Leisure Activities and Change in Cognitive Stability: A Multivariate Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.2.1. Leisure Activity Questionnaire
2.2.2. Cognitive Tasks
2.3. Data Preparation
2.4. Statistical Analyses
3. Results
3.1. Mean Performance
3.2. Intraindividual Variability
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix
Baseline (N = 66) | 4th wave (N = 66) | 4th wave (N = 96) | |
---|---|---|---|
Physical activities | 5.15 * | 4.67 * | 5.01 |
Gymnastic | 1.52 | 1.83 | 1.74 |
Dancing | 0.38 | 0.35 | 0.30 |
Cycling | 1.06 | 0.71 | 0.79 |
Swimming | 1.18 | 1.15 | 1.06 |
Hiking/skiing | 1.02 * | 0.62 * | 0.63 |
Cultural activities | 4.39 | 4.42 | 4.54 |
Cine_theater_concert | 1.92 | 1.86 | 1.92 |
Exhibition_museum | 1.15 | 1.21 | 1.30 |
Conference_manifestations | 1.32 | 1.35 | 1.41 |
Social activities | 5.32 | 5.91 | 6.11 |
Social group_volunteerism | 1.71 | 1.91 | 1.87 |
Family_friends | 2.74 | 2.86 | 2.89 |
Playing cards | 0.88 | 1.14 | 0.97 |
Artistic activities | 0.97 | 1.50 | 1.70 |
Music_singing_acting | 0.76 | 1.08 | 1.21 |
Painting | 0.21 | 0.42 | 0.40 |
Intellectual activities | 2.29 | 2.29 | 2.84 |
Chess | 0.06 | 0.09 | 0.09 |
Crosswords_puzzles | 2.23 | 2.20 | 2.39 |
References
- Salthouse, T.A. What and when of cognitive aging. Curr. Dir. Psychol. Sci. 2004, 13, 140–144. [Google Scholar] [CrossRef]
- de Ribaupierre, A.; Borella, E. Differential aging of cognition. In Encyclopedia of Adulthood and Aging; Whitbourne, S.K., Ed.; Wiley-Blackwell: Oxford, UK, 2016. [Google Scholar]
- Hultsch, D.F.; Strauss, E.; Hunter, M.; MacDonald, S.W. Intraindividual variability, cognition, and aging. In The Handbook of Aging and Cognition, 3rd ed.; Salthouse, T.A., Craik, F.I.M., Eds.; Psychology Press: New York, NY, USA, 2008; pp. 491–556. [Google Scholar]
- MacDonald, S.W.; Li, S.C.; Backman, L. Neural underpinnings of within-person variability in cognitive functioning. Psychol. Aging 2009, 24, 792–808. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, S.W.; Nyberg, L.; Backman, L. Intra-individual variability in behavior: Links to brain structure, neurotransmission and neuronal activity. Trends Neurosci. 2006, 29, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Christensen, H.; Dear, K.B.G.; Anstey, K.J.; Parslow, R.A.; Sachdev, P.; Jorm, A.F. Within-occasion intraindividual variability and preclinical diagnostic status: Is intraindividual variability an indicator of mild cognitive impairment. Neuropsychology 2005, 19, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Lövdén, M.; Li, S.-C.; Shing, Y.L.; Lindenberger, U. Within-person trial-to-trial variability precedes and predicts cognitive decline in old and very old age: Longitudinal data from the Berlin Aging Study. Neuropsychologia 2007, 45, 2827–2838. [Google Scholar] [CrossRef] [PubMed]
- Burton, C.L.; Strauss, E.; Hultsch, D.F.; Moll, A.; Hunter, M.A. Intraindividual variability as a marker of neurological dysfunction: A comparison of Alzheimer‘s disease and Parkinson‘s disease. J. Clin. Exp. Neuropsychol. 2006, 28, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Duchek, J.M.; Balota, D.A.; Tse, C.; Holtzman, D.; Fagan, A.M.; Goate, A.M. The utility of intraindividual variability in selective attention tasks as an early marker for Alzheimer’s disease. Neuropsychology 2009, 23, 746. [Google Scholar] [CrossRef] [PubMed]
