The Impact of Probiotics on Clinical Symptoms and Peripheral Cytokines Levels in Parkinson’s Disease: Preliminary In Vivo Data
Abstract
:1. Introduction
1.1. Background
1.2. Related Works
1.3. Aims of the Study
2. Materials and Methods
2.1. Patients
2.2. Choice of Probiotic Strains
2.3. Cytokines Levels Evaluation
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Motor and Non-Motor Symptoms
3.3. Circulating Cytokine Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.-E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers 2017, 3, 17013. [Google Scholar] [CrossRef] [PubMed]
- Du, T.; Wang, L.; Liu, W.; Zhu, G.; Chen, Y.; Zhang, J. Biomarkers and the Role of α-Synuclein in Parkinson’s Disease. Front. Aging Neurosci. 2021, 13, 645996. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Rüb, U.; Gai, W.P.; Del Tredici, K. Idiopathic Parkinson’s disease: Possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm. 2003, 110, 517–536. [Google Scholar] [CrossRef] [PubMed]
- Scheperjans, F.; Aho, V.; Pereira, P.A.B.; Koskinen, K.; Paulin, L.; Pekkonen, E.; Haapaniemi, E.; Kaakkola, S.; Eerola-Rautio, J.; Pohja, M.; et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov. Disord. 2015, 30, 350–358. [Google Scholar] [CrossRef]
- Balestrino, R.; Schapira, A.H.V. Parkinson disease. Eur. J. Neurol. 2020, 27, 27–42. [Google Scholar] [CrossRef]
- Sveinbjornsdottir, S. The clinical symptoms of Parkinson’s disease. J. Neurochem. 2016, 139 (Suppl. S1), 318–324. [Google Scholar] [CrossRef]
- Morris, H.R.; Spillantini, M.G.; Sue, C.M.; Williams-Gray, C.H. The pathogenesis of Parkinson’s disease. Lancet 2024, 403, 293–304. [Google Scholar] [CrossRef]
- Contaldi, E.; Magistrelli, L.; Comi, C. T Lymphocytes in Parkinson’s Disease. J. Park. Dis. 2022, 12 (Suppl. S1), S65–S74. [Google Scholar] [CrossRef]
- Ha, D.; Stone, D.K.; Mosley, R.L.; Gendelman, H.E. Immunization strategies for Parkinson’s disease. Park. Relat. Disord. 2012, 18 (Suppl. S1), S218–S221. [Google Scholar] [CrossRef]
- Brochard, V.; Combadière, B.; Prigent, A.; Laouar, Y.; Perrin, A.; Beray-Berthat, V.; Bonduelle, O.; Alvarez-Fischer, D.; Callebert, J.; Launay, J.-M.; et al. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J. Clin. Investig. 2009, 119, 182–192. [Google Scholar] [CrossRef]
- Akhtar, R.S.; Licata, J.P.; Luk, K.C.; Shaw, L.M.; Trojanowski, J.Q.; Lee, V.M. Measurements of auto-antibodies to α-synuclein in the serum and cerebral spinal fluids of patients with Parkinson’s disease. J. Neurochem. 2018, 145, 489–503. [Google Scholar] [CrossRef] [PubMed]
- Kustrimovic, N.; Comi, C.; Magistrelli, L.; Rasini, E.; Legnaro, M.; Bombelli, R.; Aleksic, I.; Blandini, F.; Minafra, B.; Riboldazzi, G.; et al. Parkinson’s disease patients have a complex phenotypic and functional Th1 bias: Cross-sectional studies of CD4+ Th1/Th2/T17 and Treg in drug-naïve and drug-treated patients. J. Neuroinflamm. 2018, 15, 205. [Google Scholar] [CrossRef] [PubMed]
