The Effects of Cannabinoids on Executive Functions: Evidence from Cannabis and Synthetic Cannabinoids—A Systematic Review
Abstract
:1. Introduction
2. Pharmacology of Organic Cannabis
3. Synthetic Cannabinoids, from Therapeutic Agents to a Global Disease
3.1. Old Origins, New Trends
3.2. The Psychoactive Ingredients of Synthetic Cannabinoid Products
4. Executive Function (EF) and the Long-Term Effects of Cannabinoids
4.1. The Three Core Factors Model of Executive Function
4.2. Cannabinoids and Attention-Evidence from Preclinical Studies
4.3. Cannabinoids and Attention-Evidence from Clinical Studies
4.4. Cannabinoids and Working Memory-Evidence from Preclinical Studies
4.5. Cannabinoids and Working Memory- Evidence from Clinical Studies
4.6. Cannabinoids and Cognitive Flexibility- Evidence from Preclinical Studies
4.7. Cannabinoids and Cognitive Flexibility- Evidence from Clinical Studies
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hall, W.; Degenhardt, L. Adverse health effects of non-medical cannabis use. Lancet 2009, 374, 1383–1391. [Google Scholar] [CrossRef]
- UNODC. World drug report 2014. Available online: https://www.unodc.org/documents/wdr2014/World_Drug_Report_2014_web.pdf (accessed on 28 October 2017).
- Iversen, L. Long-term effects of exposure to cannabis. Curr. Opin. Pharmacol. 2005, 5, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Swanson, J.M.; Evins, A.E.; DeLisi, L.E.; Meier, M.H.; Gonzalez, R.; Baler, R. Effects of cannabis use on human behavior, including cognition, motivation and psychosis: A review. JAMA Psychiatry 2016, 73, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Curran, H.V.; Freeman, T.P.; Mokrysz, C.; Lewis, D.A.; Morgan, C.J.; Parsons, L.H. Keep off the grass? Cannabis, cognition and addiction. Nat. Rev. Neurosci. 2016, 17, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Fattore, L.; Fratta, W. Beyond THC: The new generation of cannabinoid designer drugs. Front. Behav. Neurosci. 2011, 5, 60. [Google Scholar] [CrossRef] [PubMed]
- Spaderna, M.; Addy, P.H.; D’Souza, D.C. Spicing things up: Synthetic cannabinoids. Psychopharmacology 2013, 228, 525–540. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, A.M.; Rosca, P.; Fattore, L.; London, E.D. Synthetic Cathinone and Cannabinoid Designer Drugs Pose a Major Risk for Public Health. Front. Psychiatry 2017, 8, 156. [Google Scholar] [CrossRef] [PubMed]
- Castaneto, M.S.; Gorelick, D.A.; Desrosiers, N.A.; Hartman, R.L.; Pirard, S.; Huestis, M.A. Synthetic cannabinoids: Epidemiology, pharmacodynamics and clinical implications. Drug Alcohol Depend. 2014, 144, 12–41. [Google Scholar] [PubMed]
- Papanti, D.; Schifano, F.; Botteon, G.; Bertossi, F.; Mannix, J.; Vidoni, D.; Bonavigo, T. “Spiceophrenia”: A systematic overview of “Spice”-related psychopathological issues and a case report. Hum. Psychopharmacol. 2013, 28, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Cohen, K.; Kapitány-Fövény, M.; Mama, Y.; Arieli, M.; Rosca, P.; Demetrovics, Z.; Weinstein, A. The effects of synthetic cannabinoids on executive function. Psychopharmacology 2017, 234, 1121–1134. [Google Scholar] [CrossRef] [PubMed]
- Crean, R.D.; Crane, N.A.; Mason, B.J. An evidence based review of acute and long-term effects of cannabis use on executive cognitive functions. J. Addict. Med. 2011, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pattij, T.; Wiskerke, J.; Schoffelmeer, A.N.M. Cannabinoid modulation of executive functions. Eur. J. Pharmacol. 2008, 585, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.L.A.; Thakur, G.A.; Stewart, W.N.; Bow, J.P.; Bajaj, S.; Makriyannis, A.; McLaughlin, P.J. Effects of a novel CB1 agonist on visual attention in male rats: Role of strategy and expectancy in task accuracy. Exp. Clin. Psychopharmacol. 2013, 21, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Müller, H.; Sperling, W.; Köhrmann, M.; Huttner, H.B.; Kornhuber, J.; Maler, J.M. The synthetic cannabinoid Spice as a trigger for an acute exacerbation of cannabis induced recurrent psychotic episodes. Schizophr. Res. 2010, 118, 309–310. [Google Scholar] [CrossRef] [PubMed]
- Ustundag, M.F.; Ozhan Ibis, E.; Yucel, A.; Ozcan, H. Synthetic cannabis-induced mania. Case Rep. Psychiatry 2015. [Google Scholar] [CrossRef] [PubMed]
- Ehrenreich, H.; Rinn, T.; Kunert, H.J.; Moeller, M.R.; Poser, W.; Schilling, L.; Hoehe, M.R. Specific attentional dysfunction in adults following early start of cannabis use. Psychopharmacology 1999, 142, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Scott, W.A. Cognitive complexity and cognitive flexibility. Sociometry 1962, 25, 405–414. [Google Scholar] [CrossRef]
- Thames, A.D.; Arbid, N.; Sayegh, P. Cannabis use and neurocognitive functioning in a non-clinical sample of users. Addict. Behav. 2014, 39, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Solowij, N.; Michie, P.T. Cannabis and cognitive dysfunction: Parallels with endophenotypes of schizophrenia? J. Psychiatry Neurosci. 2007, 32, 30. [Google Scholar] [PubMed]