- de Frias, C.M.; Dixon, R.A.; Fisher, N.; Camicioli, R. Intraindividual variability in neurocognitive speed: A comparison of Parkinson‘s disease and normal older adults. Neuropsychologia 2007, 45, 2499–2507. [Google Scholar] [CrossRef] [PubMed]
- Hultsch, D.F.; MacDonald, S.W.; Hunter, M.A.; Levy-Bencheton, J.; Strauss, E. Intraindividual variability in cognitive performance in older adults: Comparison of adults with mild dementia, adults with arthritis, and healthy adults. Neuropsychology 2000, 14, 588–598. [Google Scholar] [CrossRef] [PubMed]
- Bielak, A.A.; Hultsch, D.F.; Strauss, E.; Macdonald, S.W.; Hunter, M.A. Intraindividual variability in reaction time predicts cognitive outcomes 5 years later. Neuropsychology 2010, 24, 731–741. [Google Scholar] [CrossRef] [PubMed]
- Bielak, A.A.; Hultsch, D.F.; Strauss, E.; MacDonald, S.W.; Hunter, M.A. Intraindividual variability is related to cognitive change in older adults: Evidence for within-person coupling. Psychol. Aging 2013, 25, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Mella, N.; Fagot, D.; Lecerf, T.; De Ribaupierre, A. Working memory and intraindividual variability in processing speed: A lifespan developmental and individual-differences study. Mem. Cognit. 2015, 43, 340–356. [Google Scholar] [CrossRef] [PubMed]
- Cherbuin, N.; Sachdev, P.; Anstey, K.J. Neuropsychological predictors of transition from healthy cognitive aging to mild cognitive impairment: The PATH Through Life Study. Am. J. Geriatr. Psychiatry 2010, 18, 723–733. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, S.W.; Hultsch, D.F.; Dixon, R.A. Predicting impending death: Inconsistency in speed is a selective and early marker. Psychol. Aging 2008, 23, 595. [Google Scholar] [CrossRef] [PubMed]
- Hultsch, D.F.; MacDonald, S. Intraindividual variability in performance as a theoretical window onto cognitive aging. In New Frontiers in Cognitive Aging; Dixon, R.A., Bäckman, L., Nilsson, L.-G., Eds.; Oxford University Press: Oxford, UK, 2004; pp. 65–88. [Google Scholar]
- Bherer, L.; Erickson, K.I.; Liu-Ambrose, T. A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. J. Aging Res. 2013. [Google Scholar] [CrossRef] [PubMed]
- Hertzog, C.; Kramer, A.F.; Wilson, R.S.; Lindenberger, U. Enrichment effects on adult cognitive development can the functional capacity of older adults be preserved and enhanced? Psychol. Sci. Public Interest 2008, 9, 1–65. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.F.; Erickson, K.I.; Colcombe, S.J. Exercise, cognition, and the aging brain. J. Appl. Physiol. 2006, 101, 1237–1242. [Google Scholar] [CrossRef] [PubMed]
- Noice, T.; Noice, H.; Kramer, A.F. Participatory arts for older adults: A review of benefits and challenges. Gerontologist 2014, 54, 741–753. [Google Scholar] [CrossRef] [PubMed]
- Salthouse, T.A. Mental exercise and mental aging evaluating the validity of the “use it or lose it” hypothesis. Perspect. Psychol. Sci. 2006, 1, 68–87. [Google Scholar] [CrossRef] [PubMed]
- McAuley, E.; Kramer, A.F.; Colcombe, S.J. Cardiovascular fitness and neurocognitive function in older adults: A brief review. Brain Behav. Immun. 2004, 18, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Depp, C.A.; Jeste, D.V. Definitions and predictors of successful aging: A comprehensive review of larger quantitative studies. Am. J. Geriatr. Psychiatry 2006, 14, 6–20. [Google Scholar] [CrossRef] [PubMed]
