Effect of the COVID-19 Pandemic on Resting-State Brain Activity in Individuals with Tinnitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design
2.3. Audiological Evaluation
2.4. Quantitative EEG Measurements
2.5. Tinnitus Handicap Inventory
2.6. Statistical Analysis
3. Results
3.1. Hearing Thresholds
3.2. Tinnitus Characteristics
3.3. Tinnitus Severity
3.4. qEEG
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haider, H.F.; Bojić, T.; Ribeiro, S.F.; Paço, J.; Hall, D.A.; Szczepek, A.J. Pathophysiology of Subjective Tinnitus: Triggers and Maintenance. Front. Neurosci. 2018, 12, 866. [Google Scholar] [CrossRef] [PubMed]
- Jedrzejczak, W.W.; Pilka, E.; Ganc, M.; Kochanek, K.; Skarzynski, H. Ultra-High Frequency Distortion Product Otoacoustic Emissions for Detection of Hearing Loss and Tinnitus. Int. J. Environ. Res. Public Health 2022, 19, 2123. [Google Scholar] [CrossRef]
- Malouff, J.M.; Schutte, N.S.; Zucker, L.A. Tinnitus-related distress: A review of recent findings. Curr. Psychiatry Rep. 2011, 13, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Boecking, B.; Rose, M.; Brueggemann, P.; Mazurek, B. Two birds with one stone. Addressing depressive symptoms, emotional tension and worry improves tinnitus-related distress and affective pain perceptions in patients with chronic tinnitus. PLoS ONE 2021, 16, e0246747. [Google Scholar] [CrossRef] [PubMed]
- Millroth, P.; Frey, R. Fear and anxiety in the face of COVID-19: Negative dispositions towards risk and uncertainty as vulnerability factors. J. Anxiety Disord. 2021, 83, 102454. [Google Scholar] [CrossRef]
- Beukes, E.; Ulep, A.J.; Eubank, T.; Manchaiah, V. The Impact of COVID-19 and the Pandemic on Tinnitus: A Systematic Review. J. Clin. Med. 2021, 10, 2763. [Google Scholar] [CrossRef]
- Jafari, Z.; Kolb, B.E.; Mohajerani, M.H. Hearing Loss, Tinnitus, and Dizziness in COVID-19: A Systematic Review and Meta-Analysis. Can. J. Neurol. Sci. 2022, 49, 184–195. [Google Scholar] [CrossRef]
- Peretti-Watel, P.; Alleaume, C.; Léger, D.; Beck, F.; Verger, P.; COCONEL Group. Anxiety, depression and sleep problems: A second wave of COVID-19. Gen. Psychiatry 2020, 33, e100299. [Google Scholar] [CrossRef]
- Liu, C.H.; Stevens, C.; Conrad, R.C.; Hahm, H.C. Evidence for elevated psychiatric distress, poor sleep, and quality of life concerns during the COVID-19 pandemic among U.S. young adults with suspected and reported psychiatric diagnoses. Psychiatry Res. 2020, 292, 113345. [Google Scholar] [CrossRef]
- Jackson, R.; Vijendren, A.; Phillips, J. Objective Measures of Tinnitus: A Systematic Review. Otol. Neurotol. 2019, 40, 154–163. [Google Scholar] [CrossRef]
- Adamchic, I.; Toth, T.; Hauptmann, C.; Walger, M.; Langguth, B.; Klingmann, I.; Tass, P.A. Acute effects and after-effects of acoustic coordinated reset neuromodulation in patients with chronic subjective tinnitus. Neuroimage Clin. 2017, 15, 541–558. [Google Scholar] [CrossRef] [PubMed]
- Milner, R.; Lewandowska, M.; Ganc, M.; Nikadon, J.; Niedziałek, I.; Jędrzejczak, W.W.; Skarżyński, H. Electrophysiological correlates of focused attention on low- and high-distressed tinnitus. PLoS ONE 2020, 15, e0236521. [Google Scholar] [CrossRef] [PubMed]