- Howlett, A.C.; Barth, F.; Bonner, T.I.; Cabral, G.; Casellas, P.; Devane, W.A.; Martin, B.R. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev. 2002, 54, 161–202. [Google Scholar] [CrossRef] [PubMed]
- Lewin, A.H.; Seltzman, H.H.; Carroll, F.I.; Mascarella, S.W.; Reddy, P.A. Emergence and properties of spice and bath salts: A medicinal chemistry perspective. Life Sci. 2014, 97, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Di Marzo, V.; Petrocellis, L.D. Plant, synthetic and endogenous cannabinoids in medicine. Ann. Rev. Med. 2006, 57, 553–574. [Google Scholar] [CrossRef] [PubMed]
- Pacher, P.; Bátkai, S.; Kunos, G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol. Rev. 2006, 58, 389–462. [Google Scholar] [CrossRef] [PubMed]
- Zawilska, J.B. Legal highs”: New players in the old drama. Curr. Drug Abuse. Rev. 2011, 4, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Arguello, P.A.; Jentsch, J.D. Cannabinoid CB1 receptor-mediated impairment of visuospatial attention in the rat. Psychopharmacology 2004, 177, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Hampson, R.E.; Deadwyler, S.A. Cannabinoids reveal the necessity of hippocampal neural encoding for short-term memory in rats. J. Neurosci. 2000, 20, 8932–8942. [Google Scholar] [PubMed]
- Verrico, C.D.; Jentsch, J.D.; Roth, R.H.; Taylor, J.R. Repeated, Intermittent-Tetrahydrocannabinol Administration to Rats Impairs Acquisition and Performance of a Test of Visuospatial Divided Attention. Neuropsychopharmacology 2004, 29, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Presburger, G.; Robinson, J.K. Spatial signal detection in rats is differentially disrupted by Δ-9-tetrahydrocannabinol, scopolamine and MK-801. Behav. Brain Res. 1999, 99, 27–34. [Google Scholar] [CrossRef]
- Lawston, J.; Borella, A.; Robinson, J.K.; Whitaker-Azmitia, P.M. Changes in hippocampal morphology following chronic treatment with the synthetic cannabinoid WIN 55,212-2. Brain Res. 2000, 877, 407–410. [Google Scholar] [CrossRef]
- Winsauer, P.J.; Daniel, J.M.; Filipeanu, C.M.; Leonard, S.T.; Hulst, J.L.; Rodgers, S.P.; Sutton, J.L. Long-term behavioral and pharmacodynamic effects of delta-9-tetrahydrocannabinol in female rats depend on ovarian hormone status. Addict. Biol. 2011, 16, 64–81. [Google Scholar] [CrossRef] [PubMed]
- Abush, H.; Akirav, I. Short- and Long-Term Cognitive Effects of Chronic Cannabinoids Administration in Late-Adolescence Rats. PLoS ONE 2012, 7, e31731. [Google Scholar] [CrossRef] [PubMed]
- Jentsch, J.D.; Andrusiak, E.; Tran, A.; Bowers, M.B.; Roth, R.H. Δ 9-Tetrahydrocannabinol increases prefrontal cortical catecholaminergic utilization and impairs spatial working memory in the rat: Blockade of dopaminergic effects with HA966. Neuropsychopharmacology 1997, 16, 426–432. [Google Scholar] [CrossRef]
- Nava, F.; Carta, G.; Battasi, A.M.; Gessa, G.L. D2 dopamine receptors enable Δ9-tetrahydrocannabinol induced memory impairment and reduction of hippocampal extracellular acetylcholine concentration. Br. J. Pharmacol. 2000, 130, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Nava, F.; Carta, G.; Colombo, G.; Gessa, G.L. Effects of chronic Δ 9-tetrahydrocannabinol treatment on hippocampal extracellular acetylcholine concentration and alternation performance in the T-maze. Neuropharmacology 2001, 41, 392–399. [Google Scholar] [CrossRef]
- Fadda, P.; Robinson, L.; Fratta, W.; Pertwee, R.G.; Riedel, G. Differential effects of THC-or CBD-rich cannabis extracts on working memory in rats. Neuropharmacology 2004, 47, 1170–1179. [Google Scholar] [CrossRef] [PubMed]
- Basavarajappa, B.S.; Subbanna, S. CB1 receptor-mediated signaling underlies the hippocampal synaptic, learning and memory deficits following treatment with JWH-081, a new component of spice/K2 preparations. Hippocampus 2014, 24, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.N.; Froc, D.J.; Fox, C.J.; Gorzalka, B.B.; Christie, B.R. Prolonged cannabinoid treatment results in spatial working memory deficits and impaired long-term potentiation in the CA1 region of the hippocampus in vivo. Eur. J. Neurosci. 2004, 20, 859–863. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, F.; Ottani, A.; Vivoli, R.; Giuliani, D. Learning impairment produced in rats by the cannabinoid agonist HU 210 in a water-maze task. Pharmacol. Biochem. Behav. 1999, 64, 555–561. [Google Scholar] [CrossRef]
- Varvel, S.; Hamm, R.; Martin, B.; Lichtman, A. Differential effects of Δ9-THC on spatial reference and working memory in mice. Psychopharmacology 2001, 157, 142–150. [Google Scholar] [PubMed]
- Miyamoto, A.; Yamamoto, T.; Watanabe, S. Effect of repeated administration of Δ 9-tetrahydrocannabinol on delayed matching-to-sample performance in rats. Neurosci. Lett. 1995, 201, 139–142. [Google Scholar] [CrossRef]
