The Effect of Time and Method of Storage on the Chemical Composition, Pepsin-Cellulase Digestibility, and Near-Infrared Spectra of Whole-Maize Forage
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Chemical and Biological Analyses
2.3. Acquisition of Visible/Near Infrared Spectra
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Demarquilly, C.; Chenost, M.; Giger, S. Pertes fécales et digestibilité des aliments et des rations. In Nutrition des Ruminants Domestiques. Ingestion et Digestion; Jarrige, R., Ruckebusch, Y., Demarquilly, C., Farce, M.H., Journet, M., Eds.; INRA Éditions: Paris, France, 1995; pp. 601–647. [Google Scholar]
- Andueza, D.; Picard, F.; Pradel, P.; Theodoridou, K. Feed Value of Barn-Dried Hays from Permanent Grassland: A Comparison with Fresh Forage. Agronomy 2019, 9, 273. [Google Scholar] [CrossRef] [Green Version]
- Baumont, R.; Tran, G.; Chapoutot, P.; Maxin, G.; Sauvant, D.; Heuzé, V.; Lemosquet, S.; Lamadon, A. INRA feed tables used in France and temperate areas. In INRA Feeding System for Ruminants; Nozière, P., Sauvant, D., Delaby, L., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018; pp. 441–548. [Google Scholar]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. Estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas-production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Aufrere, J.; Michalet-Doreau, B. In vivo digestibility and prediction of digestibility of some by-products. In Feeding Value of By-Products and Their Use by Beef Cattle; Boucqui, V., Fiems, L.O., Cottyn, B.G., Eds.; Commission of the European Communities Publishing: Brussels, Belgium; Luxembourg, 1983; pp. 25–34. [Google Scholar]
- Andueza, D.; Picard, F.; Jestin, M.; Andrieu, J.; Baumont, R. NIRS prediction of the feed value of temperate forages: Efficacy of four calibration strategies. Animal 2011, 5, 1002–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andueza, D.; Picard, F.; Martin-Rosset, W.; Aufrere, J. Near-Infrared Spectroscopy Calibrations Performed on Oven-Dried Green Forages for the Prediction of Chemical Composition and Nutritive Value of Preserved Forage for Ruminants. Appl. Spectrosc. 2016, 70, 1321–1327. [Google Scholar] [CrossRef]
- Andueza, D.; Picard, F.; Dozias, D.; Aufrère, J. Fecal near-infrared reflectance spectroscopy prediction of the feed value of temperate forages for ruminants and some parameters of the chemical composition of feces: Efficiency of four calibration strategies. Appl. Spectrosc. 2017, 71, 2164–2176. [Google Scholar] [CrossRef]
- Smith, D. Influence of drying and storage conditions on nonstructural carbohydrate analysis of herbage tissue—Review. J. Br. Grassl. Soc. 1973, 28, 129–134. [Google Scholar] [CrossRef]
- Lashley, M.A.; Chitwood, M.C.; Harper, C.A.; Moorman, C.E.; DePerno, C.S. Collection, handling and analysis of forages for concentrate selectors. Wildl. Biol. Pract. 2014, 10, 6–15. [Google Scholar] [CrossRef]
- Ball, D.M.; Collins, M.; Lacefield, G.D.; Martin, N.P.; Mertens, D.A.; Olson, K.E.; Putnam, D.H.; Undersander, D.J.; Wolf, M.W. Understanding Forage Quality; American Farm Bureau Federation Publication 1-01: Park Ridge, IL, USA, 2001; pp. 1–17. [Google Scholar]
- Landau, S.; Giger-Reverdin, S.; Rapetti, L.; Dvash, L.; Dorleans, M.; Ungar, E.D. Data mining old digestibility trials for nutritional monitoring in confined goats with aids of fecal near infra-red spectrometry. Small Rumin. Res. 2008, 77, 146–158. [Google Scholar] [CrossRef]
- Aufrere, J.; Graviou, D.; Demarquilly, C.; Andrieu, J.; Emile, J.C.; Giovanni, R.; Maupetit, P. Estimation of organic-matter digestibility of whole maize plants by laboratory methods. Anim. Feed Sci. Technol. 1992, 36, 187–204. [Google Scholar] [CrossRef]
- Van Soest, P.J. Use of detergents in analysis of fibrous feeds. 2. A rapid method for determination of fiber and lignin. J. Assoc. Off. Agric. Chem. 1963, 46, 829–835. [Google Scholar]