- Seeman, T.E.; Lusignolo, T.M.; Albert, M.; Berkman, L. Social relationships, social support, and patterns of cognitive aging in healthy, high-functioning older adults: MacArthur studies of successful aging. Health Psychol. 2001, 20, 243. [Google Scholar] [CrossRef] [PubMed]
- Aarsten, M.; Smits, C.; Van Tilburg, T.; Knipscheer, K.; Deeg, J. Activity in older aldults: Cause or consequence of cognitive functioning? A longitudinal study on everyday activities and cognitive performance in olders adults. J. Gerontol. 2002, 2, 153–162. [Google Scholar]
- Bielak, A.A.; Cherbuin, N.; Bunce, D.; Anstey, K.J. Intraindividual variability is a fundamental phenomenon of aging: Evidence from an 8-year longitudinal study across young, middle, and older adulthood. Dev. Psychol. 2014, 50, 143. [Google Scholar] [CrossRef] [PubMed]
- Salthouse, T. Major Issues in Cognitive Aging; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Salthouse, T.A.; Berish, D.E.; Miles, J.D. The role of cognitive stimulation on the relations between age and cognitive functioning. Psychol. Aging 2002, 17, 548. [Google Scholar] [CrossRef] [PubMed]
- Ghisletta, P.; Bickel, J.F.; Lovden, M. Does activity engagement protect against cognitive decline in old age? Methodological and analytical considerations. J. Gerontol. B Psychol. Sci. Soc. Sci. 2006, 61, P253–P261. [Google Scholar] [CrossRef] [PubMed]
- Lovden, M.; Ghisletta, P.; Lindenberger, U. Social participation attenuates decline in perceptual speed in old and very old age. Psychol. Aging 2005, 20, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Nithianantharajah, J.; Hannan, A.J. The neurobiology of brain and cognitive reserve: Mental and physical activity as modulators of brain disorders. Progr. Neurobiol. 2009, 89, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Petrosini, L.; De Bartolo, P.; Foti, F.; Gelfo, F.; Cutuli, D.; Leggio, M.G.; Mandolesi, L. On whether the environmental enrichment may provide cognitive and brain reserves. Brain Res. Rev. 2009, 61, 221–239. [Google Scholar] [CrossRef] [PubMed]
- Scarmeas, N.; Stern, Y. Cognitive reserve and lifestyle. J. Clin. Exp. Neuropsychol. 2003, 25, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-T.; Pontifex, M.B.; Raine, L.B.; Chaddock, L.; Voss, M.W.; Kramer, A.F.; Hillman, C.H. Aerobic fitness and response variability in preadolescent children performing a cognitive control task. Neuropsychology 2011, 25, 333. [Google Scholar] [CrossRef] [PubMed]
- Bielak, A.A.; Hughes, T.F.; Small, B.J.; Dixon, R.A. It's never too late to engage in lifestyle activities: Significant concurrent but not change relationships between lifestyle activities and cognitive speed. J. Gerontol. B Psychol. Sci. Soc. Sci. 2007, 62, P331–P339. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.; Yasunaga, A.; Wang, L.-Q. Correlation between moderate daily physical activity and neurocognitive variability in healthy elderly people. Arch. Gerontol. Geriatr. 2013, 56, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Mella, N.; Fagot, D.; de Ribaupierre, A. Dispersion in cognitive functioning: Age differences over the lifespan. J. Clin. Exp. Neuropsychol. 2016, 38, 111–126. [Google Scholar] [CrossRef] [PubMed]