- Contaldi, E.; Magistrelli, L.; Milner, A.V.; Cosentino, M.; Marino, F.; Comi, C. Expression of Transcription Factors in CD4+ T Cells as Potential Biomarkers of Motor Complications in Parkinson’s Disease. J. Park. Dis. 2021, 11, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Magistrelli, L.; Storelli, E.; Rasini, E.; Contaldi, E.; Comi, C.; Cosentino, M.; Marino, F. Relationship between circulating CD4+ T lymphocytes and cognitive impairment in patients with Parkinson’s disease. Brain Behav. Immun. 2020, 89, 668–674. [Google Scholar] [CrossRef] [PubMed]
- De Francesco, E.; Terzaghi, M.; Storelli, E.; Magistrelli, L.; Comi, C.; Legnaro, M.; Mauri, M.; Marino, F.; Versino, M.; Cosentino, M. CD4+ T-cell Transcription Factors in Idiopathic REM Sleep Behavior Disorder and Parkinson’s Disease. Mov. Disord. 2021, 36, 225–229. [Google Scholar] [CrossRef]
- Dick, F.; Johanson, G.A.S.; Tysnes, O.B.; Alves, G.; Dölle, C.; Tzoulis, C. Brain Proteome Profiling Reveals Common and Divergent Signatures in Parkinson’s Disease, Multiple System Atrophy, and Progressive Supranuclear Palsy. Mol. Neurobiol. 2024, 1–16. [Google Scholar] [CrossRef]
- Alster, P.; Otto-Ślusarczyk, D.; Kutyłowski, M.; Migda, B.; Wiercińska-Drapało, A.; Jabłońska, J.; Struga, M.; Madetko-Alster, N. The associations between common neuroimaging parameters of Progressive Supranuclear Palsy in magnetic resonance imaging and non-specific inflammatory factors—Pilot study. Front. Immunol. 2024, 15, 1458713. [Google Scholar] [CrossRef]
- Benvenuti, L.; Di Salvo, C.; Bellini, G.; Seguella, L.; Rettura, F.; Esposito, G.; Antonioli, L.; Ceravolo, R.; Bernardini, N.; Pellegrini, C.; et al. Gut-directed therapy in Parkinson’s disease. Front. Pharmacol. 2024, 15, 1407925. [Google Scholar] [CrossRef]
- Mohammadi, G.; Dargahi, L.; Peymani, A.; Mirzanejad, Y.; Alizadeh, S.A.; Naserpour, T.; Nassiri-Asl, M. The Effects of Probiotic Formulation Pretreatment (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) on a Lipopolysaccharide Rat Model. J. Am. Coll. Nutr. 2019, 38, 209–217. [Google Scholar] [CrossRef]
- Xin, J.; Zeng, D.; Wang, H.; Sun, N.; Zhao, Y.; Dan, Y.; Pan, K.; Jing, B.; Ni, X. Probiotic Lactobacillus johnsonii BS15 Promotes Growth Performance, Intestinal Immunity, and Gut Microbiota in Piglets. Probiotics Antimicrob. Proteins 2020, 12, 184–193. [Google Scholar] [CrossRef]
- Magistrelli, L.; Amoruso, A.; Mogna, L.; Graziano, T.; Cantello, R.; Pane, M.; Comi, C. Probiotics May Have Beneficial Effects in Parkinson’s Disease: In vitro Evidence. Front. Immunol. 2019, 10, 969. [Google Scholar] [CrossRef] [PubMed]
- Tamtaji, O.R.; Taghizadeh, M.; Daneshvar Kakhaki, R.; Kouchaki, E.; Bahmani, F.; Borzabadi, S.; Oryan, S.; Mafi, A.; Asemi, Z. Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Clin. Nutr. 2019, 38, 1031–1035. [Google Scholar] [CrossRef]
- Tan, A.H.; Lim, S.Y.; Chong, K.K.; A Manap, M.A.A.; Hor, J.W.; Lim, J.L.; Low, S.C.; Chong, C.W.; Mahadeva, S.; Lang, A.E. Probiotics for Constipation in Parkinson Disease: A Randomized Placebo-Controlled Study. Neurology 2021, 96, e772–e782. [Google Scholar] [CrossRef] [PubMed]