- Mallet, P.E.; Beninger, R.J. The cannabinoid CB1 receptor antagonist SR141716A attenuates the memory impairment produced by Δ9-tetrahydrocannabinol or anandamide. Psychopharmacology 1998, 140, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, M.; Ossato, A.; Canazza, I.; Trapella, C.; Borelli, A.C.; Beggiato, S.; Marti, M. Synthetic cannabinoid JWH-018 and its halogenated derivatives JWH-018-Cl and JWH-018-Br impair novel object recognition in mice: Behavioral, electrophysiological and neurochemical evidence. Neuropharmacology 2016, 109, 254–269. [Google Scholar] [CrossRef] [PubMed]
- Compton, D.M.; Megan, S.; Grant, P.; Brian, G.; Chris, W.; Ross, D. Adolescent exposure of JWH-018 “Spice” produces subtle effects on learning and memory performance in adulthood. J. Behav. Brain Sci. 2012, 2, 146–155. [Google Scholar] [CrossRef]
- Renard, J.; Krebs, M.O.; Jay, T.M.; Le Pen, G. Long-term cognitive impairments induced by chronic cannabinoid exposure during adolescence in rats: A strain comparison. Psychopharmacology 2013, 225, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Egerton, A.; Brett, R.R.; Pratt, J.A. Acute Δ9-tetrahydrocannabinol-induced deficits in reversal learning: Neural correlates of affective inflexibility. Neuropsychopharmacology 2005, 30, 1895–1905. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.N.; Froese, L.M.; Morrish, A.C.; Sun, J.C.; Floresco, S.B. Alterations in behavioral flexibility by cannabinoid CB1 receptor agonists and antagonists. Psychopharmacology 2006, 187, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Kevin, R.C.; Wood, K.E.; Stuart, J.; Mitchell, A.J.; Moir, M.; Banister, S.D.; McGregor, I.S. Acute and residual effects in adolescent rats resulting from exposure to the novel synthetic cannabinoids AB-PINACA and AB-FUBINACA. J. Psychopharmacol. 2017, 31, 757–769. [Google Scholar] [CrossRef] [PubMed]
- Kirschmann, E.K.; McCalley, D.M.; Edwards, C.M.; Torregrossa, M.M. Consequences of Adolescent Exposure to the Cannabinoid Receptor Agonist WIN55, 212-2 on Working Memory in Female Rats. Front. Behav. Neurosci. 2017, 11, 137. [Google Scholar] [CrossRef] [PubMed]
- Kirschmann, E.K.; Pollock, M.W.; Nagarajan, V.; Torregrossa, M.M. Effects of adolescent cannabinoid self-administration in rats on addiction-related behaviors and working memory. Neuropsychopharmacology 2017, 42, 989. [Google Scholar] [CrossRef] [PubMed]
- Hall, W.; Solowij, N. Adverse effects of cannabis. Lancet 1998, 352, 1611–1616. [Google Scholar] [CrossRef]
- Ashton, C.H. Pharmacology and effects of cannabis: A brief review. Br. J. Psychiatry 2001, 178, 101–106. [Google Scholar] [CrossRef]
- Gaoni, Y.; Mechoulam, R. Isolation, structure and partial synthesis of an active constituent of hashish. J. Am. Chem. Soc. 1964, 86, 1646–1647. [Google Scholar] [CrossRef]
- Huffman, J.W.; Bushell, S.M.; Miller, J.R.A.; Wiley, J.L.; Martin, B.R. 1-Methoxy-, 1-deoxy-11-hydroxy-and 11-hydroxy-1-methoxy-Δ 8-tetrahydrocannabinols: New selective ligands for the CB 2 receptor. Bioorgan. Med. Chem. 2002, 10, 4119–4129. [Google Scholar] [CrossRef]
- Pertwee, R.G. Pharmacological actions of cannabinoids. In Handbook of Experimental Pharmacology; Pertwee, R.G., Ed.; Springer: New York, NY, USA, 2005; Volume 168, pp. 1–51. [Google Scholar]
- Rhee, M.H.; Vogel, Z.; Barg, J.; Bayewitch, M.; Levy, R.; Hanuš, L.; Mechoulam, R. Cannabinol derivatives: Binding to cannabinoid receptors and inhibition of adenylylcyclase. J. Med. Chem. 1997, 40, 3228–3233. [Google Scholar] [CrossRef] [PubMed]
- Lorenzetti, V.; Solowij, N.; Yücel, M. The role of cannabinoids on neuroanatomical alterations in cannabis users. Biol. Psychiatry 2015, 79, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Mechoulam, R.; Peters, M.; Murillo-Rodriguez, E.; Hanuš, L.O. Cannabidiol–recent advances. Chem. Biodivers. 2007, 4, 1678–1692. [Google Scholar] [CrossRef] [PubMed]
- Iseger, T.A.; Bossong, M.G. A systematic review of the antipsychotic properties of cannabidiol in humans. Schizophr. Res. 2015, 162, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Colizzi, M.; Bhattacharyya, S. Does Cannabis Composition Matter? Differential Effects of Delta-9-tetrahydrocannabinol and Cannabidiol on Human Cognition. Curr. Addict. Rep. 2017, 4, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Bolla, K.I.; Brown, K.; Eldreth, D.; Tate, K.; Cadet, J.L. Dose-related neurocognitive effects of marijuana use. Neurology 2002, 59, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Curran, V.H.; Brignell, C.; Fletcher, S.; Middleton, P.; Henry, J. Cognitive and subjective dose-response effects of acute oral Δ9-tetrahydrocannabinol (THC) in infrequent cannabis users. Psychopharmacology 2002, 164, 61–70. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, D.C.; Fridberg, D.J.; Skosnik, P.D.; Williams, A.; Roach, B.; Singh, N.; Pittman, B. Dose-related modulation of event-related potentials to novel and target stimuli by intravenous Δ9-THC in humans. Neuropsychopharmacology 2012, 37, 1632–1646. [Google Scholar] [CrossRef] [PubMed]
