casula, M.; Ceperley, D.M. Hexatic and Mesoscopic Phases in a 2D Quantum Coulomb System. Phys. Rev. Lett. 2009, 103, 055701. [Google Scholar] [CrossRef]
- Knighton, T.; Wu, Z.; Huang, J.; Serafin, A.; Xia, J.; Pfeiffer, L.; West, K. Evidence of two-stage melting of Wigner solids. Phys. Rev. B 2018, 97, 085135. [Google Scholar] [CrossRef] [Green Version]
- Millis, A.J.; Littlewood, P.B. Radio-frequency absorption as a probe of the transition between the Wigner crystal and the fractionally quantized Hall state. Phys. Rev. B 1994, 50, 17632–17635. [Google Scholar] [CrossRef]
- Halperin, B.I.; Nelson, D.R. Theory of Two-Dimensional Melting. Phys. Rev. Lett. 1978, 41, 121–124. [Google Scholar] [CrossRef]
- Nelson, D.R.; Halperin, B.I. Dislocation-mediated melting in two dimensions. Phys. Rev. B 1979, 19, 2457–2484. [Google Scholar] [CrossRef]
- Nelson, D.R.; Halperin, B.I. Solid and fluid phases in smectic layers with tilted molecules. Phys. Rev. B 1980, 21, 5312–5329. [Google Scholar] [CrossRef]
- Young, A.P. Melting and the vector Coulomb gas in two dimensions. Phys. Rev. B 1979, 19, 1855–1866. [Google Scholar] [CrossRef]
- Spivak, B.; Kivelson, S.A. Phases intermediate between a two-dimensional electron liquid and Wigner crystal. Phys. Rev. B 2004, 70, 155114. [Google Scholar] [CrossRef]
- Kosterlitz, J.; Thouless, D. Long range order and metastability in two dimensional solids and superfluids. (Application of dislocation theory). J. Phys. C 1972, 5, L124. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Pfeiffer, L.; West, K. Metal-to-Insulator Transitions in Strongly Correlated Regime. Appl. Sci. 2019, 9, 80. https://doi.org/10.3390/app9010080
Huang J, Pfeiffer L, West K. Metal-to-Insulator Transitions in Strongly Correlated Regime. Applied Sciences. 2019; 9(1):80. https://doi.org/10.3390/app9010080
Chicago/Turabian StyleHuang, Jian, Loren Pfeiffer, and Ken West. 2019. "Metal-to-Insulator Transitions in Strongly Correlated Regime" Applied Sciences 9, no. 1: 80. https://doi.org/10.3390/app9010080
APA StyleHuang, J., Pfeiffer, L., & West, K. (2019). Metal-to-Insulator Transitions in Strongly Correlated Regime. Applied Sciences, 9(1), 80. https://doi.org/10.3390/app9010080