- Cassani, E.; Privitera, G.; Pezzoli, G.; Pusani, C.; Madio, C.; Iorio, L.; Barichella, M. Use of probiotics for the treatment of constipation in Parkinson’s disease patients. Minerva Gastroenterol. Dietol. 2011, 57, 117–121. [Google Scholar]
- Georgescu, D.; Ancusa, O.; Georgescu, L.; Ionita, I.; Reisz, D. Nonmotor gastrointestinal disorders in older patients with Parkinson’s disease: Is there hope? Clin. Interv. Aging 2016, 11, 1601–1608. [Google Scholar]
- Borzabadi, S.; Oryan, S.; Eidi, A.; Aghadavod, E.; Daneshvar Kakhaki, R.; Tamtaji, O.R.; Taghizadeh, M.; Asemi, Z. The Effects of Probiotic Supplementation on Gene Expression Related to Inflammation, Insulin and Lipid in Patients with Parkinson’s Disease: A Randomized, Double-blind, PlaceboControlled Trial. Arch. Iran. Med. 2018, 21, 289–295. [Google Scholar] [PubMed]
- Tomlinson, C.L.; Stowe, R.; Patel, S.; Rick, C.; Gray, R.; Clarke, C.E. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov. Disord. 2010, 25, 2649–2653. [Google Scholar] [CrossRef]
- Cilia, R.; Cereda, E.; Piatti, M.; Pilotto, A.; Magistrelli, L.; Golfrè Andreasi, N.; Bonvegna, S.; Contaldi, E.; Mancini, F.; Imbalzano, G.; et al. Levodopa Equivalent Dose of Safinamide: A Multicenter, Longitudinal, Case-Control Study. Mov. Disord. Clin. Pract. 2023, 10, 625–635. [Google Scholar] [CrossRef]
- Ashique, S.; Mohanto, S.; Ahmed, M.G.; Mishra, N.; Garg, A.; Chellappan, D.K.; Omara, T.; Iqbal, S.; Kahwa, I. Gut-brain axis: A cutting-edge approach to target neurological disorders and potential synbiotic application. Heliyon 2024, 10, e34092. [Google Scholar] [CrossRef]
- Li, T.; Chu, C.; Yu, L.; Zhai, Q.; Wang, S.; Zhao, J.; Zhang, H.; Chen, W.; Tian, F. Neuroprotective Effects of Bifidobacterium breve CCFM1067 in MPTP-Induced Mouse Models of Parkinson’s Disease. Nutrients 2022, 14, 4678. [Google Scholar] [CrossRef]
- Pan, S.; Wei, H.; Yuan, S.; Kong, Y.; Yang, H.; Zhang, Y.; Cui, X.; Chen, W.; Liu, J.; Zhang, Y. Probiotic Pediococcus pentosaceus ameliorates MPTP-induced oxidative stress via regulating the gut microbiota–gut–brain axis. Front. Cell Infect. Microbiol. 2022, 12, 1022879. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, B.; Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Elekhnawy, E.; Alharbi, H.; Alexiou, A.; Papadakis, M.; Batiha, G.E.-S. Role of GABA pathway in motor and non-motor symptoms in Parkinson’s disease: A bidirectional circuit. Eur. J. Med. Res. 2024, 29, 205. [Google Scholar] [CrossRef] [PubMed]
- Daniele, A.; Panza, F.; Greco, A.; Logroscino, G.; Seripa, D. Can a Positive Allosteric Modulation of GABAergic Receptors Improve Motor Symptoms in Patients with Parkinson’s Disease? The Potential Role of Zolpidem in the Treatment of Parkinson’s Disease. Park. Dis. 2016, 2016, 2531812. [Google Scholar] [CrossRef] [PubMed]
- Ondo, W.G.; Silay, Y.S. Intravenous flumazenil for Parkinson’s disease: A single dose, double blind, placebo controlled, cross-over trial. Mov. Disord. 2006, 21, 1614–1617. [Google Scholar] [CrossRef]