- Weisz, N.; Moratti, S.; Meinzer, M.; Dohrmann, K.; Elbert, T. Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Med. 2005, 2, e153. [Google Scholar] [CrossRef] [PubMed]
- Schlee, W.; Hartmann, T.; Langguth, B.; Weisz, N. Abnormal resting-state cortical coupling in chronic tinnitus. BMC Neurosci. 2009, 10, 11. [Google Scholar] [CrossRef]
- Campanella, S.; Arikan, K.; Babiloni, C.; Balconi, M.; Bertollo, M.; Betti, V.; Bianchi, L.; Brunovsky, M.; Buttinelli, C.; Comani, S.; et al. Special Report on the Impact of the COVID-19 Pandemic on Clinical EEG and Research and Consensus Recommendations for the Safe Use of EEG. Clin. EEG Neurosci. 2021, 52, 3–28. [Google Scholar] [CrossRef]
- Freund, B.E.; Feyissa, A.M. EEG as an indispensable tool during and after the COVID-19 pandemic: A review of tribulations and successes. Front. Neurol. 2022, 13, 1087969. [Google Scholar] [CrossRef]
- Weber, J.; Klein, T.; Abeln, V. Shifts in broadband power and alpha peak frequency observed during long-term isolation. Sci. Rep. 2020, 10, 17987. [Google Scholar] [CrossRef]
- Vargas, I.; Howie, E.K.; Muench, A.; Perlis, M.L. Measuring the Effects of Social Isolation and Dissatisfaction on Depressive Symptoms during the COVID-19 Pandemic: The Moderating Role of Sleep and Physical Activity. Brain Sci. 2021, 11, 1449. [Google Scholar] [CrossRef]
- Raj-Koziak, D.; Gos, E.; Kutyba, J.; Ganc, M.; Jedrzejczak, W.W.; Skarzynski, P.H.; Skarzynski, H. Effectiveness of transcutaneous vagus nerve stimulation for the treatment of tinnitus: An interventional prospective controlled study. Int. J. Audiol. 2023, 1–10. [Google Scholar] [CrossRef]
- Kopańska, M.; Ochojska, D.; Muchacka, R.; Dejnowicz-Velitchkov, A.; Banaś-Ząbczyk, A.; Szczygielski, J. Comparison of QEEG Findings before and after Onset of Post-COVID-19 Brain Fog Symptoms. Sensors 2022, 22, 6606. [Google Scholar] [CrossRef] [PubMed]
- Newman, C.W.; Jacobson, G.P.; Spitzer, J.B. Development of the Tinnitus Handicap Inventory. Arch. Otolaryngol. Head Neck Surg. 1996, 122, 143–148. [Google Scholar] [CrossRef]
- Skarzynski, P.H.; Raj-Koziak, D.; J Rajchel, J.; Pilka, A.; Wlodarczyk, A.W.; Skarzynski, H. Adaptation of the Tinnitus Handicap Inventory into Polish and its testing on a clinical population of tinnitus sufferers. Int. J. Audiol. 2017, 56, 711–715. [Google Scholar] [CrossRef]
- Hu, J.; Xu, J.; Streelman, M.; Xu, H.; Guthrie, O. The Correlation of the Tinnitus Handicap Inventory with Depression and Anxiety in Veterans with Tinnitus. Int. J. Otolaryngol. 2015, 2015, 689375. [Google Scholar] [CrossRef] [PubMed]
- Moazami-Goudarzi, M.; Michels, L.; Weisz, N.; Jeanmonod, D. Temporo-insular enhancement of EEG low and high frequencies in patients with chronic tinnitus. QEEG study of chronic tinnitus patients. BMC Neurosci. 2010, 11, 40. [Google Scholar] [CrossRef] [PubMed]
- Pawlak-Osińska, K.; Kaźmierczak, W.; Kaźmierczak, H.; Wierzchowska, M.; Matuszewska, I. Cortical activity in tinnitus patients and its modification by phonostimulation. Clinics 2013, 68, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.; Luethi, M.S.; Neff, P.; Langer, N.; Büchi, S. Disentangling tinnitus distress and tinnitus presence by means of EEG power analysis. Neural Plast. 2014, 2014, 468546. [Google Scholar] [CrossRef] [PubMed]