- Adams, I.B.; Martin, B.R. Cannabis: Pharmacology and toxicology in animals and humans. Addiction 1996, 91, 1585–1614. [Google Scholar] [CrossRef] [PubMed]
- Pacher, P.; Kunos, G. Modulating the endocannabinoid system in human health and disease–successes and failures. FEBS J. 2013, 280, 1918–1943. [Google Scholar] [CrossRef] [PubMed]
- Seely, K.A.; Lapoint, J.; Moran, J.H.; Fattore, L. Spice drugs are more than harmless herbal blends: A review of the pharmacology and toxicology of synthetic cannabinoids. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2012, 39, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Seely, K.A.; Prather, P.L.; James, L.P.; Moran, J.H. Marijuana-based drugs: Innovative therapeutics or designer drugs of abuse? Mol. Interv. 2011, 11, 36. [Google Scholar] [CrossRef] [PubMed]
- Fattore, L. Synthetic cannabinoids—further evidence supporting the relationship between cannabinoids and psychosis. Biol. Psychiatry 2016, 79, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Pertwee, R.G. Novel pharmacological targets for cannabinoids. Curr. Neuropharmacol. 2004, 2, 9–29. [Google Scholar] [CrossRef]
- Weinstein, A.; Livny, A.; Weizman, A. Brain imaging studies on the cognitive, pharmacological and neurobiological effects of cannabis in humans: Evidence from studies of adult users. Curr. Pharm. Design 2016, 22, 6366–6379. [Google Scholar] [CrossRef] [PubMed]
- Huffman, J.W.; Dai, D.; Martin, B.R.; Compton, D.R. Design, synthesis and pharmacology of cannabimimetic indoles. Bioorg. Med. Chem. Lett. 1994, 4, 563–566. [Google Scholar] [CrossRef]
- Loeffler, G.; Hurst, D.; Penn, A.; Yung, K. Spice, bath salts and the US military: The emergence of synthetic cannabinoid receptor agonists and cathinones in the US Armed Forces. Milit. Med. 2012, 177, 1041–1048. [Google Scholar] [CrossRef]
- Hazekamp, A.; Ware, M.A.; Muller-Vahl, K.R.; Abrams, D.; Grotenhermen, F. The medicinal use of cannabis and cannabinoids—an international cross-sectional survey on administration forms. J. Psychoact. Drugs 2013, 45, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Mechoulam, R.; Feigenbaum, J.J.; Lander, N.; Segal, M.; Järbe, T.U.C.; Hiltunen, A.J.; Consroe, P. Enantiomeric cannabinoids: Stereospecificity of psychotropic activity. Cell. Mol. Life Sci. 1988, 44, 762–764. [Google Scholar] [CrossRef]
- Van Amsterdam, J.; Brunt, T.; van den Brink, W. The adverse health effects of synthetic cannabinoids with emphasis on psychosis-like effects. J. Psychopharmacol. 2015, 29, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Snyder, H.R.; Miyake, A.; Hankin, B.L. Advancing understanding of executive function impairments and psychopathology: Bridging the gap between clinical and cognitive approaches. Front. Psychol. 2015, 6, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A. Executive functions. Ann. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed]
- Burgess, P.W.; Veitch, E.; Costello, A.D.; Shallice, T. The cognitive and neuroanatomical correlates of multitasking. Neuropsychologia 2000, 38, 848–863. [Google Scholar] [CrossRef]
- Chan, R.C.K.; Shum, D.; Toulopoulou, T.; Chen, E.Y.H. Assessment of executive functions: Review of instruments and identification of critical issues. Arch. Clin. Neuropsychol. 2008, 23, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, W.; Schmeichel, B.J.; Baddeley, A.D. Executive functions and self-regulation. Trends Cogn. Sci. 2012, 16, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [PubMed]
- Funahashi, S. Neuronal mechanisms of executive control by the prefrontal cortex. Neurosci. Res. 2001, 39, 147–165. [Google Scholar] [CrossRef]
- Egerton, A.; Allison, C.; Brett, R.R.; Pratt, J.A. Cannabinoids and prefrontal cortical function: Insights from preclinical studies. Neurosci. Biobehav. Rev. 2006, 30, 680–695. [Google Scholar] [CrossRef] [PubMed]
- Burk, J.A.; Mair, R.G. Effects of intralaminar thalamic lesions on sensory attention and motor intention in the rat: A comparison with lesions involving frontal cortex and hippocampus. Behav. Brain Res. 2001, 123, 49–63. [Google Scholar] [CrossRef]
- Christakou, A.; Robbins, T.W.; Everitt, B.J. Functional disconnection of a prefrontal cortical–dorsal striatal system disrupts choice reaction time performance: Implications for attentional function. Behav. Neurosci. 2001, 115, 812. [Google Scholar] [CrossRef] [PubMed]
- Diana, M.; Melis, M.; Muntoni, A.L.; Gessa, G.L. Mesolimbic dopaminergic decline after cannabinoid withdrawal. Proc. Natl. Acad. Sci. USA 1998, 95, 10269–10273. [Google Scholar] [CrossRef] [PubMed]