- Raven, J.C. Standardization of progressive matrices. Br. J. Med. Psychol. 1938, 19, 137–150. [Google Scholar] [CrossRef]
- Deltour, J.J. Echelle de vocabulaire de Mill Hill de J. C. Raven: Adaptation française et normes comparées du Mill Hill et du Standard Progressive Matrices. Editions l'Application des Techniques Modernes: Braine-le-Château, Belgique, 1993. [Google Scholar]
- Schneider, W.; Eschman, A.; Zuccolotto, A. E-Prime User’s Guide; Psychology Software Tools Inc.: Pittsburgh, PA, USA, 2002. [Google Scholar]
- Long, J.S.; Freese, J. Regression Models for Categorical Dependent Variables Using Stata; Stata Press: Thousand Oaks, CA, USA, 2006. [Google Scholar]
- Hanna-Pladdy, B.; Gajewski, B. Recent and past musical activity predicts cognitive aging variability: Direct comparison with general lifestyle activities. Front. Human Neurosci. 2012. [Google Scholar] [CrossRef] [PubMed]
- Hanna-Pladdy, B.; MacKay, A. The relation between instrumental musical activity and cognitive aging. Neuropsychology 2011, 25, 378. [Google Scholar] [CrossRef] [PubMed]
- Noice, H.; Noice, T.; Perrig-Chiello, P.; Perrig, W. Improving memory in older adults by instructing them in professional actors‘ learning strategies. Appl. Cognit. Psychol. 1999, 13, 315–328. [Google Scholar] [CrossRef]
- Noice, T.; Noice, H. Enhancing Healthy Cognitive Aging Through Theater Arts. In Enhancing Cognitive Fitness in Adults; Springer: Berlin, Germany, 2011; pp. 273–283. [Google Scholar]
- Noice, T.; Noice, H.; Staines, G. A cognitive learning principle derived from the role acquisition strategies of professional actors. Cognit. Technol. 2004, 9, 34–39. [Google Scholar]
- Gutman, S.A.; Schindler, V.P. The neurological basis of occupation. Occup. Ther. Int. 2007, 14, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Hultsch, D.F.; Hertzog, C.; Small, B.J.; Dixon, R.A. Use it or lose it: Engaged lifestyle as a buffer of cognitive decline in aging? Psychol. Aging 1999, 14, 245. [Google Scholar] [CrossRef] [PubMed]
- Verghese, J.; LeValley, A.; Derby, C.; Kuslansky, G.; Katz, M.; Hall, C.; Buschke, M.D.; Lipton, R.B. Leisure activities and the risk of amnestic mild cognitive impairment in the elderly. Neurology 2006, 66, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Verghese, J.; Lipton, R.B.; Katz, M.J.; Hall, C.B.; Derby, C.A.; Kuslansky, G.; Ambrose, A.F.; Sliwinski, M.; Buschke, H. Leisure activities and the risk of dementia in the elderly. N. Engl. J. Med. 2003, 348, 2508–2516. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.; Bennett, D.A.; Bienias, J.L.; Aggarwal, N.T.; Mendes De Leon, C.F.; Morris, M.C.; Schneider, J.A.; Evans, D.A. Cognitive activity and incident AD in a population-based sample of older persons. Neurology 2002, 59, 1910–1914. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.; Scherr, P.; Schneider, J.; Tang, Y.; Bennett, D. Relation of cognitive activity to risk of developing Alzheimer disease. Neurology 2007, 69, 1911–1920. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.S.; Mendes De Leon, C.F.; Barnes, L.L.; Schneider, J.A.; Bienias, J.L.; Evans, D.A.; Bennett, D.A. Participation in cognitively stimulating activities and risk of incident Alzheimer disease. JAMA 2002, 287, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Gow, A.J.; Bastin, M.E.; Muñoz Maniega, S.; Valdés Hernández, M.C.; Morris, Z.; Murray, C.; Royle, N.A.; Starr, J.M.; Deary, I.J.; Wardlaw, J.M. Neuroprotective lifestyles and the aging brain Activity, atrophy, and white matter integrity. Neurology 2012, 79, 1802–1808. [Google Scholar] [CrossRef] [PubMed]