- Mohsen, S.; Mahmoudian, S.; Talbian, S.; Pourbakht, A. Correlation Analysis of the Tinnitus Handicap Inventory and Distress Network in Chronic Tinnitus: An EEG Study. Basic. Clin. Neurosci. 2019, 10, 499–514. [Google Scholar] [CrossRef]
- Vanhollebeke, G.; De Smet, S.; De Raedt, R.; Baeken, C.; van Mierlo, P.; Vanderhasselt, M.A. The neural correlates of psychosocial stress: A systematic review and meta-analysis of spectral analysis EEG studies. Neurobiol. Stress. 2022, 18, 100452. [Google Scholar] [CrossRef] [PubMed]
- Kopańska, M.; Banaś-Ząbczyk, A.; Łagowska, A.; Kuduk, B.; Szczygielski, J. Changes in EEG Recordings in COVID-19 Patients as a Basis for More Accurate QEEG Diagnostics and EEG Neurofeedback Therapy: A Systematic Review. J. Clin. Med. 2021, 10, 1300. [Google Scholar] [CrossRef] [PubMed]
- Kubota, T.; Gajera, P.K.; Kuroda, N. Meta-analysis of EEG findings in patients with COVID-19. Epilepsy Behav. 2021, 115, 107682. [Google Scholar] [CrossRef]
- Pastor, J.; Vega-Zelaya, L.; Martín Abad, E. Specific EEG Encephalopathy Pattern in SARS-CoV-2 Patients. J. Clin. Med. 2020, 9, 1545. [Google Scholar] [CrossRef]
- Hong, E.S.; Kim, H.S.; Hong, S.K.; Pantazis, D.; Min, B.K. Deep learning-based electroencephalic diagnosis of tinnitus symptom. Front. Hum. Neurosci. 2023, 17, 1126938. [Google Scholar] [CrossRef]
- Weiler, E.W.; Brill, K.; Tachiki, K.H.; Wiegand, R. Electroencephalography correlates in tinnitus. Int. Tinnitus J. 2000, 6, 21–24. [Google Scholar]
- Weiler, E.W.; Brill, K.; Tachiki, K.H. Quantitative electroencephalography and tinnitus: A case study. Int. Tinnitus J. 2000, 6, 124–126. [Google Scholar]
- Alonso, J.F.; Romero, S.; Ballester, M.R.; Antonijoan, R.M.; Mañanas, M.A. Stress assessment based on EEG univariate features and functional connectivity measures. Physiol. Meas. 2015, 36, 1351–1365. [Google Scholar] [CrossRef]
- Patil, J.D.; Alrashid, M.A.; Eltabbakh, A.; Fredericks, S. The association between stress, emotional states, and tinnitus: A mini-review. Front. Aging Neurosci. 2023, 15, 1131979. [Google Scholar] [CrossRef] [PubMed]
- Dorobisz, K.; Pazdro-Zastawny, K.; Misiak, P.; Kruk-Krzemień, A.; Zatoński, T. Sensorineural Hearing Loss in Patients with Long-COVID-19: Objective and Behavioral Audiometric Findings. Infect. Drug Resist. 2023, 16, 1931–1939. [Google Scholar] [CrossRef] [PubMed]
- Lovato, A.; Frosolini, A.; Marioni, G.; de Filippis, C. Higher incidence of Ménière’s disease during COVID-19 pandemic: A preliminary report. Acta Otolaryngol. 2021, 141, 921–924. [Google Scholar] [CrossRef] [PubMed]
- Fritz, C.G.; Choi, J.S.; Conway, R.M.; Casale, G.G.; Bojrab, D.I., 2nd; Babu, S.C. Characterizing the most Popular Tinnitus Inquiries: Is Tinnitus Incidence on the Rise Since COVID-19? Otol. Neurotol. 2023, 44, e435–e442. [Google Scholar] [CrossRef] [PubMed]
- Nocini, R.; Lippi, G.; Mattiuzzi, C. Impact of COVID-19 pandemic on the worldwide burden of tinnitus. Eur. Arch. Otorhinolaryngol. 2023, 280, 945–946. [Google Scholar] [CrossRef] [PubMed]
