Representation of Linguistic Information Determines Its Susceptibility to Memory Interference
Abstract
:1. Introduction
2. Results and Discussion
2.1. Primary Experiment: Effect of Processing Demands of Distracting Task on Memory Accuracy for Simplified Chinese Characters
2.1.1. Recognition Memory Task Accuracy
Memory Condition | |||
---|---|---|---|
Full Attention | DA Phonological | DA Visuo-spatial | |
Chinese-English | 0.93 (0.12) | 0.80 (0.21) | 0.70 (0.20) |
English-only | 0.68 (0.19) | 0.49 (0.21) | 0.42 (0.28) |
English-only (from [23]) | 0.85 (0.15) | 0.58 (0.18) | 0.63 (0.22) |
2.1.2. Distracting Task Performance
Group | Phonological Task | Visuo-spatial Task | ||
---|---|---|---|---|
FA | DA | FA | DA | |
Chinese-English | 0.94 (0.06) | 0.98 (0.07) | 0.96 (0.06) | 0.92 (0.12) |
English-only | 1.00 (0.01) | 0.98 (0.05) | 0.89 (0.15) | 0.88 (0.15) |
English-only (from [23]) | 0.96 (0.05) | 0.88 (0.11) | 0.99 (0.02) | 0.93 (0.07) |
2.2. Secondary Analysis (Comparison with Fernandes and Guild [23]): Effect of Learned Mode of Representation on Memory Interference Patterns under Distraction
2.2.1. Recognition Memory Task Accuracy
2.2.2. Distracting Task Performance
2.3. Discussion
3. Experimental Section
3.1. Primary Experiment: Effect of Processing Demands of Distracting Task on Memory Accuracy for Simplified Chinese Characters
3.1.1. Participants
3.1.2. Materials
3.1.3. Procedure
3.2. Secondary Analysis (Comparison with Fernandes and Guild [23]): Effect of Learned Mode of Representation on Memory Interference Patterns under Distraction
3.2.1. Participants
3.2.2. Materials
3.2.3. Procedure
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Fernandes, M.A.; Moscovitch, M. Divided attention and memory: Evidence of substantial interference effects at retrieval and encoding. J. Exp. Psychol. Gen. 2000, 129, 155–176. [Google Scholar] [CrossRef]
- Fernandes, M.A.; Moscovitch, M. Factors medulating the effect of divided attention during retrieval of words. Mem. Cogn. 2002, 30, 731–744. [Google Scholar] [CrossRef]
- Fernandes, M.A.; Moscovitch, M. Interference effects from divided attention during retrieval in younger and older adults. Psychol. Aging 2003, 18, 219–230. [Google Scholar] [CrossRef]
- Fernandes, M.A.; Davidson, P.S.R.; Glisky, E.L.; Moscovitch, M. Contribution of frontal and temporal lobe function to memory interference from divided attention at retrieval. Neuropsychology 2004, 18, 514–525. [Google Scholar] [CrossRef]
- Fernandes, M.A.; Moscovitch, M.; Ziegler, M.; Grady, C. Brain regions associated with successful and unsuccessful retrieval of verbal episodic memory as revealed by divided attention. Neuropsychologia 2005, 43, 1115–1127. [Google Scholar] [CrossRef]
- Fernandes, M.A.; Pacurar, A.; Moscovitch, M.; Grady, C. Neural correlates of auditory recognition under full and divided attention in younger and older adults. Neuropsychologia 2006, 44, 2452–2464. [Google Scholar] [CrossRef]
- Fernandes, M.A.; Grady, C.L. Age differences in susceptibility to memory interference during recall of categorizable but not unrelated word lists. Exp. Aging Res. 2008, 34, 297–322. [Google Scholar] [CrossRef]
- Skinner, E.I.; Fernandes, M.A.; Grady, C.L. Memory networks supporting retrieval effort and retrieval success under conditions of full and divided attention. Exp. Psychol. 2009, 56, 386–396. [Google Scholar] [CrossRef]
- Chen, M.J.; Yuen, J.C. Effects of pinyin and script type on verbal processing: Comparisons of China, Taiwan, and Hong Kong experience. Int. J. Behav. Dev. 1991, 14, 429–448. [Google Scholar] [CrossRef]