- Van Soest, P.J.; Wine, R.H. Use of detergents in analysis of fibrous feeds. 4. Determination of plant cell-wall constituents. J. Assoc. Off. Anal. Chem. 1967, 50, 50–55. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990; p. 1298. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber neutral detergent fiber, and nonstarch poysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B. Systems of analysis for evaluating fibrous feeds. In IDRC No 134; Pidgen, W.J., Balch, C.C., Graham, M., Eds.; International Development Research Centre: Ottawa, ON, Canada, 1980; pp. 49–60. [Google Scholar]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994; p. 476. [Google Scholar]
- Radley, J.A. Starch and Its Derivatives, 3rd ed.; Chapman and Hall Ltd.: London, UK, 1953; Volume II, p. 465. [Google Scholar]
- Somogyi, M. Notes on sugar determination. J. Biol. Chem. 1952, 195, 19–23. [Google Scholar]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- SAS. SAS/STAT UsersGuide, Version 6.12; Statistical Analysis System Institute: Cary, NC, USA, 1998. [Google Scholar]
- Decruyenaere, V.; Lecomte, P.; Demarquilly, C.; Auffere, J.; Dardenne, P.; Stilmant, D.; Buldgen, A. Evaluation of green forage intake and digestibility in ruminants using near infrared reflectance spectroscopy (NIRS): Developing a global calibration. Anim. Feed Sci. Technol. 2009, 148, 138–156. [Google Scholar] [CrossRef]
- Tran, H.; Salgado, P.; Tillard, E.; Dardenne, P.; Nguyen, X.T.; Lecomte, P. “Global” and “local” predictions of dairy diet nutritional quality using near infrared reflectance spectroscopy. J. Dairy Sci. 2010, 93, 4961–4975. [Google Scholar] [CrossRef] [Green Version]
- Foskolos, A.; Calsamiglia, S.; Chrenkovy, M.; Weisbjerg, M.R.; Albanell, E. Prediction of rumen degradability parameters of a wide range of forages and non-forages by NIRS. Animal 2015, 9, 1163–1171. [Google Scholar] [CrossRef] [Green Version]
- Goering, H.K.; Van Soest, P.J.; Hemken, R.W. Relative susceptibility of forages to heat damage as afected by moisture, temperature and pH. J. Dairy Sci. 1973, 56, 137–143. [Google Scholar] [CrossRef]
- Coblentz, W.K.; Fritz, J.O.; Bolsen, K.K.; Cochran, R.C. Quality changes in alfalfa hay during storage in bales. J. Dairy Sci. 1996, 79, 873–885. [Google Scholar] [CrossRef]
- Turner, J.E.; Coblentz, W.K.; Scarbrough, D.A.; Coffey, K.P.; Kellogg, D.W.; McBeth, L.J.; Rhein, R.T. Changes in nutritive value of bermudagrass hay during storage. Agron. J. 2002, 94, 109–117. [Google Scholar] [CrossRef]
- Nelson, M.L.; Bozich, M.J. Effect of storage temperature and time on fiber content of fresh and ensiled alfalfa. J. Anim. Sci. 1996, 74, 1689–1693. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.C.; Kung, L. The effects of dry matter and length of storage on the composition and nutritive value of alfalfa silage. J. Dairy Sci. 2016, 99, 5466–5469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenhill, W.L.; Couchman, J.F.; De Freitas, J. Storage of hay. III.—Effect of temperature and moisture on loss of dry matter and changes in composition. J. Sci. Food Agric. 1961, 12, 293–297. [Google Scholar] [CrossRef]
- Pelletier, S.; Tremblay, G.F.; Bertrand, A.; Belanger, G.; Castonguay, Y.; Michaud, R. Drying procedures affect non-structural carbohydrates and other nutritive value attributes in forage samples. Anim. Feed Sci. Technol. 2010, 157, 139–150. [Google Scholar] [CrossRef]
- Parissi, Z.M.; Papachristou, T.G.; Nastis, A.S. Effect of drying method on estimated nutritive value of browse species using an in vitro gas production technique. Anim. Feed Sci. Technol. 2005, 123, 119–128. [Google Scholar] [CrossRef]
- Cleale, R.M.; Klopfenstein, T.J.; Britton, R.A.; Satterlee, L.D.; Lowry, S.R. Induced nonenzymatic browning of soybean-meal. 1. Effects of factors controlling nonenzymatic browning on in vitro ammonia release. J. Anim. Sci. 1987, 65, 1312–1318. [Google Scholar] [CrossRef]