- Jarach, C.M.; Lugo, A.; Stival, C.; Bosetti, C.; Amerio, A.; Cavalieri d’Oro, L.; Iacoviello, L.; Odone, A.; Stuckler, D.; Zucchi, A.; et al. The Impact of COVID-19 Confinement on Tinnitus and Hearing Loss in Older Adults: Data from the LOST in Lombardia Study. Front. Neurol. 2022, 13, 838291. [Google Scholar] [CrossRef] [PubMed]
- Beukes, E.W.; Baguley, D.M.; Jacquemin, L.; Lourenco, M.P.C.G.; Allen, P.M.; Onozuka, J.; Stockdale, D.; Kaldo, V.; Andersson, G.; Manchaiah, V. Changes in Tinnitus Experiences during the COVID-19 Pandemic. Front. Public Health 2020, 8, 592878. [Google Scholar] [CrossRef] [PubMed]
- Schlee, W.; Hølleland, S.; Bulla, J.; Simoes, J.; Neff, P.; Schoisswohl, S.; Woelflick, S.; Schecklmann, M.; Schiller, A.; Staudinger, S.; et al. The Effect of Environmental Stressors on Tinnitus: A Prospective Longitudinal Study on the Impact of the COVID-19 Pandemic. J. Clin. Med. 2020, 9, 2756. [Google Scholar] [CrossRef] [PubMed]
- Anzivino, R.; Sciancalepore, P.I.; Petrone, P.; D’Elia, A.; Petrone, D.; Quaranta, N. Tinnitus revival during COVID-19 lockdown: How to deal with it? Eur. Arch. Otorhinolaryngol. 2021, 278, 295–296. [Google Scholar] [CrossRef]
- Erinc, M.; Mutlu, A.; Celik, S.; Kalcioglu, M.T.; Szczepek, A.J. Long-Term Effects of COVID-19 and the Pandemic on Tinnitus Patients. Front. Neurol. 2022, 13, 921173. [Google Scholar] [CrossRef]
- Fioretti, A.; Natalini, E.; Triggianese, G.; Eibenstein, R.; Angelone, A.M.; Lauriello, M.; Eibenstein, A. Impact of the COVID-19 Lockdown on Patients with Chronic Tinnitus-Preliminary Results. Audiol. Res. 2022, 12, 327–336. [Google Scholar] [CrossRef]
Band | Group | Eyes Open | Eyes Closed | |||
---|---|---|---|---|---|---|
M (SD) | Study vs. Control (p-Value) | M (SD) | Study vs. Control (p-Value) | Open vs. Closed (p-Value) | ||
Alpha 2 | Study group | 0.70 (0.48) | n.s. | 1.11 (1.07) | 0.048 | n.s. |
Control group | 0.94 (1.55) | 2.09 (2.13) | <0.001 | |||
Theta | Study group | 0.94 (0.63) | n.s. | 0.84 (0.65) | n.s. | n.s. |
Control group | 0.79 (0.88) | 1.16 (0.73) | 0.010 | |||
Low beta | Study group | 0.60 (0.41) | n.s. | 0.48 (0.28) | 0.030 | n.s. |
Control group | 0.49 (0.46) | 0.73 (0.49) | 0.008 | |||
Middle beta | Study group | 0.48 (0.37) | n.s. | 0.32 (0.19) | 0.015 | 0.028 |
Control group | 0.39 (0.33) | 0.52 (0.36) | n.s. | |||
Beta 2 | Study group | 0.88 (0.92) | n.s. | 0.51 (0.28) | 0.022 | 0.015 |
Control group | 0.73 (0.62) | 0.90 (0.75) | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jedrzejczak, W.W.; Gos, E.; Ganc, M.; Raj-Koziak, D.; Skarzynski, P.H.; Skarzynski, H. Effect of the COVID-19 Pandemic on Resting-State Brain Activity in Individuals with Tinnitus. Brain Sci. 2024, 14, 174. https://doi.org/10.3390/brainsci14020174
Jedrzejczak WW, Gos E, Ganc M, Raj-Koziak D, Skarzynski PH, Skarzynski H. Effect of the COVID-19 Pandemic on Resting-State Brain Activity in Individuals with Tinnitus. Brain Sciences. 2024; 14(2):174. https://doi.org/10.3390/brainsci14020174
Chicago/Turabian StyleJedrzejczak, W. Wiktor, Elżbieta Gos, Malgorzata Ganc, Danuta Raj-Koziak, Piotr H. Skarzynski, and Henryk Skarzynski. 2024. "Effect of the COVID-19 Pandemic on Resting-State Brain Activity in Individuals with Tinnitus" Brain Sciences 14, no. 2: 174. https://doi.org/10.3390/brainsci14020174