- Broyd, S.J.; van Hell, H.H.; Beale, C.; Yücel, M.; & Solowij, N. Acute and chronic effects of cannabinoids on human cognition—a systematic review. Biol. Psychiatry 2016, 79, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Ramaekers, J.G.; Kauert, G.; van Ruitenbeek, P.; Theunissen, E.L.; Schneider, E.; Moeller, M.R. High-potency marijuana impairs executive function and inhibitory motor control. Neuropsychopharmacology 2006, 31, 2296–2303. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, D.M.; Mathias, C.W.; Dawes, M.A.; Furr, R.M.; Charles, N.E.; Liguori, A.; Acheson, A. Impulsivity, attention, memory and decision-making among adolescent marijuana users. Psychopharmacology 2013, 226, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Lisdahl, K.M.; Price, J.S. Increased marijuana use and gender predict poorer cognitive functioning in adolescents and emerging adults. J. Int. Neuropsychol. Soc. 2012, 18, 678–688. [Google Scholar] [CrossRef] [PubMed]
- Battisti, R.A.; Roodenrys, S.; Johnstone, S.J.; Pesa, N.; Hermens, D.F.; Solowij, N. Chronic cannabis users show altered neurophysiological functioning on Stroop task conflict resolution. Psychopharmacology 2010, 212, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Batalla, A.; Bhattacharyya, S.; Yücel, M.; Fusar-Poli, P.; Crippa, J.A.; Nogué, S.; Martin-Santos, R. Structural and functional imaging studies in chronic cannabis users: A systematic review of adolescent and adult findings. PLoS ONE 2013, 8, e55821. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, C.M. Half a century of research on the Stroop effect: An integrative review. Psychol. Bull. 1991, 109, 163–203. [Google Scholar] [CrossRef] [PubMed]
- Nosek, B.A.; Banaji, M.R. The go/no-go association task. Soc. Cogn. 2001, 19, 625–666. [Google Scholar] [CrossRef]
- Eldreth, D.A.; Matochik, J.A.; Cadet, J.L.; Bolla, K.I. Abnormal brain activity in prefrontal brain regions in abstinent marijuana users. Neuroimage 2004, 23, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Jager, G.; Kahn, R.S.; Van Den Brink, W.; Van Ree, J.M.; Ramsey, N.F. Long-term effects of frequent cannabis use on working memory and attention: An fMRI study. Psychopharmacology 2006, 185, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Hatchard, T.; Fried, P.A.; Hogan, M.J.; Cameron, I.; Smith, A.M. Marijuana Use Impacts Cognitive Interference: An fMRI Investigation in Young Adults Performing the Counting Stroop Task. J. Addict. Res. Therapy 2014, 5, 197–203. [Google Scholar] [CrossRef]
- Hester, R.; Nestor, L.; Garavan, H. Impaired error awareness and anterior cingulate cortex hypoactivity in chronic cannabis users. Neuropsychopharmacology 2009, 34, 2450–2458. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, U.S.; Winkelmann, P.R.; Pilhatsch, M.; Nees, J.A.; Spanagel, R.; Schulz, K. Withdrawal phenomena and dependence syndrome after the consumption of “spice gold”. Dtsch. Arztebl. Int. 2009, 106, 464–467. [Google Scholar] [PubMed]
- Nacca, N.; Vatti, D.; Sullivan, R.; Sud, P.; Su, M.; Marraffa, J. The synthetic cannabinoid withdrawal syndrome. J. Addict. Med. 2013, 7, 296–298. [Google Scholar] [CrossRef] [PubMed]
- Baddeley, A.D.; Hitch, G.J. Working memory. In The psychology of learning and motivation; Bower, G.H., Ed.; Academic Press: New York, NY, USA, 1974; Volume 8, pp. 47–89. [Google Scholar]
- Owen, A.M.; McMillan, K.M.; Laird, A.R.; Bullmore, E. N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Hum. Brain Mapp. 2005, 25, 46–59. [Google Scholar] [CrossRef] [PubMed]
- Goldman-Rakic, P.S. Architecture of the prefrontal cortex and the central executive. Ann. N. Y. Acad. Sci. 1995, 769, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Olton, D.S. The radial arm maze as a tool in behavioral pharmacology. Physiol. Behav. 1987, 40, 793–797. [Google Scholar] [CrossRef]
- Weinstein, A.; Brickner, O.; Lerman, H.; Greemland, M.; Bloch, M.; Lester, H.; Bar-Hamburger, R. A study investigating the acute dose—response effects of 13 mg and 17 mg Δ 9-tetrahydrocannabinol on cognitive—motor skills, subjective and autonomic measures in regular users of marijuana. J. Psychopharmacol. 2008, 22, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Kevin, R.C.; Lefever, T.W.; Snyder, R.W.; Patel, P.R.; Fennell, T.R.; Wiley, J.L.; Thomas, B.F. In vitro and in vivo pharmacokinetics and metabolism of synthetic cannabinoids CUMYL-PICA and 5F-CUMYL-PICA. Forensic Toxicol. 2017, 35, 333–347. [Google Scholar] [CrossRef] [PubMed]
- Schulze, G.E.; McMillan, D.E.; Bailey, J.R.; Scallet, A.; Ali, S.F.; Slikker, W.; Paule, M.G. Acute effects of delta-9-tetrahydrocannabinol in rhesus monkeys as measured by performance in a battery of complex operant tests. J. Pharmacol. Exp. Ther. 1988, 245, 178–186. [Google Scholar] [PubMed]
- Winsauer, P.J.; Lambert, P.; Moerschbaecher, J.M. Cannabinoid ligands and their effects on learning and performance in rhesus monkeys. Behavi. Pharmacol. 1999, 10, 497–511. [Google Scholar] [CrossRef]
- Devane, W.A.; Dysarz, F.A.; Johnson, M.R.; Melvin, L.S.; Howlett, A.C. Determination and characterization of a cannabinoid receptor in rat brain. Mol. Pharmacol. 1988, 34, 605–613. [Google Scholar] [PubMed]
- Burns, J.K. Pathways from cannabis to psychosis: A review of the evidence. Front. Psychiatry 2012, 4, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Castellanos, D.; Gralnik, L.M. Synthetic cannabinoids 2015: An update for pediatricians in clinical practice. World J. Clin. Pediatr. 2016, 5, 16. [Google Scholar] [CrossRef] [PubMed]