- Labuza, T.P.; Saltmarch, M. Kinetics of browning and protein Qquality loss in whey powders during steady state and nonsteady state storage conditions. J. Food Sci. 1982, 47, 92–96. [Google Scholar] [CrossRef]
- Cleale, R.M.; Britton, R.A.; Klopfenstein, T.J.; Bauer, M.L.; Harmon, D.L.; Satterlee, L.D. Induced nonenzymatic browning of soybean-meal. 2. Ruminal scape and net portal absorption of soybean protein treated with xylose. J. Anim. Sci. 1987, 65, 1319–1326. [Google Scholar] [CrossRef]
- Blackman, G.E.; Templeman, W.G. The Interaction of Light Intensity and Nitrogen Supply in the Growth and Metabolism of Grasses and Clover (Trifolium repens): III. Analytical Methods for the Estimation of Some Nitrogen and Carbohydrate Fractions. Ann. Bot. 1940, 4, 119–134. [Google Scholar] [CrossRef]
- Osborne, B.G.; Fearn, T. Near Infrared Spectroscopy in Food Analysis; Longman Scientific & Technical/John Wiley & Sons, Inc.: New York, NY, USA, 1988. [Google Scholar]
- Saez-Plaza, P.; Michalowski, T.; Navas, M.J.; Asuero, A.G.; Wybraniec, S. An Overview of the Kjeldahl Method of Nitrogen Determination. Part I. Early History, Chemistry of the Procedure, and Titrimetric Finish. Crit. Rev. Anal. Chem. 2013, 43, 178–223. [Google Scholar] [CrossRef]
- Saez-Plaza, P.; Navas, M.J.; Wybraniec, S.; Michalowski, T.; Asuero, A.G. An Overview of the Kjeldahl Method of Nitrogen Determination. Part II. Sample Preparation, Working Scale, Instrumental Finish, and Quality Control. Crit. Rev. Anal. Chem. 2013, 43, 224–272. [Google Scholar] [CrossRef]
Mean | SD 2 | Min 3 | Max 4 | CV 5 | |
---|---|---|---|---|---|
Ash (g/kg DM 1) | 55 | 6.5 | 45 | 67 | 11.8 |
CP (g/kg DM) | 84 | 8.2 | 69 | 99 | 9.8 |
NDF (g/kg DM) | 488 | 39.8 | 432 | 575 | 8.2 |
ADF (g/kg DM) | 235 | 32.5 | 188 | 302 | 13.8 |
ADL (g/kg DM) | 26 | 4.9 | 20 | 37 | 18.7 |
TSC (g/kg DM) | 113 | 44.6 | 55 | 185 | 39.3 |
Starch (g/kg DM) | 226 | 111.8 | 39 | 388 | 49.5 |
PCDMD | 0.67 | 0.004 | 0.59 | 0.71 | 5.25 |
1987 | 2016 | Significance | ||||
---|---|---|---|---|---|---|
BT 2 | Frozen | SEM | SM 3 | Time | ||
Ash (g/kg DM 1) | 55 | 57 | 56 | 1.7 | ns 4 | ** |
CP (g/kg DM) | 84 | 83 | 82 | 2.2 | ns | -- 5 |
NDF (g/kg DM) | 488 | 457 | 458 | 11.4 | ns | -- |
ADF (g/kg DM) | 235 | 231 | 233 | 7.9 | ns | -- |
ADL (g/kg DM) | 26 | 21 | 21 | 1.0 | ns | -- |
TSC (g/kg DM) | 113 | 81 | 93 | 10.4 | *** | *** |
Starch (g/kg DM) | 226 | 225 | 233 | 32.2 | ns | ns |
PCDMD | 0.67 | 0.67 | 0.68 | 0.008 | ns | ns |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andueza, D.; Picard, F.; Barotin, C.; Menanteau, V.; Gervais, C.; Maxin, G. The Effect of Time and Method of Storage on the Chemical Composition, Pepsin-Cellulase Digestibility, and Near-Infrared Spectra of Whole-Maize Forage. Appl. Sci. 2019, 9, 5390. https://doi.org/10.3390/app9245390
Andueza D, Picard F, Barotin C, Menanteau V, Gervais C, Maxin G. The Effect of Time and Method of Storage on the Chemical Composition, Pepsin-Cellulase Digestibility, and Near-Infrared Spectra of Whole-Maize Forage. Applied Sciences. 2019; 9(24):5390. https://doi.org/10.3390/app9245390
Chicago/Turabian StyleAndueza, Donato, Fabienne Picard, Charlène Barotin, Véronique Menanteau, Corentin Gervais, and Gaëlle Maxin. 2019. "The Effect of Time and Method of Storage on the Chemical Composition, Pepsin-Cellulase Digestibility, and Near-Infrared Spectra of Whole-Maize Forage" Applied Sciences 9, no. 24: 5390. https://doi.org/10.3390/app9245390
APA StyleAndueza, D., Picard, F., Barotin, C., Menanteau, V., Gervais, C., & Maxin, G. (2019). The Effect of Time and Method of Storage on the Chemical Composition, Pepsin-Cellulase Digestibility, and Near-Infrared Spectra of Whole-Maize Forage. Applied Sciences, 9(24), 5390. https://doi.org/10.3390/app9245390