- Aichberger, M.; Busch, M.A.; Reischies, F.; Ströhle, A.A.; Heinz, A.; Rapp, M. Effect of physical inactivity on cognitive performance after 2.5 years of follow-up: Longitudinal results from the Survey of Health, Ageing, and Retirement (SHARE). GeroPsych: J. Gerontopsychol. Geriatr. Psychiatry 2010, 23, 7. [Google Scholar] [CrossRef]
- Barnes, D.E.; Yaffe, K.; Satariano, W.A.; Tager, I.B. A longitudinal study of cardiorespiratory fitness and cognitive function in healthy older adults. J. Am. Geriatr. Soc. 2003, 51, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.; Kramer, A.F. Aerobic exercise effects on cognitive and neural plasticity in older adults. Br. J. Sports Med. 2009, 43, 22–24. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.I.; Prakash, R.S.; Voss, M.W.; Chaddock, L.; Hu, L.; Morris, K.S.; White, S.M.; Wójcicki, T.R.; McAuley, E.; Kramer, A.F. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 2009, 19, 1030–1039. [Google Scholar] [CrossRef] [PubMed]
- Hillman, C.H.; Erickson, K.I.; Kramer, A.F. Be smart, exercise your heart: exercise effects on brain and cognition. Nat. Rev. Neurosci. 2008, 9, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Mella, N.; de Ribaupierre, S.; Eagleson, R.; de Ribaupierre, A. Cognitive Intraindividual Variability and White Matter Integrity in Aging. Sci. World J. 2013, 2013, 16. [Google Scholar]
- Tamnes, C.K.; Fjell, A.M.; Westlye, L.T.; Ostby, Y.; Walhovd, K.B. Becoming consistent: Developmental reductions in intraindividual variability in reaction time are related to white matter integrity. J. Neurosci. 2012, 32, 972–982. [Google Scholar] [CrossRef] [PubMed]
- Walhovd, K.B.; Fjell, A.M. White matter volume predicts reaction time instability. Neuropsychologia 2007, 45, 2277–2284. [Google Scholar] [CrossRef] [PubMed]
- Barnes, L.L.; De Leon, C.M.; Wilson, R.S.; Bienias, J.L.; Evans, D.A. Social resources and cognitive decline in a population of older African Americans and whites. Neurology 2004, 63, 2322–2326. [Google Scholar] [CrossRef] [PubMed]
Education 1 | Age | Fluid intelligence 2 | Vocabulary 3 | |
---|---|---|---|---|
Mean (SD) | ||||
Wave 1 | 14.78 (3.44) | 68.15 (6.05) | 38.38 (8.29) | 28.60 (4.14) |
Wave 4 | 14.78 (3.44) | 74.46 (6.18) | 37.98 (9.46) | 28.35 (4.50) |
Physical | Intellectual | Social | Cultural | |
---|---|---|---|---|
Intellectual | −0.03 | |||
Social | −0.02 | 0.00 | ||
Cultural | 0.14 | −0.04 | 0.25 * | |
Artistic | 0.09 | −0.15 | 0.26 * | 0.38 ** |
Physical | Intellectual | Social | Cultural | Artistic | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Inter. | Slope | Inter. | Slope | Inter. | Slope | Inter. | Slope | Inter. | Slope |
SRT 1 | −1.17 | −0.02 | 6.10 | −0.09 | −4.26 | 0.01 | 3.47 | −0.07 | −17.46 | 0.14 |
LI 2 | 0.44 | −0.04 * | −7.49 | −0.05 | −1.69 | 0.03 | 4.50 | −0.05 | −42.18 ** | 0.21 |
CS 3 | −0.81 | −0.05 ** | −1.00 | −0.10 | −0.58 | 0.01 | 3.16 | −0.01 | −27.13 | −0.08 |
DI 4 | −0.28 | −0.05 | −62.31 | −0.73 | −13.31 | 0.07 | 0.16 | −0.27 * | −69.50 | 0.74 |