- Kirschmann, E.; Pollock, M.; Nagarajan, V.; Torregrossa, M.M. Addiction-like and cognitive effects of adolescent cannabinoid self-administration in rats. Drug Alcohol Depend. 2017, 171, e105. [Google Scholar] [CrossRef]
- Tomas-Roig, J.; Benito, E.; Agis-Balboa, R.C.; Piscitelli, F.; Hoyer-Fender, S.; Di Marzo, V.; Havemann-Reinecke, U. Chronic exposure to cannabinoids during adolescence causes long-lasting behavioral deficits in adult mice. Addict. Biol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Lorenzetti, V.; Alonso-Lana, S.; J Youssef, G.; Verdejo-Garcia, A.; Suo, C.; Cousijn, J.; Solowij, N. Adolescent cannabis use: What is the evidence for functional brain alteration? Curr. Pharm. Design 2016, 22, 6353–6365. [Google Scholar] [CrossRef] [PubMed]
- Solowij, N.; Battisti, R. The chronic effects of cannabis on memory in humans: A review. Curr. Drug Abuse Rev. 2008, 1, 81–98. [Google Scholar] [CrossRef] [PubMed]
- Jaeggi, S.M.; Buschkuehl, M.; Perrig, W.J.; Meier, B. The concurrent validity of the N-back task as a working memory measure. Memory 2010, 18, 394–412. [Google Scholar] [CrossRef] [PubMed]
- Kanayama, G.; Rogowska, J.; Pope, H.G.; Gruber, S.A.; Yurgelun-Todd, D.A. Spatial working memory in heavy cannabis users: A functional magnetic resonance imaging study. Psychopharmacology 2004, 176, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, L.K.; Mencl, W.E.; Westerveld, M.; Pugh, K.R. Impact of cannabis use on brain function in adolescents. Ann. N. Y. Acad. Sci. 2004, 1021, 384–390. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, D.C.; Perry, E.; MacDougall, L.; Ammerman, Y.; Cooper, T.; Wu, Y.T.; Krystal, J.H. The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: Implications for psychosis. Neuropsychopharmacology 2004, 29, 1558. [Google Scholar] [CrossRef] [PubMed]
- Jager, G.; Van Hell, H.H.; De Win, M.M.L.; Kahn, R.S.; Van Den Brink, W.; Van Ree, J.M.; Ramsey, N.F. Effects of frequent cannabis use on hippocampal activity during an associative memory task. Eur. Neuropsychopharmacol. 2007, 17, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Cousijn, J.; Wiers, R.W.; Ridderinkhof, K.R.; Van, D.B.W.; Veltman, D.J.; Goudriaan, A.E. Working-memory network function in heavy cannabis users predicts changes in cannabis use: A prospective fMRI study. Hum. Brain Mapp. 2014, 5, 2470–2482. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Longo, C.A.; Fried, P.A.; Hogan, M.J.; Cameron, I. Effects of marijuana on visuospatial working memory: An fMRI study in young adults. Psychopharmacology 2010, 210, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Bossong, G.M.; Jager, G.; Bhattacharyya, S.; Allen, P. Acute and non-acute effects of cannabis on human memory function: A critical review of neuroimaging studies. Curr. Pharm. Design 2014, 20, 2114–2125. [Google Scholar] [CrossRef]
- Cousijn, J.; Wiers, R.W.; Ridderinkhof, K.R.; van den Brink, W.; Veltman, D.J.; Goudriaan, A.E. Effect of baseline cannabis use and working-memory network function on changes in cannabis use in heavy cannabis users: A prospective fMRI study. Hum. Brain Mapp. 2014, 35, 2470–2482. [Google Scholar] [CrossRef] [PubMed]
- Cousijn, J.; Wiers, R.W.; Ridderinkhof, K.R.; van den Brink, W.; Veltman, D.J.; Goudriaan, A.E. Grey matter alterations associated with cannabis use: Results of a VBM study in heavy cannabis users and healthy controls. Neuroimage 2012, 59, 3845–3851. [Google Scholar] [CrossRef] [PubMed]
- Battistella, G.; Fornari, E.; Annoni, J.M.; Chtioui, H.; Dao, K.; Fabritius, M.; Giroud, C. Long-term effects of cannabis on brain structure. Neuropsychopharmacology 2014, 39, 2041–2048. [Google Scholar] [CrossRef] [PubMed]
- Castellanos, D.; Thornton, G. Synthetic cannabinoid use: Recognition and management. J Psychiatr. Pract. 2012, 18, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Bebarta, V.S.; Ramirez, S.; Varney, S.M. Spice: A new “legal” herbal mixture abused by young active duty military personnel. Subst. Abuse 2012, 33, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Simmons, J.R.; Skinner, C.G.; Williams, J.; Kang, C.S.; Schwartz, M.D.; Wills, B.K. Intoxication from smoking “spice. ” Ann. Emerg. Med. 2011, 57, 187–188. [Google Scholar] [CrossRef] [PubMed]
- Herkenham, M.; Lynn, A.B.; Little, M.D.; Johnson, M.R.; Melvin, L.S.; De Costa, B.R.; Rice, K.C. Cannabinoid receptor localization in brain. Proc. Natl. Acad. Sci. USA 1990, 87, 1932–1936. [Google Scholar] [CrossRef] [PubMed]
- Matyas, F.; Yanovsky, Y.; Mackie, K.; Kelsch, W.; Misgeld, U.; Freund, T.F. Subcellular localization of type 1 cannabinoid receptors in the rat basal ganglia. Neuroscience 2006, 137, 337–361. [Google Scholar] [CrossRef] [PubMed]
- McAlonan, K.; Brown, V.J. Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav. Brain Rese. 2003, 146, 97–103. [Google Scholar] [CrossRef]