- van der Meer, F.; Jorgensen, J.; Hiligsmann, M. Burden of non-motor symptoms of Parkinson’s disease: Cost-of-illness and quality-of-life estimates through a scoping review. Expert Rev. Pharmacoecon. Outcomes Res. 2024, 1–11. [Google Scholar] [CrossRef]
- Yang, X.; He, X.; Xu, S.; Zhang, Y.; Mo, C.; Lai, Y.; Song, Y.; Yan, Z.; Ai, P.; Qian, Y.; et al. Effect of Lacticaseibacillus paracasei strain Shirota supplementation on clinical responses and gut microbiome in Parkinson’s disease. Food Funct. 2023, 14, 6828–6839. [Google Scholar] [CrossRef]
- Ibrahim, A.; Ali, R.A.R.; Manaf, M.R.A.; Ahmad, N.; Tajurruddin, F.W.; Qin, W.Z.; Desa, S.H.M.; Ibrahim, N.M. Multi-strain probiotics (Hexbio) containing MCP BCMC strains improved constipation and gut motility in Parkinson’s disease: A randomised controlled trial. Ribeiro, S.; curatore. PLoS ONE 2020, 15, e0244680. [Google Scholar] [CrossRef]
- Markowiak-Kopeć, P.; Śliżewska, K. The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients 2020, 12, 1107. [Google Scholar] [CrossRef]
- Ansari, F.; Neshat, M.; Pourjafar, H.; Jafari, S.M.; Samakkhah, S.A.; Mirzakhani, E. The role of probiotics and prebiotics in modulating of the gut-brain axis. Front. Nutr. 2023, 10, 1173660. [Google Scholar] [CrossRef]
- Zeng, Q.; Long, Z.; Feng, M.; Zhao, Y.; Luo, S.; Wang, K.; Yang, G.; He, G. Valproic Acid Stimulates Hippocampal Neurogenesis via Activating the Wnt/β-Catenin Signaling Pathway in the APP/PS1/Nestin-GFP Triple Transgenic Mouse Model of Alzheimer’s Disease. Front. Aging Neurosci. 2019, 11, 62. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, L.; Ma, C.; Jiang, S.; Zhang, Y.; Wang, S.; Tian, F.; Xue, Y.; Zhao, J.; Zhang, H.; et al. A key genetic factor governing arabinan utilization in the gut microbiome alleviates constipation. Cell Host Microbe 2023, 31, 1989–2006.e8. [Google Scholar] [CrossRef] [PubMed]
- Oroojzadeh, P.; Bostanabad, S.Y.; Lotfi, H. Psychobiotics: The Influence of Gut Microbiota on the Gut-Brain Axis in Neurological Disorders. J. Mol. Neurosci. 2022, 72, 1952–1964. [Google Scholar] [CrossRef] [PubMed]
- Rusch, J.A.; Layden, B.T.; Dugas, L.R. Signalling cognition: The gut microbiota and hypothalamic-pituitary-adrenal axis. Front. Endocrinol. 2023, 14, 1130689. [Google Scholar] [CrossRef] [PubMed]
- Reiter, A.; Bengesser, S.A.; Hauschild, A.C.; Birkl-Töglhofer, A.M.; Fellendorf, F.T.; Platzer, M.; Färber, T.; Seidl, M.; Mendel, L.M.; Unterweger, R.; et al. Interleukin-6 Gene Expression Changes after a 4-Week Intake of a Multispecies Probiotic in Major Depressive Disorder-Preliminary Results of the PROVIT Study. Nutrients 2020, 12, 2575. [Google Scholar] [CrossRef] [PubMed]
- Bazzocchi, G.; Giovannini, T.; Giussani, C.; Brigidi, P.; Turroni, S. Effect of a new synbiotic supplement on symptoms, stool consistency, intestinal transit time and gut microbiota in patients with severe functional constipation: A pilot randomized double-blind, controlled trial. Tech. Coloproctol. 2014, 18, 945–953. [Google Scholar] [CrossRef]