LC6 5 | 15.11 | −0.29 | 37.67 | −0.30 | 5.39 | 0.01 | −9.11 | −0.41 | −73.98 | 0.13 |
LC9 6 | 35.26 | −0.28 | −143.06 | 2.11 | 36.48 | −0.07 | −32.25 | −0.64 | −218.71 | 2.54 |
STi 7 | 3.65 | 0.001 | −57.60* | 0.05 | 5.24 | 0.03 | 5.67 | −0.07 | −56.86 | 0.09 |
STc 8 | 2.33 | 0.01 | −30.97 | 0.22 | 1.72 | 0.03 | 4.26 | −0.08 | −32.06 | 0.11 |
STn 9 | 1.37 | 0.01 | −18.02 | 0.05 | 2.96 | 0.02 | 1.59 | −0.06 | −35.94 | 0.15 |
RSpan 10 | 0.02 | −0.000 | 0.44 ** | 0.000 | −0.02 | 0.000 | 0.02 | −0.001 * | 0.09 | 0.000 |
Matrices 11 | 0.01 | 0.000 | 0.14 | 0.003 | 0.000 | −0.000 | −0.01 | −0.000 | 0.26 * | −0.004 |
IIV | Inter. | Slope | Inter. | Slope | Inter. | Slope | Inter. | Slope | Inter. | Slope |
SRT | −0.58 | −0.002 | −2.77 | −0.05 | −0.79 | 0.01 | 0.87 | −0.003 | −6.36 | 0.01 |
LI | 0.59 | 0.02 | −12.87 ** | −0.05 | −0.39 | 0.02 | 0.66 | −0.03 | −12.70 * | 0.06 |
CS | −0.18 | −0.02 | −7.00 | −0.14 | 0.04 | −0.002 | 0.55 | −0.01 | −8.10 | −0.01 |
DI | −0.70 | 0.01 | −26.58 | −0.38 | −1.27 | −0.01 | 1.88 | −0.03 | −13.19 | −0.17 |
LC6 | 7.94 | −0.19* | −13.15 | −0.55 | −1.99 | 0.06 | 10.68 | −0.30 * | 14.81 | 0.01 |
LC9 | 14.61 | −0.21 | −89.80 | 0.80 | 4.98 | 0.02 | 6.53 | −0.49 ** | −112.23 | 2.39 ** |
STi | 1.19 | 0.01 | −8.05 | −0.21 * | 0.74 | 0.002 | 0.48 | 0.01 | −18.31 | −0.03 |
STc | 0.87 | 0.01 | −14.15 * | −0.02 | 0.56 | −0.02 | −0.27 | 0.01 | −17.86 ** | 0.09 |
STn | 1.16 | 0.003 | −8.02 | −0.06 | 0.78 | −0.01 | −0.08 | 0.01 | −19.44 * | −0.003 |
RSpan | −0.002 | −0.000 | −0.01 | 0.000 | −0.01 * | 0.000 * | 0.02 * | −0.000 * | −0.06 | −0.000 |
Matrices | 0.002 | −0.000 | 0.10 * | −0.001 | −0.004 | −0.000 | 0.01 | −0.000 | −0.01 | 0.001 |
Physical | Intellectual | Social | Cultural | Artistic | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Inter. | Slope | Inter. | Slope | Inter. | Slope | Inter. | Slope | Inter. | Slope |
SRT 1 | ||||||||||
LI 2 | ||||||||||
CS 3 | ||||||||||
DI 4 | ||||||||||
LC6 5 | ||||||||||
LC9 6 | ||||||||||
STi 7 | ||||||||||
STc 8 | ||||||||||
STn 9 | ||||||||||
RSpan 10 | ||||||||||
Matrices 11 | ||||||||||
IIV | Inter. | Slope | Inter. | Slope | Inter. | Slope | Inter. | Slope | Inter. | Slope |
SRT | ||||||||||
LI | ||||||||||
CS | ||||||||||
DI | ||||||||||
LC6 | ||||||||||
LC9 | ||||||||||
STi | ||||||||||
STc | ||||||||||
STn | ||||||||||
RSpan | ||||||||||
Matrices |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mella, N.; Grob, E.; Döll, S.; Ghisletta, P.; De Ribaupierre, A. Leisure Activities and Change in Cognitive Stability: A Multivariate Approach. Brain Sci. 2017, 7, 27. https://doi.org/10.3390/brainsci7030027
Mella N, Grob E, Döll S, Ghisletta P, De Ribaupierre A. Leisure Activities and Change in Cognitive Stability: A Multivariate Approach. Brain Sciences. 2017; 7(3):27. https://doi.org/10.3390/brainsci7030027
Chicago/Turabian StyleMella, Nathalie, Emmanuelle Grob, Salomé Döll, Paolo Ghisletta, and Anik De Ribaupierre. 2017. "Leisure Activities and Change in Cognitive Stability: A Multivariate Approach" Brain Sciences 7, no. 3: 27. https://doi.org/10.3390/brainsci7030027
APA StyleMella, N., Grob, E., Döll, S., Ghisletta, P., & De Ribaupierre, A. (2017). Leisure Activities and Change in Cognitive Stability: A Multivariate Approach. Brain Sciences, 7(3), 27. https://doi.org/10.3390/brainsci7030027