- Birrell, J.M.; Brown, V.J. Medial frontal cortex mediates perceptual attentional set shifting in the rat. J. Neurosci. 2000, 20, 4320–4324. [Google Scholar] [PubMed]
- Floresco, S.B.; Magyar, O.; Ghods-Sharifi, S.; Vexelman, C.; Maric, T.L. Multiple dopamine receptor subtypes in the medial prefrontal cortex of the rat regulate set-shifting. Neuropsychopharmacology 2006, 31, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Wright, M.J.; Vandewater, S.A.; Parsons, L.H.; Taffe, M.A. Δ 9 Tetrahydrocannabinol impairs reversal learning but not extra-dimensional shifts in rhesus macaques. Neuroscience 2013, 235, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Gomes, F.V.; Guimarães, F.S.; Grace, A.A. Effects of pubertal cannabinoid administration on attentional set-shifting and dopaminergic hyper-responsivity in a developmental disruption model of schizophrenia. Int. J. Neuropsychopharmacol. 2015, 18, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Leber, A.B.; Turk-Browne, N.B.; Chun, M.M. Neural predictors of moment-to-moment fluctuations in cognitive flexibility. Proc. Natl. Acad. Sci. USA 2008, 105, 13592–13597. [Google Scholar] [CrossRef] [PubMed]
- Kehagia, A.A.; Murray, G.K.; Robbins, T.W. Learning and cognitive flexibility: Frontostriatal function and monoaminergic modulation. Curr. Opin. Neurobiol. 2010, 20, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Milner, B. Some cognitive effects of frontal-lobe lesions in man. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1982, 298, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Morrison, P.D.; Zois, V.; McKeown, D.A.; Lee, T.D.; Holt, D.W.; Powell, J.F.; Murray, R.M. The acute effects of synthetic intravenous Delta9-tetrahydrocannabinol on psychosis, mood and cognitive functioning. Psychol. Med. 2009, 39, 1607–1616. [Google Scholar] [CrossRef] [PubMed]
- Pope, H.G.; Gruber, A.J.; Hudson, J.I.; Cohane, G.; Huestis, M.A.; Yurgelun-Todd, D. Early-onset cannabis use and cognitive deficits: What is the nature of the association? Drug Alcohol Depend. 2003, 69, 303–310. [Google Scholar] [CrossRef]
- Scholes, K.E.; Martin-Iverson, M.T. Cannabis use and neuropsychological performance in healthy individuals and patients with schizophrenia. Psychol. Med. 2010, 40, 1635–1646. [Google Scholar] [CrossRef] [PubMed]
- Pope, H.G.; Gruber, A.J.; Hudson, J.I.; Huestis, M.A.; Yurgelun-Todd, D. Neuropsychological performance in long-term cannabis users. Arch. Gen. Psychiat. 2001, 58, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Solowij, N.; Stephens, R.S.; Roffman, R.A.; Babor, T.; Kadden, R.; Miller, M.; Vendetti, J. Cognitive functioning of long-term heavy cannabis users seeking treatment. Jama 2002, 287, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Grant, I.; Gonzalez, R.; Carey, C.L.; Natarajan, L.; Wolfson, T. Non-acute (residual) neurocognitive effects of cannabis use: A meta-analytic study. J. Int. Neuropsychol. Soc. 2003, 9, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Altintas, M.; Inanc, L.; Oruc, G.A.; Arpacioglu, S.; Gulec, H. Clinical characteristics of synthetic cannabinoid-induced psychosis in relation to schizophrenia: A single-center cross-sectional analysis of concurrently hospitalized patients. Neuropsychiat. Dis. Treat. 2016, 12, 1893. [Google Scholar] [CrossRef] [PubMed]
- Milders, M.; Ietswaart, M.; Crawford, J.R.; Currie, D. Social behavior following traumatic brain injury and its association with emotion recognition, understanding of intentions and cognitive flexibility. J. Int. Neuropsychol. Soc. 2008, 14, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, R.; Wilkinson, S.T.; D’Souza, D.C. Gone to pot–a review of the association between cannabis and psychosis. Front. Psychiatry. 2014, 5, 54. [Google Scholar] [CrossRef] [PubMed]
- Wiley, J.L.; Marusich, J.A.; Huffman, J.W. Moving around the molecule: Relationship between chemical structure and in vivo activity of synthetic cannabinoids. Life Sci. 2014, 97, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Ghitza, U.E.; Epstein, D.H.; Schmittner, J.; Vahabzadeh, M.; Lin, J.L.; Preston, K.L. Randomized trial of prize-based reinforcement density for simultaneous abstinence from cocaine and heroin. J. Consult. Clin. Psychol. 2007, 75, 765. [Google Scholar] [CrossRef] [PubMed]
Type of Effects | Symptoms |
---|---|
Psychosis | Recurrent psychosis episodes [9,14,15,16]. |
Agitation | Last for several hours after intoxication of SC [16,17,18]. |
Affect disturbance | Severe anxiety symptoms and panic attacks shortly after consuming SC [14,17,18,19,20]. |
Cognitive alterations | Impairment in memory and attention deficits [14,20,21,22] |
Cardiovascular effects | Both tachycardia, tachyarrhythmia and cardiotoxicity were reported after exposure to SC [14,23]. |
Gastrointestinal effects | Nausea, vomiting and diarrhea after severe exposure to SC [14,24,25]. |
Animals | Cannabinoids Tested | Main Findings | Reference |
---|---|---|---|