- Perfetti, C.A.; Nelson, J.; Liu, Y.; Fiez, J.; Tan, L.-H. The Neural Bases of Reading: Universals and Writing System Variations. In The Neural Basis of Reading; Cornelissen, P., Kringelbach, M., Hansen, P., Eds.; Oxford University Press: Oxford, UK, 2010; pp. 147–172. [Google Scholar]
- Qian, G.; Reinking, D.; Yang, R. The effects of character complexity on recognizing Chinese characters. Contemp. Educ. Psych. 1994, 19, 155–166. [Google Scholar] [CrossRef]
- Tan, L.H.; Liu, H.-L.; Perfetti, C.A.; Spinks, J.A.; Fox, P.T.; Gao, J.-H. The neural system underlying Chinese logograph reading. Neuroimage 2001, 13, 836–846. [Google Scholar]
- Christensen, C.A.; Bowey, J.A. The efficacy of orthographic rime, grapheme-phoneme correspondence, and implicit phincs approaches to teaching decoding skills. Sci. Stud. Read. 2005, 9, 327–349. [Google Scholar] [CrossRef]
- Feldman, L.B.; Siok, W.W.T. Semantic Radicals in Phonetic Compounds: Implications for Visual Character Recognition in Chinese. In Reading Chinese Script; Wang, J., Inhoff, A., Chen, H., Eds.; Erlbaum: London, UK, 1999; pp. 19–35. [Google Scholar]
- Zhou, Y.G. Xiandai hanzihong shengpangde biaoyin gongneng wenti. (in Chinese). Zhongguo Yuwen 1978, 146, 172–177. [Google Scholar]
- Hsiao, J.H.; Shillcock, R. Analysis of a Chinese phonetic compound database: Implications for orthographic processing. J. Psycholinguist. Res. 2006, 35, 405–426. [Google Scholar] [CrossRef]
- Tan, L.H.; Perfetti, C.A. Visual Chinese character recognition: Does phonological information mediate access to meaning? J. Mem. Lang. 1997, 37, 41–57. [Google Scholar] [CrossRef]
- Zhang, J.X.; Xiao, Z.; Weng, X. Neural evidence for direct meaning access from orthography in Chinese word reading. Int. J. Psychophysiol. 2012, 84, 240–245. [Google Scholar] [CrossRef]
- Huang, H.S.; Hanley, J.R. Phonological awareness and visual skills in learning to read Chinese and English. Cognition 1995, 54, 73–98. [Google Scholar] [CrossRef]
- Tan, L.H.; Laird, A.R.; Li, K.; Fox, P.T. Neuroanatomical correlates of phonological processing of Chinese characters and alphabetic words: A meta-analysis. Hum. Brain Mapp. 2005, 25, 83–91. [Google Scholar] [CrossRef]
- Tan, L.H.; Spinks, J.A.; Eden, G.; Perfetti, C.A.; Siok, W.T. Reading depends on writing, in Chinese. Proc. Natl. Acad. Sci. USA 2005, 102, 8781–8785. [Google Scholar] [CrossRef]
- Allison, T.; McCarthy, G.; Nobre, A.; Puce, A.; Belger, A. Human extrastriate visual cortex and the perception of faces, words, numbers, and colors. Cereb. Cortex 1994, 4, 544–554. [Google Scholar] [CrossRef]
- Fernandes, M.A.; Guild, E. Process-specific interference effects during recognition of spatial patterns and words. Can. J. Exp. Psychol. 2009, 63, 24–32. [Google Scholar] [CrossRef]
- Adams, M.J. Beginning to Read: Thinking and Learning about Print; MIT Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Jared, D.; Levy, B.A.; Rayner, K. The role of phonology in the activation of word meanings during reading: Evidence from proofreading and eye movements. J. Exp. Psychol. Gen. 1999, 128, 219–264. [Google Scholar] [CrossRef]
- Lee, Y.-A.; Binder, K.S.; Kim, J.-O.; Pollatsek, A.; Rayner, K. Activation of phonological codes during eye fixations in reading. J. Exp. Psychol. Hum. 1999, 25, 948–964. [Google Scholar] [CrossRef]
- Lesch, M.F.; Pollatsek, A. Evidence for the use of assembled phonology in accessing the meaning of printed words. J. Exp. Psychol. Learn. 1998, 24, 573–592. [Google Scholar] [CrossRef]
- Tan, L.H.; Spinks, J.A.; Gao, J.-H.; Liu, A.; Perfetti, C.A.; Xiong, J.; Pu, Y.; Liu, Y.; Stofer, K.A.; Fox, P.T. Brain activation in the processing of Chinese characters and words: A functional MRI study. Hum. Brain Mapp. 2000, 10, 16–27. [Google Scholar] [CrossRef]