- Pedersen, C.; Gallagher, E.; Horton, F.; Ellis, R.J.; Ijaz, U.Z.; Wu, H.; Jaiyeola, E.; Diribe, O.; Duparc, T.; Cani, P.D.; et al. Host-microbiome interactions in human type 2 diabetes following prebiotic fibre (galacto-oligosaccharide) intake. Br. J. Nutr. 2016, 116, 1869–1877. [Google Scholar] [CrossRef]
Group A | Group B | p-Value Group A vs. Group B | |
---|---|---|---|
Age (years, mean ± SD) | 67.32 ± 7.03 | 69.40 ± 7.51 | 0.243 |
Age at PD onset (years, mean ± SD) | 63.53 ± 6.92 | 65.35 ± 7.22 | 0.338 |
Disease duration (years, mean ± SD) | 3.79 ± 1.18 | 4.05 ± 0.94 | 0.546 |
LEDD (mg/die, mean ±SD) | 647.68 ± 239.36 | 426.60 ± 160.82 | 0.800 |
Gender (males, n; %) | 14 (74) | 17 (85) | 0.451 |
Anti-parkinsonian therapy (n, %) Levodopa Dopamine-agonists MAO-B inhibitors COMT inhibitors Anti-cholinergic | 17 (89.5) 10 (52.6) 15 (78.9) 0 0 | 16 (80) 8 (40) 14 (70) 1 (5) 1 (5) | 0.661 0.527 0.716 1 1 |
Group A | Group B | p-Value Group A vs. Group B | |
---|---|---|---|
UPDRS | 13.89 ± 4.08 | 15.05 ± 4.41 | 0.331 |
H&Y | 1.95 ± 0.40 | 2.05 ± 0.43 | 0.306 |
Zung | 32.05 ± 7.83 | 34.05 ± 7.63 | 0.367 |
BDI—II | 8.00 ± 4.26 | 7.75 ± 7.05 | 0.296 |
Compass 31 Total Orthostatic intolerance Vasomotor Secretomotor Gastrointestinal Bladder Pupillomotor | 17.26 ± 9.03 1.68 ± 2.52 0.42 ± 1.02 1.74 ± 1.52 7.68 ± 4.41 1.42 ± 1.89 4.32 ± 3.27 | 14.15 ± 8.00 1.80 ± 2.44 0.20 ± 0.89 1.00 ± 1.38 5.80 ± 3.21 1.45 ± 1.39 3.90 ± 3.37 | 0.267 0.860 0.311 0.082 0.119 0.578 0.617 |
MOCA | 27.47 ± 1.81 | 26.30 ± 2.77 | 0.222 |
PAC-QoL Total Physical discomfort Social discomfort Worries Satisfaction | 43.89 ± 18.85 7.58 ± 3.13 6.11 ± 6.03 21.68 ± 10.37 8.53 ± 3.31 | 38.15 ± 13.87 6.20 ± 2.17 4.75 ± 4.85 19.55 ± 7.45 7.65 ± 3.67 | 0.383 0.191 0.472 0.735 0.329 |
NMSS Total Cardiovascular Sleep/fatigue Mood/cognition Perceptual problems/hallucinations Attention/memory Gastrointestinal tract Urinary Sexual function Miscellaneous | 34.32 ± 21.41 1.05 ± 1.61 7.26 ± 6.52 4.11 ± 6.76 0.37 ± 0.83 3.58 ± 2.55 3.79 ± 4.14 8.63 ± 7.30 1.21 ± 1.96 4.37 ± 4.41 | 42.65 ± 36.43 1.25 ± 2.17 7.95 ± 7.28 8.15 ± 14.66 0.75 ± 1.16 5.15 ± 6.47 4.05 ± 4.32 9.35 ± 9.72 1.40 ± 2.09 4.60 ± 4.55 | 0.746 0.889 0.955 0.584 0.287 0.955 0.765 0.855 0.865 0.799 |
CAS | 4.05 ± 3.64 | 2.00 ± 2.10 | 0.066 |
Wexner | 7.79 ± 5.43 | 7.20 ± 4.84 | 0.757 |
Group A | Group B | |||||
---|---|---|---|---|---|---|
T0 | T2 | Z; p | T0 | T2 | Z; p | |
UPDRS | 13.89 ± 4.08 | 12.74 ± 4.57 | −2.201; 0.028 | 15.05 ± 4.41 | 14.35 ± 4.25 | −1.728; 0.084 |
H&Y | 1.95 ± 0.40 | 1.95 ± 0.40 | 0; 1 | 2.05 ± 0.43 | 2.05 ± 0.43 | 0; 1 |
Zung | 32.05 ± 7.83 | 32.42 ± 6.20 | −0.315; 0.753 | 34.05 ± 7.63 | 35.00 ± 7.36 | −0.882; 0.378 |
BDI-II | 8.00 ± 4.26 | 6.79 ± 4.92 | −1.523; 0.128 | 7.75 ± 7.05 | 7.95 ± 7.74 | −0.141; 0.888 |
Compass-31 total | 17.26 ± 9.03 | 15.23 ± 8.18 | −1.114; 0.265 | 14.15 ± 8.00 | 14.35 ± 9.04 | −0.308; 0.758 |
Pac-QoL total | 43.89 ± 18.85 | 41.11 ± 19.17 | −0.935; 0.351 | 38.15 ± 13.87 | 34.90 ± 11.82 | −1.492; 0.136 |
MOCA | 27.47 ± 1.81 | 28.05 ± 1.68 | −1.761; 0.078 | 26.30 ± 2.77 | 25.70 ± 2.98 | −1.847; 0.065 |