Male Long–Evans rats | WIN55,212-2 and Δ9-THC | Dose-related attention impairments afteracute exposure to cannabinoid CB1 receptor agonist. Impairments were reduced after treatment with CB1 antagonist. | [26,27] |
Male Sprague–Dawley rats | Δ9-THC | Decreased performance on a divided attention tasklasts for 2 weeks after chronic administration withcannabinoid CB1 receptor agonist. | [28] |
Male Sprague–Dawley rats | AM-4054 | Decreased sustained attention after acute treatmentwith a cannabinoid CB1 receptor agonist.Impairments were associated with task demands. | [14] |
Male Sprague–Dawley rats | Δ9-THC | Impairments of visual attention on an operant signaldetection task after acute treatment with cannabinoid CB1 receptor agonist. | [29] |
Male Sprague–Dawley rats | WIN55,212-2 | Deficits of working memory after chronic treatmentwith a cannabinoid CB1 receptor agonist. | [30] |
Female Long–Evans rats | Δ9-THC | Repeated administration with cannabinoid CB1 receptoragonist in adolescence induced persistent impairment of working memory. | [31] |
Male Sprague–Dawley rats | WIN55,212-2 | Acute injection of cannabinoid CB1 receptor agonist in late-adolescence period induced temporary impairment of short-term memory. Chronic treatment with cannabinoid CB1 receptor agonist impair short-term memory for several weeks after the last administration. | [32] |
Male Sprague–Dawley rats | Δ9-THC | Acute exposure to a cannabinoid CB1 receptor agonistinduced working memory impairments | [33,34] |
Male Sprague–Dawley rats, Lister rats and C57B16 mice | Δ9-THC | Working memory impairments were induced afterchronic treatment with a cannabinoid CB1 receptor agonist. | [35,36] |
Wild-type and CB1 receptor knockout mice | JWH-081 | Acute treatment with cannabinoid CB1 receptor agonist induced short-term memory deficits in wild-type mice but not in knockout mice. | [37] |
Male Long–Evans rats | HU-210 | Acute treatment with a cannabinoid CB1 receptor agonistinduced working memory deficits. | [38,39] |
Male C57B1/6 mice | Δ9-THC | Acute injection of Δ9-THC disrupted performance of the working memory task, impairments were reversed by SR1417161A. | [40] |
Male Wistar Rats | Δ9-THC | Acute administration induced set-shifting impairments24 h after treatment. | [41] |
Male albino Wistar rats | Δ9-THC | Acute treatment with a cannabinoid CB1 receptor agonistinduced short-term memory deficits, impairments were attenuated after treatment with cannabinoid CB1 antagonist. | [42] |
Male ICR (CD-1) mice | JWH-018, JWH-018-Cl, JWH-018-Br and Δ9-THC | SCs dose-dependently impaired short- term memory. Their effects resulted more potent respect to that evoked by ∆9-THC. | [43] |
Male Long–Evans rats | JWH-018 | Chronic exposer to cannabinoid CB1 receptor agonist induced spatial learning and short-term memory alterations well after the drugs exposure period. | [44] |
Male Lister Hooded and Wistar rats | CP55,940 | Acute administration of cannabinoid CB1 receptor agonist impaired short-term memory in both strains, yet, no long-term effects were observed. | [45] |
Male Long–Evans rats | Δ9-THC | Acute treatment with a cannabinoid CB1 receptor agonistinduced reversal learning deficits while set-shifting ability has maintained | [46] |
Male Long–Evans rats | HU-210 | Administration of the cannabinoid CB1 receptor agonistelicited dose-dependent disruptive effects on set-shiftingperformance. Impairments were diminished afteradministration of the CB1 antagonist AM251. | [47] |
Male Albino Wistar rats | AB-PINACA or AB-FUBINACA compere with Δ9-THC | Two weeks after repeated administration of cannabinoid-agonist short-term memory impairments were observed, in SCs groups the impairments were greater and last for longer time. | [48] |
Female and Male Sprague–Dawley rats | WIN55,212-2 | Self-administration of SCs in low dosages during adolescence period improve or did not induce permanent memory impairments, while treatments of high dosages of SCs in adolescence period induced permanent short-term memory impairments. | [49,50] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cohen, K.; Weinstein, A. The Effects of Cannabinoids on Executive Functions: Evidence from Cannabis and Synthetic Cannabinoids—A Systematic Review. Brain Sci. 2018, 8, 40. https://doi.org/10.3390/brainsci8030040
Cohen K, Weinstein A. The Effects of Cannabinoids on Executive Functions: Evidence from Cannabis and Synthetic Cannabinoids—A Systematic Review. Brain Sciences. 2018; 8(3):40. https://doi.org/10.3390/brainsci8030040
Chicago/Turabian StyleCohen, Koby, and Aviv Weinstein. 2018. "The Effects of Cannabinoids on Executive Functions: Evidence from Cannabis and Synthetic Cannabinoids—A Systematic Review" Brain Sciences 8, no. 3: 40. https://doi.org/10.3390/brainsci8030040
APA StyleCohen, K., & Weinstein, A. (2018). The Effects of Cannabinoids on Executive Functions: Evidence from Cannabis and Synthetic Cannabinoids—A Systematic Review. Brain Sciences, 8(3), 40. https://doi.org/10.3390/brainsci8030040