- Courtney, S.M.; Petit, L.; Maisog, J.M.; Ungerleider, L.G.; Haxby, J.V. An area specialized for spatial working memory in human frontal cortex. Science 1998, 279, 1347–1351. [Google Scholar] [CrossRef]
- Haxby, J.V.; Ungerleider, L.G.; Horwitz, B.; Rapoport, S.I.; Grady, C.L. Hemispheric differences in neural systems for face working memory: A PET-rCBF study. Hum. Brain Mapp. 1995, 3, 68–82. [Google Scholar] [CrossRef]
- Dong, Y.; Nakamura, K.; Okada, T.; Hanakawa, T.; Fukuyama, H.; Mazziotta, J.C.; Shibasaki, H. Neural mechanisms underlying the processing of Chinese words: An fMRI study. Neurosci. Res. 2005, 52, 139–145. [Google Scholar] [CrossRef]
- Sun, H.; Zimmer, H.; Fu, X. The influence of expertise and of physical complexity on visual short-term memory consolidation. Q. J. Exp. Psychol. 2011, 64, 707–729. [Google Scholar] [CrossRef]
- Klingberg, T. Concurrent performance of two working memory tasks: Potential mechanisms of interference. Cereb. Cortex 1998, 8, 593–601. [Google Scholar] [CrossRef]
- Baddeley, A.D.; Thomson, N.; Buchanan, M. Word length and the structure of short-term memory. J. Verb. Learn. Verb. Behav. 1975, 14, 575–589. [Google Scholar] [CrossRef]
- Price, C.J. A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage 2012, 62, 816–847. [Google Scholar] [CrossRef]
- Price, C.J.; Devlin, J.T. The interactive account of ventral occipitotemporal contributions to reading. Trends Cogn. Sci. 2011, 15, 246–253. [Google Scholar] [CrossRef]
- Woodhead, Z.V.J.; Brownsett, S.L.E.; Dhanjal, N.S.; Beckmann, C.; Wise, R.J.S. The visual word form system in context. J. Neurosci. 2012, 31, 193–199. [Google Scholar]
- Van Orden, G.C.; Pennington, B.F.; Stone, G.O. Word identification in reading and the promise of subsymbolic psycholinguistics. Psychol. Rev. 1990, 97, 488–522. [Google Scholar] [CrossRef]
- Harm, M.W.; Seidenberg, M.S. Computing the meanings of words in reading: Cooperative division of labor between visual and phonological processes. Psychol. Rev. 2004, 111, 662–720. [Google Scholar] [CrossRef]
- Newman, R.L.; Jared, D.; Haigh, C.A. Does phonology play a role when skilled readers read high-frequency words? Evidence from ERPs. Lang. Cogn. Proc. 2012, 27, 1361–1384. [Google Scholar] [CrossRef]
- Moscovitch, M.; Umiltà, C. Modularity and Neuropsychology: Modules and Central Processes in Attention and Memory. In Modular Deficits in Alzheimer’s Disease; Schwartz, M.F., Ed.; MIT Press: Cambridge, MA, USA, 1990; pp. 1–59. [Google Scholar]
- Ho, H.H. Hong Kong, Mainland China & Taiwan: Chinese Character Frequency—A Trans-Regional, Diachronic Survey. 1998. Available online: http://humanum.arts.cuhk.edu.hk/Lexis/chifreq/ (accessed on 4 July 2009).
- Francis, W.N.; Kucere, H. Frequency Analysis of English Usage: Lexicon and Grammar; Houghton Mifflin: Boston, MA, USA, 1982. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Fernandes, M.A.; Wammes, J.D.; Hsiao, J.H. Representation of Linguistic Information Determines Its Susceptibility to Memory Interference. Brain Sci. 2013, 3, 1244-1260. https://doi.org/10.3390/brainsci3031244
Fernandes MA, Wammes JD, Hsiao JH. Representation of Linguistic Information Determines Its Susceptibility to Memory Interference. Brain Sciences. 2013; 3(3):1244-1260. https://doi.org/10.3390/brainsci3031244
Chicago/Turabian StyleFernandes, Myra A., Jeffrey D. Wammes, and Janet H. Hsiao. 2013. "Representation of Linguistic Information Determines Its Susceptibility to Memory Interference" Brain Sciences 3, no. 3: 1244-1260. https://doi.org/10.3390/brainsci3031244
APA StyleFernandes, M. A., Wammes, J. D., & Hsiao, J. H. (2013). Representation of Linguistic Information Determines Its Susceptibility to Memory Interference. Brain Sciences, 3(3), 1244-1260. https://doi.org/10.3390/brainsci3031244