NMSS total | 34.32 ± 21.41 | 30.11 ± 19.89 | −2.043; 0.041 | 42.65 ± 36.43 | 39.60 ± 29.03 | −0.628 ± 0.530 |
CAS | 4.05 ± 3.64 | 2.32 ± 2.06 | −1.692; 0.091 | 2.00 ± 2.10 | 1.05 ± 1.28 | −2.612; 0.009 |
Wexner | 7.79 ± 5.43 | 6.37 ± 4.23 | −1.380; 0.168 | 7.20 ± 4.84 | 7.15 ± 5.58 | −0.229; 0.819 |
Group A | Group B | |||||
---|---|---|---|---|---|---|
T0 | T2 | Z; p | T0 | T2 | Z; p | |
NMSS total | 34.32 ± 21.41 | 30.11 ± 19.89 | −2.043; 0.041 | 42.65 ± 36.43 | 39.60 ± 29.03 | −0.628; 0.530 |
Cardiovascular | 1.05 ± 1.61 | 1.21 ± 2.18 | −0.744; 0.457 | 1.25 ± 2.17 | 0.80 ± 1.15 | −1.051; 0.293 |
Sleep/fatigue | 7.26 ± 6.52 | 7.26 ± 6.35 | −0.306; 0.760 | 7.95 ± 7.28 | 6.70 ± 6.67 | −1.298; 0.194 |
Cognition | 4.11 ± 6.76 | 3.11 ± 6.19 | −1.897; 0.058 | 8.15 ± 14.66 | 7.75 ± 11.11 | −0.438; 0.662 |
Hallucinations | 0.37 ± 0.83 | 0.32 ± 0.95 | 0; 1 | 0.75 ± 1.16 | 1.05 ± 3.19 | −0.272; 0.785 |
Attention | 3.58 ± 2.55 | 3.26 ± 2.42 | −0.813; 0.416 | 5.15 ± 6.47 | 5.40 ± 5.44 | −0.519; 0.874 |
Gastrointestinal | 3.79 ± 4.14 | 1.89 ± 2.54 | −2.299; 0.021 | 4.05 ± 4.32 | 3.70 ± 4.23 | −0.975; 0.329 |
Urinary | 8.63 ± 7.30 | 7.84 ± 6.73 | −0.847; 0.397 | 9.35 ± 9.72 | 8.80 ± 8.42 | −0.313; 0.755 |
Sexual | 1.21 ± 1.96 | 0.89 ± 1.94 | −1.604; 0.109 | 1.40 ± 2.09 | 1.15 ± 1.76 | −0.120; 0.905 |
Miscellaneous | 4.37 ± 4.41 | 4.89 ± 5.98 | −0.631; 0.528 | 4.60 ± 4.55 | 4.25 ± 4.12 | −0.580; 0.562 |
Group A | Group B | |||||
---|---|---|---|---|---|---|
T0 | T2 | p | T0 | T2 | p | |
IFN γ | 4.26 ± 2.52 | 1.78 ± 2.46 | <0.001 | 4.68 ± 2.49 | 2.14 ± 1.91 | <0.001 |
IL6 | 1.14 ± 0.70 | 0.79 ± 0.60 | 0.007 | 0.92 ± 0.34 | 0.72 ± 0.57 | 0.06 |
TNF α | 3.73 ± 1.62 | 4.38 ± 2.71 | 0.11 | 3.96 ± 1.72 | 4.08 ± 1.47 | 0.44 |
TGFβ | 37.48 ± 11.1 | 42.35 ± 16.2 | 0.18 | 36.31 ± 11.2 | 35.3 ± 13.85 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magistrelli, L.; Contaldi, E.; Visciglia, A.; Deusebio, G.; Pane, M.; Amoruso, A. The Impact of Probiotics on Clinical Symptoms and Peripheral Cytokines Levels in Parkinson’s Disease: Preliminary In Vivo Data. Brain Sci. 2024, 14, 1147. https://doi.org/10.3390/brainsci14111147
Magistrelli L, Contaldi E, Visciglia A, Deusebio G, Pane M, Amoruso A. The Impact of Probiotics on Clinical Symptoms and Peripheral Cytokines Levels in Parkinson’s Disease: Preliminary In Vivo Data. Brain Sciences. 2024; 14(11):1147. https://doi.org/10.3390/brainsci14111147
Chicago/Turabian StyleMagistrelli, Luca, Elena Contaldi, Annalisa Visciglia, Giovanni Deusebio, Marco Pane, and Angela Amoruso. 2024. "The Impact of Probiotics on Clinical Symptoms and Peripheral Cytokines Levels in Parkinson’s Disease: Preliminary In Vivo Data" Brain Sciences 14, no. 11: 1147. https://doi.org/10.3390/brainsci14111147
APA StyleMagistrelli, L., Contaldi, E., Visciglia, A., Deusebio, G., Pane, M., & Amoruso, A. (2024). The Impact of Probiotics on Clinical Symptoms and Peripheral Cytokines Levels in Parkinson’s Disease: Preliminary In Vivo Data. Brain Sciences, 14(11), 1147. https://doi.org/10.3390/brainsci14111147